STUDY OF MORPHOLOGICAL STRUCTURE AND THE GENETIC CONTROL OF LIGNOTUBER IN EUCALYPTUS

Martins L. 1, Bertolozzo T.– M. 1, Furtado E. L. 2, Oda S. 3, Marino C. L. 4

1 Department of Genetics, Instituto de Biociências, UNESP – Universidade Estadual Paulista Campus de Botucatu CEP 18618-000, São Paulo – Brazil.
3 Suzano Papel e Celulose SA Company. Itapetininga, São Paulo – Brazil.

Introduction. Eucalyptus sp. originates from Australia and has adapted very well to Brazilian climatic conditions, from being used as a source of timber and raw material for production of pulp, paper and other supplies [5]. Eucalyptus hermaphrodite flowers, pollination by insects, outcrossing favored by protandry, but is also a rate of inbreeding [4].

This genus has a characteristic common to almost all species (95 %), which is the presence of a basal body, the lignotuber. Lignotuberes are lumps of wood found in the axils of the cotyledons or the first pair of leaves in the early stages of development. The lignotuber has the task of promoting the budding of plants and store nutrients [9, 1], possessing large amounts of reserve parenchyma (stock carb), and also many dormant buds that have the role of sprouting [7].

The heritability for the character lignotuber varies among species and even within sub-races, which suggests environmental influences on expression of this trait. The morphology and silvicultural aspects of lignotuber been relatively well studied, however, the genetic information of this nature are not well understood, and its inheritance in hybrid individuals [6, 8].

The objective of this work was the understanding of the type of inheritance lignotuber in Eucalyptus grandis X urophylla as well as monitoring the appearance of this character in the study population during the time covered in this study.

MATERIAL AND METHODS.

Analysis of the genetic control of Lignotuber. We used 111 individuals from a population of self-fertilization of a hybrid individual urograndis. This hybrid was obtained from a cross between the species E.grandis and E.urophilla belonging to the breeding program at Suzano Papel e Celulose. The seeds were germinated in plastic pots cleaned, containing a mixture of sand and vermiculite. Part of successfully seeded, and after reaching an acceptable level of development of root system were transferred to pots.

In total, 111 seedlings were transplanted, with 111 young subjects filled, with varying degrees of development. Was conducted in this population monitoring of plant growth under the conditions offered, as well as developments in the emergence of lignotuber in individuals over time in which the study was conducted.

RESULTS AND DISCUSSION.

Evaluation of the development of lignotuber. From the cuts made in lignotuber it was possible to observe the various cell types such as parenchymatous cells, which contain reserves of starch and are quite numerous in relation to the stem, the region of the yolk, where the expansion takes place to form the mass of lignotuber. These observations agree with previous studies [1, 2] lignotuber they found in the same tissues in the stem, as foreign exchange, phloem lignified walls, rhytidome (bark), the conductive vessels.

These individuals was quantified the proportion of positive and negative for the presence of character, and the results are presented in Table. In individuals are discriminated against and their situation in each of the assessments.

In the first and second evaluation, conducted on 21.03.2005 and 02.06.2005 respectively, some individuals had a low level of development, which did not allow their inclusion in the statistics on the presence or absence of lignotuber. They are: 20, 24, 35, 41, 52, 80 and 91.

This evolution in the emergence of lignotuber is clearly visible in the figure, which presents the results of the evaluations.
The analysis of table and figure indicates that when the stress was increased the number of plants with lignotuber were increased too, this indicates the ratio of formation of lignotuber and abiotic stress. We believed that the lignotuber, as a body related to reserves and regrowth, facilitates the adaptation and survival of individuals with scarce environments, the population was exposed.

Table. Subjects of the population with and without lignotuber

<table>
<thead>
<tr>
<th>analysis</th>
<th>Excluded individuals</th>
<th>Individuals with lignotuber</th>
<th>Individuals without lignotuber</th>
</tr>
</thead>
<tbody>
<tr>
<td>21/03/05</td>
<td>20, 24, 35, 41, 52, 80 e 91</td>
<td>6,7,10,11,16,23,26,34,37,44,46, 47,49,53,59,61,65,66,68,75,78, 81, 85,92,93,96, 98,100, 105,109 e 110</td>
<td>Other subjects not listed on the side, until the 111</td>
</tr>
<tr>
<td>02/06/05</td>
<td>20, 24, 35, 41, 52, 80 e 91</td>
<td>All subjects above plus: 1,3,19,22,25,29,40,43,55,58, 72,76, 79,82,84,87,89,94,101 e 111</td>
<td>Other subjects not listed on the side, until the 111</td>
</tr>
<tr>
<td>01/08/05</td>
<td>20, 24, 41, 52, 80 e 91</td>
<td>All subjects above plus: 2,18,32,35,38,42,56,62 e 97</td>
<td>Other subjects not listed on the side, until the 111</td>
</tr>
<tr>
<td>06/09/05</td>
<td>20, 24, 41, 52, 80 e 91</td>
<td>All subjects above plus: 9,17,28,54,88 e 104</td>
<td>Other subjects not listed on the side, until the 111</td>
</tr>
<tr>
<td>31/10/05</td>
<td>24, 41, 52 e 80</td>
<td>All subjects above plus: 20 and 51</td>
<td>Other subjects not listed on the side, until the 111</td>
</tr>
<tr>
<td>18/01/06</td>
<td>24 (morreu), 41 e 52</td>
<td>All subjects above plus: 13,48 and 71</td>
<td>4,5,8,12,14,15,21,27,30(morreu),31,33,36,39,45,50,57,60,63, 64,67,69,70,73,74,77,83,86,90, 91,95,99,102,103,106 e 108.</td>
</tr>
</tbody>
</table>

Figure. Proportion of plants with and without lignotuber after the six assessments.
The species *E. grandis* used with one of parentasi Lignotuber not present while the species *E. urophylla* has the character. The hybrid urograndis lignotuber presented in 100% of plants assessed.

Considering that the F₁ parents were heterozygous for this trait, it is expected that three quarters of the F₂ plants lignotuber present

When was the first evaluation, only one fourth of the plants had lignotuber, this number has fallen by half in the second evaluation, and was also growing in subsequent evaluations, reaching 66% in the sixth review.

It is likely that even more plants of this population may present lignotuber, but even this does not occur, this number reached up to the sixth assessment is sufficient and acceptable for the test of chi-square for the initial hypothesis is accepted, i.e. control gene for the trait is monogenic and dominant lignotuber.

From the assessments made in the field with the population, could also see that the development of lignotuber may be late in many plants, and that real assessment about the presence or absence of this character must necessarily be regarded as the time. This has previously been reported in other studies, as in Carr et al, [2], Carter and Paton, [3], among others

The formation of lignotuber is given by the expansion of surrounding tissue yolks accessory, and can be developed in four distinct ways. In all four modes, lignotuber begins to appear in 3 to 6 months of age of the plant, differing by the relative positions occupied by the developing axillary buds and the buds ancillary lignotuber. The same authors, says, however, that the ability to form lignotuber is not restricted to the cotyledonary nodes of the primary buds, but also is owned by branches from the accessory buds.

LITERATURE

PIGMENT APPARATUS OF DIFFERENT BIOMORPH OF SAXIFRAGA OPPOSITIFOLI IN ARCTIC

Markovskaya E. F. ¹, Shmakova N. Ju. ²

¹ Petrozavodsk State University, E-mail: volev@sampo.ru
² Polar-Alpine Botanical Garden-Institute (PABGI), Kirovsk, E-mail: shmanatalya@yandex.ru

Abstract. Our investigation was made in the High Arctic tundra at region Barentsburg (Svalbard) during the seasons of 2007–2010 years. *Saxifraga oppositifolia* L. is morphologically variable, and many scientists recognize two morphs: the prostrate form and cushion form. The plastid pigments content of prostrate and cushion forms of *Saxifraga oppositifolia* were analyzed. Variability within these forms appeared not very significant. Morphological variability within population of *S. oppositifolia* appeared to be adaptive for this species as a pioneer in the primary succession in High Arctic where the selective forces vary spatially and temporally.