
ORIGINAL PAPER

Ultrastructure and functional activity of chloroplasts in wheat
leaves under root chilling

Yu. V. Venzhik • A. F. Titov • V. V. Talanova •

E. A. Miroslavov

Received: 28 May 2013 / Revised: 26 August 2013 / Accepted: 8 October 2013 / Published online: 19 October 2013
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Abstract The effects of root chilling (2 �C; during 1, 5 h,

1, 2, 4 and 7 days) on the ultrastructure, functional activity

of chloroplasts and cold tolerance of leaf cells of wheat

(Triticum aestivum L.) were studied. Results indicated that

the area of the chloroplasts increased and the number of

grana in the chloroplast decreased already within first hours

of the experiment. On the 2nd–7th day of the cold treat-

ment, the length of photosynthetic membranes in the

chloroplasts increased owing to the membranes of thylak-

oids in grana. The number of chloroplasts per cell was

increased by the end of the experiment. Reduction of

electron transport rate and intensification of non-photo-

chemical quenching of chlorophyll fluorescence were

observed in the first hours of root chilling. The growth of

the leaves slowed in the first day of the treatment and

resumed on the second day. Leaf area in the root-chilled

plants by the end of the experiment exceeded the initial

values by 60 %. The significant rise in cold tolerance of

leaf cells was detected after 24 h of root chilling. After

48 h of the treatment, the cold tolerance reached a maxi-

mum, and did not change thereafter. It is assumed that most

of the observed structural and functional changes are

adaptive, and meant to support the photosynthetic function

and promote the cold tolerance of the plants.
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Abbreviations

ETR Electron transport rate

qN Coefficient of non-photochemical quenching

Chl Chlorophyll

Car Carotenoids

LT50 Temperature lethal to 50 % of palisade

parenchyma cells

Introduction

Chloroplasts, which perform the photosynthetic and some

other functions, are essential organelles in plant cells.

Studies have demonstrated that they are quick to respond to

changes in the environment, including exposure to low

temperature (Kratsch and Wise 2000). This process

involves structural and functional changes such as an

increase in size and quantity of chloroplasts, formation of a

great number of small grana in them, emergence of

numerous plastoglobules, reduction of starch grains (Kra-

tsch and Wise 2000; Kutik et al. 2004; Hola et al. 2008;

Vella et al. 2012; Venzhik et al. 2013), as well as decel-

eration of photosynthesis and leaf growth, changes in

chlorophyll and carotenoids content, intensification of the

non-photochemical quenching of chlorophyll fluorescence,

etc, (Hurry et al. 1995; Artuso et al. 2000; Yamasaki et al.

2002; Wang and Guo 2005; Ensminger et al. 2006; Garbero

et al. 2012; Venzhik et al. 2011).

It quite often happens in the nature that only the roots are

exposed to chilling, whereas the above-ground parts of the

plant remain under physiologically normal temperature.
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However, the plant is a complete system in which all parts

interact. On the one hand, chilling of roots causes water

deficit (Aroca et al. 2001; Bloom et al. 2004; Lee et al. 2004)

and degradation of mineral nutrition of plant (Bigot and

Boucaud 2006; Luo et al. 2009). On the other hand, earlier

studies have demonstrated (Titov et al. 2003; Talanova et al.

2010) that short-term chilling of winter wheat roots at

hardening temperature initiates an increase of cold tolerance

of leaf cells. Moreover, low temperature in root zone induces

such biochemical and physiological changes in leaf cells as

intensification of genes expression (Talanova et al. 2010),

changes in the hormonal balance (Veselova et al. 2003,

2006) and inhibition of carbon dioxide assimilation (Al-

Hamdani and Thomas 2000). Based on these and other data,

many researchers have suggested that root cells may send the

stress signal to the leaf (Jeschke et al. 1997; McCully 1999;

Mishra et al. 2001; Fromm and Lauther 2007; Sicher et al.

2012). The nature of this signal is being studied now, but is

not completely clear. Some scientists suggest that such signal

may be bioelectric (Mishra et al. 2001; Fromm and Lauther

2007), hydraulic (Chazen and Neumann 1994; McCully

1999) or hormonal (Ternesi et al. 1994; Jeschke et al. 1997;

Sicher et al. 2012). We hypothesize that the stress signal

induces not only physiological but also ultrastructural

changes in leaf during root chilling. Little is known about

this, although the structural changes along with functional

changes of chloroplasts play a significant role in the plant

adaptation to cold temperatures (Kratsch and Wise 2000;

Kutik et al. 2004; Hola et al. 2008; Vella et al. 2012; Venzhik

et al. 2013).

Therefore, this work is aimed to study the effects of root

chilling on the ultrastructure and functional activity of

chloroplasts, as well as on the cold tolerance of cells in

wheat leaves.

Materials and methods

Plant material and treatments

The research was carried out using the facilities of the

Equipment Sharing Centre of the Institute of Biology, Kar-

RC of RAS. Winter wheat (Triticum aestivum L. cv. Mos-

kovskaya 39) seedlings were grown on Knop’s nutrient

solution, pH 6.2–6.4, in the growth chamber for 7 day at air

temperature of 22 �C, air relative humidity of 60–70 %,

photosynthetic photon flux density (PPFD) of

180 lmol m-2 s-1 and 14-h photoperiod. After this roots of

the seedlings were chilled for 7 day at 2 �C, which is an

optimal temperature for cold hardening of wheat plants

(Balagurova et al. 2001). Seedlings were placed for this in a

specially designed device (Fig. 1) that allows to maintain

different temperatures in the roots and aerial parts of the

plants. A TZhR-02/-20 thermoelectric thermostat (Interm,

Russia) was used for maintaining the required temperature

around the root system (2 �C). It was installed in a growth

chamber that maintained the required air temperature

(22 �C). All measurements were taken from the first leaf of

the seedlings in control variant (both roots and shoots at 22 �C)

and during root chilling (roots at 2 �C, shoots at 22 �C) 1, 5 h, 1,

2, 4 and 7 days after the beginning of the process.

Ultrastructure study

Transmission electron microscopy was performed accord-

ing to the standard procedure (Kutik et al. 2004; Garbero

et al. 2012; Venzhik et al. 2013). Leaf samples (2 9 2 mm)

were fixed in 3 % glutaraldehyde with phosphate buffer,

pH 7.2. After postfixation with 2 % OsO4, the samples

were dehydrated in graded series of ethanol, acetone and

embedded in the epoxy resin Epon-812. Thin sections of

leaf were cut in an ultramicrotome Ultracut (Reichert,

Austria) and post-stained with uranyl acetate and lead cit-

rate. Samples were photographed in a transmission electron

microscope Hitachi 600 (Hitachi, Japan). The morpho-

metric analysis was performed on cells of the 1st subepi-

dermal mesophyll layer according to conventional

techniques (Kutik et al. 2004; Venzhik et al. 2013).

Chlorophyll fluorescence parameters, pigment

determination and growth parameters

Chlorophyll fluorescence parameters were measured with a

MINI-PAM fluorimeter (Walz, Germany). Prior to the

measurements, the leaves were dark adapted for 30 min.

Fig. 1 The scheme of chamber for the control and the regulation of

temperature in the zones of roots and shoots. 1 Ultra thermostat; 2

contact thermometer; 3 circulating pump of the thermostat; 4

thermostat for roots; 5 thermometer; 6 growth chamber; 7 lighting

device
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The electron transport rate (ETR) and the coefficient of

non-photochemical quenching (qN) were calculated by

formulas (Maxwell and Johnson 2000; Lichtenthaler et al.

2005). The chlorophyll (Chl) and carotenoids (Car) con-

tents were determined after extraction of the pigments with

ethanol using a spectrophotometer SF-2000 (Spectr, Rus-

sia) (Lichtenthaler and Wellburn 1983). Leaf area was

calculated as a product of leaf length, leaf width and

coefficient 0.67.

Determination of cold tolerance

The cold tolerance of the leaf cells was judged by the

temperature (LT50) lethal to 50 % of the palisade cells in

the leaf sections after 5 min of freezing in a TZhR–02/–20

thermoelectric microcooler (Interm, Russia), the tempera-

ture reduced gradually at regular intervals of 0.4 �C (Bal-

agurova et al. 2001). Cell viability was assessed using a

LOMO Micmed-2 light microscope (LOMO, Russia) by

cytoplasm coagulation and destruction of chloroplasts.

Statistical analysis

All experiments were repeated at least three times.

Approximately 25 chloroplasts (in each exposure) were

examined by ultrastructural studies. The data are presented

as mean ± standard error and were tested by paired Stu-

dent’s t test.

Results

Effects of root chilling on ultrastructure of chloroplasts

In our study, the ultrastructure of chloroplasts in the leaves

of wheat seedlings in the control (22 �C) was typical for

this species: the chloroplasts were lens-shaped, with a well-

developed thylakoid system in the fine-grained stroma

(Fig. 2a). Root chilling (2 �C) induced multiple structural

changes in leaf chloroplasts. After 1–5 h of root chilling,

there appeared ‘‘distorted’’, as well as ‘‘dilated’’ thylak-

oids––with enlarged lumen (intra-thylakoid space)

(Fig. 2b). After 24 h of root chilling, the stroma in the

chloroplasts looked more compact, and grana were hard to

visualize (Fig. 2c). Note also that the chloroplasts con-

tained invaginations (Fig. 2c) and had numerous protru-

sions (outgrowths) (Fig. 2d), which multiplied by the 4th–

7th day of the experiment.

The morphometric treatment of the experimental

samples confirmed the presence of considerable changes

in the ultrastructure of the chloroplasts. Thus, after 1–5 h

of root chilling (2 �C), the area of the chloroplasts

increased owing to enlargement of the stroma area

(Table 1). The rapid increase in size of plastids occurred

during the first day of the experiment. Later on (on the

2nd–4th day of the cold treatment) this parameter

steadied, and then it increased again on 7th day

(Table 1). The number of chloroplasts per cell also

increased by the end of the experiment (7th day)

(Table 1). The number of grana in a chloroplast and the

number of thylakoids per granum decreased already after

1 h of root chilling (Table 2). Further on (on the 2nd–7th

day of the cold treatment), the length of photosynthetic

membranes in the chloroplasts of leaf cells increased

owing to the membranes of thylakoids in grana

(Table 2). On the 4th–7th day of the cold impact, the

number of thylakoids in grana increased (Table 2), i.e.,

large grana formed.

Effects of root chilling on functional activity

of chloroplasts

Significant changes in the functional activity of the

chloroplasts were detected during root chilling (2 �C). To

wit, reduction of the ETR in the chloroplasts (Fig. 3a)

and an increase in the coefficient of the non-photo-

chemical quenching of chlorophyll fluorescence (Fig. 3b)

were observed in the very first hours of the treatment.

By the end of the experiment (on the 7th day), the ETR

was nearly half that on the control (Fig. 3a), whereas the

coefficient of non-photochemical quenching increased by

more than 60 % (Fig. 3b). Chlorophyll content in wheat

leaves remained constant throughout the experiment, and

was lower than in the control (Fig. 4a). An increase in

the carotenoid content was recorded already in the first

hours of root chilling (Fig. 4b). After 24 h of exposure

to cold, the carotenoid content in the leaves declined,

and did not differ significantly from the control on the

7th day of the experiment (Fig. 4b).

Effects of root chilling on cold tolerance of leaf cells

and growth of leaves

Concerning all the data, listed above, the information about

the changes in the cold tolerance of leaf cells during root

chilling is very important. We recorded a significant rise in

this parameter after 24 h of root chilling (Fig. 5a). After

48 h of the treatment, the cold tolerance of the leaf cells

reached a maximum, and did not change thereafter (4th–

7th day) (Fig. 5a). At the same time, on the first day of the

treatment, already the growth of the leaves slowed down

(Fig. 5b). On the second day, the growth resumed, and by

the end of the experiment (7th day) the leaf area in the

root-chilled plants exceeded the initial values by 60 %

(Fig. 5b).
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Discussion

It follows from our data that the first ultrastructural changes

in plastids appear very early after the roots had been

exposed to cold for 1–5 h. Most of these changes are

typical for the plants exposed to low air temperature (Kutik

et al. 2004), and ensue from the physiological and bio-

chemical processes in the plastids. Thus, the visually

observed compaction of the stroma may be indicative of

changes in its chemical composition, in the synthesis of

proteins and sugars involved in cold hardening of the plants

(Kratsch and Wise 2000; Cui et al. 2012). The ‘‘distorted’’

and ‘‘dilated’’ thylakoids probably appear due to modifi-

cations in the chemical composition of the stroma or to

rapid transformations of the photosynthetic membranes

themselves (Ma et al. 1990; Kratsch and Wise 2000; Vella

et al. 2012).

Our data suggest that the size of chloroplasts increased

under root chilling. This process may occur due to several

factors. First, it can result from the change of the stroma

area. This response is typical for plants exposed to low

temperatures (Kutik et al. 2004; Vella et al. 2012). Some

authors believe it to be an adaptation, because the stroma

accumulates cryoprotectors and Calvin cycle enzymes (Ma

Fig. 2 Ultrastructure of wheat

mesophyll chloroplasts:

a control (22 �C); b, c, d after 5,

24 and 96 h of root chilling

(2 �C), respectively. Gr grana;

T stromal (intergranal)

thylakoids; S starch grain; Ich

invagination of chloroplast; Pr

protrusion; M mitochondria;

P peroxisome; Bar = 0.5 lm
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et al. 1990; Kratsch and Wise 2000; Vella et al. 2012). On

the other hand, enlarged stroma may also be the result of

the water metabolism disturbance under root chilling

(Bloom et al. 2004; Lee et al. 2004). Secondly, the increase

in chloroplast’s size (especially on the 2nd–4th day of the

treatment) may be related to the increased length of

photosynthetic membranes and formation of large grana. It

has been mentioned both in our previous studies (Venzhik

et al. 2013) and by other authors (Kratsch and Wise 2000;

Hola et al. 2008) that chloroplasts with small grana form in

mesophyll cells in response to chilling. In our case, the

peculiarity is that while the roots were cold-treated, the

leaves of the wheat plants remained under physiologically

normal temperature. We can assume that chloroplasts with

a modified structure (large grana) formed through trans-

duction of stress signal from the roots.

Furthermore, the increase in plastids size involves the

formation of numerous protrusions and invaginations (most

pronounced by the end of the treatment). They quite often

appear in plants under the impact of various stress factors

(Buchner et al. 2007). Protrusions and invaginations are

believed to facilitate the exchange of metabolites between

the cell organelles and the cytoplasm (Lütz and Engel

2007). The increase in the number of chloroplasts along-

side with their enlargement observed by the 7th day of the

treatment helps to maintain a certain rate of photosynthesis

under stressful conditions (Aldridge et al. 2005).

It is quite obvious that at least a greater part, if not all, of

the above structural changes are adaptive. The same thing

we can say about functional changes in leaves observed

during cooling roots. For instance, increased non-

Table 1 The effects of root chilling on structure of chloroplasts in

the mesophyll cells of wheat seedlings

Time

(h)

Number of chloroplasts

per cell

Chloroplast area

(lm2)

Stroma area

(lm2)

Roots and shoots at 22 �C (control)

0 9 ± 0.5 8.4 ± 0.5 3.8 ± 0.2

24 9 ± 0.6 9.5 ± 0.5 4.2 ± 0.1

48 10 ± 0.5 13.2 ± 0.3 5.9 ± 0.3

96 9 ± 0.4 11.0 ± 0.6 5.8 ± 0.4

168 9 ± 0.5 13.9 ± 0.7 8.5 ± 0.3

Roots at 2 �C, shoots at 22 �C

1 9 ± 0.5 9.7 ± 0.5 6.4 ± 0.2*

5 10 ± 0.5 10.4 ± 0.5* 7.1 ± 0.2*

24 9 ± 0.6 13.2 ± 0.5 8.7 ± 0.3*

48 9 ± 0.7 12.6 ± 0.4 7.0 ± 0.3*

96 9 ± 0.4 12.5 ± 0.4* 6.5 ± 0.5

168 11 ± 0.5* 15.8 ± 0.5* 9.2 ± 0.3

Values represent mean ± SE (n = 25)

* Significant differences at P B 0.05 between chilled and control

plants

Table 2 The effects of root chilling on thylakoid system of chloro-

plasts in the mesophyll cells in wheat seedlings

Time

(h)

Number

of grana

Number of

thylakoids

per

granum

Length of

membranes of

all thylakoids

(lm2)

Length of

membranes of

thylakoids in

grana (lm2)

Roots and shoots at 22 �C (control)

0 23 ± 2.5 7 ± 0.2 172.7 ± 21.0 97.0 ± 12.7

24 28 ± 2.3 8 ± 0.3 175.3 ± 15.1 95.6 ± 10.2

48 19 ± 2.0 8 ± 0.5 197.0 ± 24.3 110.1 ± 5.5

96 21 ± 1.7 8 ± 0.4 193.9 ± 17.1 102.6 ± 9.2

168 19 ± 1.8 7 ± 0.2 265.5 ± 11.6 137.7 ± 14.6

Roots at 2 �C, shoots at 22 �C

1 14 ± 3.5* 6 ± 0.4* 149.7 ± 9.1 79.0 ± 9.1

5 19 ± 2.9 6 ± 0.2* 142.4 ± 11.0 89.5 ± 11.0

24 18 ± 1.5* 6 ± 0.4* 157.1 ± 12.4 95.9 ± 12.4

48 17 ± 2.5 5 ± 0.3* 275.8 ± 18.1* 163.8 ± 18.1*

96 16 ± 2.5 7 ± 0.2* 280.7 ± 7.9* 157.0 ± 7.9*

168 10 ± 0.8* 9 ± 0.7* 298.3 ± 10.5* 189.7 ± 20.0*

Values represent mean ± SE (n = 25)

* Significant differences at P B 0.05 between chilled and control

plants

Fig. 3 ETR (a) and qN (b) in leaves of wheat seedlings under root

chilling. White bar-roots and shoots at 22 �C, grey bar-roots at 2 �C,

shoots at 22 �C. Values represent mean ± SE (n = 9). *Significant

differences at P B 0.05 between chilled and control plants
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photochemical quenching of chlorophyll fluorescence is

connected with the dissipation of excess light energy in the

form of heat emission (Demmig-Adams and Adams 2006).

This process prevents excessive cooling of photosystem II

(Rapacz et al. 2004; Wang and Guo 2005). The reduced

rate of electron transport, as well as fluctuations in pig-

ments content may occur due to adaptive transformations

of the membrane complex of the chloroplasts which react

very responsively to a decrease in temperature (Kratsch

and Wise 2000; Kutik et al. 2004).

As it is known, there is a close relationship in the

response to unfavorable temperatures between the roots

and above-ground parts of plant. For example, low tem-

perature in root zone causes violations in absorption of

mineral elements such as N (Macduff et al. 1987; Bigot and

Boucaud 2006), P (Miyasaka and Grunes 1997; Luo et al.

2009), K (Siddiqi et al. 1984), Cu (Miyasaka and Grunes

1997), B (Ye et al. 2000) etc., Nevertheless, root chilling

induced changes in water status (Aroca et al. 2001; Lee

et al. 2004; Bloom et al. 2004) and growth of whole plant

(Malone 1993). As already demonstrated, root chilling

leads to effect on genes expression in leaf cells (Talanova

et al. 2010), hormone level in leaves (Smith and Dale 1988;

Veselova et al. 2003; 2006) and photosynthesis (Musser

et al.1983; Al-Hamdani and Thomas 2000). Our studies

have shown (Titov et al. 2003; Talanova et al. 2010) that

cold tolerance of leaf cells rapidly and significantly

increases under root chilling. This data suggest that root

cells may send the signal to the leaf. According to research

(Wildon et al. 1992; From and Bauer 1994; Herde et al.

1999), such signal may be bioelectrical in nature and

quickly spread from root to the leaf tissue, causing changes

in photosynthesis, phloem transport, protein synthesis.

According to some scientists, such signal may have hor-

monal nature (Ternesi et al. 1994; Jeschke and Hartung

2000). We assume that the changes we found in the chlo-

roplast ultrastructure may also be caused by the stress

signal (it is probably fast bioelectrical signal). However,

this is only an assumption that requires further

investigation.

In summary, it is shown that most of changes in ultra-

structure and functional activity of chloroplast that

observed in our research are adaptive. Thus, the increase in

size and number of chloroplasts, the intensification of non-

photochemical quenching of chlorophyll fluorescence, the

changes in pigment content are characteristics of plants

exposed to chill and their adaptive nature known (Ma et al.

1990; Hurry et al. 1995; Kratsch and Wise 2000; Yamasaki

et al. 2002; Vella et al. 2012). We compared the effects of

root chilling and chilling of leaf and identified a number of

differences in the effects on ultrastructure of chloroplast

between the two types of temperature treatment. In

Fig. 4 Content of chlorophyll (a) and carotenoids (b) in leaves of

wheat seedlings under root chilling. White bar-roots and shoots at

22 �C, grey bar-roots at 2 �C, shoots at 22 �C. Values represent

mean ± SE (n = 9). *Significant differences at P B 0.05 between

chilled and control plants

Fig. 5 LT50 (a) and area of leaf (b) in wheat seedlings under root

chilling. White bar-roots and shoots at 22 �C, grey bar-roots at 2 �C,

shoots at 22 �C. Values represent mean ± SE (n = 18–50). *Signif-

icant differences at P B 0.05 between chilled and control plants
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particular, the chloroplasts with small grana formed in

mesophyll cells in response to chilling of whole plants

(Venzhik et al. 2013). On the contrary, the formation of

large grana was observed in chloroplasts of plants with

cooling roots. However, we identified common features in

the ultrastructure of chloroplasts under the root chilling and

cooling of whole plant. These include the formation of the

‘‘distorted’’ and ‘‘dilated’’ thylakoids and the increase in

size of chloroplasts due to change of the stroma area.

Therefore, this study demonstrates that root chilling indu-

ces the complex of changes in ultrastructure and functional

activity of leaf chloroplasts contribute to the enhanced cold

tolerance, which, in turn, is needed for the plants to keep

functioning under the low-temperature stress.
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