лаза и содержанием плагиоклаза отчетливо видно, что породы второй вулканогенной толщи имеют натровый уклон. На другой же части диаграммы хорошо видно, что базальты попали в поле мезократовых пород, все остальные породы попали в поле лейкократовых разновидностей. В свою очередь нужно отметить, что базальты оршоайвинской подсвиты попадают в поля гавайитов, а базальты пирттиярвинской подсвиты - попадают в поля собственно базальтов. Исходя из диаграммы Мияширо, породы пирттиярвинской свиты имеют магний-натровый уклон, за исключением базальтов обеих подсвит и ферропикритов. Также большинство пород свиты попали в поле толеитовой серии. Исключением стали базальты пирттиярвинской подсвиты и трахидациты оршоайвинской подсвиты, которые попали в поля известково-щелочной серии. Далее, перейдем непосредственно к классификационным диаграммам CIPWD на уровне родов и индивидов для кварцнормативных пород. Как уже упоминалось, практически все породы попали в области мезократовых и лейкократовых пород. В принципе все исследуемые породы попали в соответствующие их названиям области. В заключении хотелось бы упомянуть, что базальты обеих подсвит попали в поля базальты оршоайвинской подсвиты сороды попали в поля в поле клинопироксеновых и двупироксеновых, а базальты пирттиярвинской подсвиты - в поля ортопироксеновых и двупироксеновых пород.

ЛИТЕРАТУРА

Предовский А.А., Мележик В.А., Болотов В.И., Скуфьин П.К. и др. Вулканизм и седиментогенез докембрия северовостока Балтийского щита. Л.: Наука, 1987, 185 с.

Смолькин В.Ф. Магматизм раннепротерозойской (2.5-1.7 млрд. лет) палеорифтогенной системы, Северо-Запад Балтийского щита // Петрология, 1997, т. 5, № 4. С. 394-411.

Балашов Ю.А. Геохронология раннепротерозойских пород Печенгско-Варзугской структуры. // Петрология, 1996, т. 4, № 1. С. 3-25.

Дубровский М.И. Комплексная классификация магматических горных пород. Мурманск, Изд. МГТУ, 2003. С. 187.

ВОЗРАСТ РУДНОЙ МИНЕРАЛИЗАЦИИ В ПОРОДАХ ПЛАТИНОМЕТАЛЬНОГО ФЕДОРОВО-ПАНСКОГО МАССИВА ПО ДАННЫМ U-PB ДАТИРОВАНИЯ ЦИРКОНА

Ниткина Е.А., Жавков В.А., Апанасевич Е.А., Баянова Т.Б. ГИ КНЦ РАН, nitkina@rambler.ru

Кольский полуостров является одной из уникальных геологических провинций в России и мире, где выявлены крупнейшие месторождения платины и палладия (Митрофанов, 2005). Рудосодержащие породы Федорово-Панского расслоенного массива являются частью новой Кольской платинометалльной провинции России (Додин и др., 2000).

Объект исследования - Федорово-Панская интрузия - располагается в центральной части Кольского полуострова и является одной из 15 главных раннепротерозойских расслоенных интрузий, залегающих на границе между раннепротерозойскими вулканогенно-осадочными рифтовыми сериями и архейскими гнейсами фундамента.

Целью работы было установить новые прецизионные изотопные U-Pb возраста по циркону для основных типов пород расслоенного разреза Федоровотундровского и Западно-Панского блоков в платинометалльном Федорово-Панском массиве, с целью определения последовательности и длительности формирования пород и времени образования рудной минерализации.

Интрузив разбит серией разломов юго-западного и северо-восточного направлений на четыре блока (рис. 1). Основными блоками с запада на восток являются: Федоровский, Ластьяврский, Западно-Панский и Восточно-Панский, которые смещены относительно друг друга. Самый западный, Федоровский блок, вмещающий промышленное месторождение вкрапленных Cu-Ni сульфидных и Pt-Pd руд в своей базальной части разреза, протягивается с северо-запада на юго-восток на 15 км по простиранию.

В строении интрузива снизу вверх по геологическим наблюдениям выделяются восемь зон (Докучаева, 1994; Борисова и др., 1999; Shissel et al., 2002; Корчагин и др., 1994): Нижняя краевая зона; Такситовая габбро-норитовая зона выявлена только в Федоровском блоке и в западной части Ластьяврского блока; Норитовая зона, Габбро-норитовая зона; Нижний расслоенный горизонт (НРГ; Зона габбро; Верхний расслоенный горизонт (ВРГ) и Верхняя габбровая зона.

На основе полученных ранее изотопно-геохронологических данных был сделан вывод, что в Федорово-Панском расслоенном массиве ранние порции магмы внедрились и закристаллизовались в интервале 2501-2470 млн. лет назад, а последние порции магмы, связанные с анортозитами, имеют возраст 2447 млн. лет (Баянова, 2004). Из керна скважин в Федоровском блоке на U-Pb датирование автором были отобраны пробы пород, относящиеся, по геологическим данным, к разным этапам его формирования (рис. 3): из ксенолитов ранней безрудной фазы - ортопироксенитов (F-3), из рудного габбро-норита (F-2) зоны Такситовых габброноритов, а также из оливинового габбро главной Габбро-норитовой зоны (F-4).

Рис. 1. Схема геологического строения платиноносного расслоенного Федорово-Панского массива (Митрофанов, 2005).

Из пробы <u>ортопироксенитов</u> (F-3) весом 42 кг было выделено 12 мг концентрата циркона. Четыре популяции циркона были вручную отобраны под бинокулярным микроскопом на U-Pb датирование. Для призматических темно-коричневых цирконов первого типа, размером от 150 до 200 мкм, был применен метод ступенчатого двухстадийного растворения, при котором первая порция сливается и анализируется только вторая. Это первая точка (рис. 2).Вторая точка – это темно-коричневые прозрачные кристаллы размерами до 200 мкм призматического облика, третья - светло-коричневые призматические кристаллы до 150 мкм, четвертая – розовый светлый циркон до 150 мкм. Отношения Pb^{206}/Pb^{208} меняются от1,24 до 1,97. Концентрации урана варьируют от 100 до 600 ppm на U-Pb диаграмме дискордия, построенная по четырем фигуративным точкам, имеет верхнее пересечение с конкордией, равное 2526±6 млн. лет, CKBO=1.70 (рис. 2, табл. 1). Возраст интерпретируется временем кристаллизации ортопироксенита.

0.48

0.46 0.46 0.44 0.44 0.42 0.42 0.40 0.42 0.40 0.42 0.40 0.44 0.40

Рис. 2. Изотопная U-Pb диаграмма с конкордией для циркона из ортопироксенита (F-3) Федоровского блока.

Рис. 3. Изотопная U-Pb диаграмма с конкордией для циркона из оливинового габбро (F-4) Федоровского блока.

<u>Из пробы (F4) весом 57 кг – оливиновое габбро</u> – было сепарировано 110 мг концентрата циркона, из которого на U-Pb датирование вручную было отобрано три популяции циркона: первая - это темно -коричневые прозрачные кристаллы, размером до 350 мкм, призматического облика; вторая – это светлокоричневые, призматические, прозрачные кристаллы, размером до 200 мкм и их обломки, третья представлена светло-коричневыми, непрозрачными, трещиноватыми, призматическими кристаллами размером до 200 мкм. Отношения в этой пробе Pb²⁰⁶/Pb²⁰⁸ равны 3,55-3,82 и концентрации урана – 1320-1350 ррт. Изотопный U-Pb возраст этих трёх популяций цирконов равен 2516±7 млн. лет, CKBO=0.52 (рис. 3, табл. 1). Полученный возраст характеризует время кристаллизации нижней главной габбро-норитовой части Федоровского тела.

№ п/п	Навес ка, мг	Содержание, ррт		Изотопный состав свинца ¹			Изотопные отношения и возраст, млн. лет ²			
		Pb	U	²⁰⁶ Pb	²⁰⁶ Pb	²⁰⁶ Pb	²⁰⁷ Pb	²⁰⁶ Pb	²⁰⁷ Ph	Rho ³
				²⁰⁴ <i>Pb</i>	²⁰⁷ <i>Pb</i>	²⁰⁸ <i>Pb</i>	²³⁵ U	$\frac{1}{238}U$	$\overline{^{206}Pb}$	
Ортопироксениты (F – 3), Федоровский блок										
1	0.75	48.0	60.9	325	4.9191	1.3039	10.0461	0.44249	2504	0.82
2	0.80	374.0	598.6	4588	6.0459	1.9650	9.6782	0.43153	2484	0.91
3	0.85	410.2	630.2	4521	6.0281	1.6592	9.5667	0.42539	2488	0.92
4	1.00	271.0	373.1	2552	5.9916	1.2393	9.4700	0.42406	2476	0.91
Оливиновые габбро (F – 4), Федоровский блок										
1	1.80	725.3	1322.8	14649	6.1121	3.8177	10.0132	0.44622	2484	0.75
2	2.00	731.3	1382.8	8781	6.1522	3.5517	9.4306	0.42454	2467	0.74
3	1.95	680.9	1374.0	7155	6.2645	3.6939	8.7401	0.40155	2433	0.78
Рудные габбро-нориты (F-2), Федоровский блок										
1	0.30	498.0	833.4	2081	5.9502	2.2111	9.49201	0.42493	2477	0.71
2	0.65	513.8	932.2	5274	6.1519	2.6371	9.1373	0.41378	2458	0.73
3	0.55	583.2	999.3	3194	6.1132	2.0528	8.9869	0.40832	2452	0.72
4	0.80	622.5	1134.5	4114	6.1161	2.1914	8.6638	0.39165	2460	0.71
Габбро-нориты (SN-8), Западно-Панский блок										
1	0.65	287.1	427.9	746	5.5155	2.2467	10.6619	0.46941	2505	0.71
2	0.55	265.1	394.2	1365	5.7765	2.0557	10.5105	0.46506	2496	0.73
3	0.80	273.2	410.6	2212	5.9155	2.0701	10.4544	0.46413	2490	0.74
Рудовмещающие меланократовые нориты (SN-6), Западно-Панский блок										
1	1.15	258.9	394.7	2071	5.8776	2.0621	10.3265	0.45648	2498	0.81
2	1.30	220.3	315.1	1454	5.7840	1.6671	10.2531	0.45272	2500	0.73
3	1.50	252.9	366.4	2259	5.9108	1.7031	10.2158	0.45283	2493	0.81
4	0.90	198.6	303.4	1045	5.6771	1.8809	9.9219	0.43843	2499	0.73
¹ Все отношения скорректированы на холостое загрязнение 0.1 нг по Рb и 0,04 нг по U и										
масс-дискриминацию 0.12±0.04%.										
² Коррекция на примесь обыкновенного свинца произведена на возраст по модели (Stacey&Kramers, 1975).										
³ Rho – коэффициент корреляции по U-Pb осям.										

Таблица 1. Изотопные U-Pb данные для циркона из разных блоков расслоенного платинометалльного Федорово-Панского массива

<u>В пробе рудного габбро-норита (F-2)</u> весом 67 кг, содержащего основную промышленную сульфидную (Cu, Ni) и платинометалльную (Pt, Pd, Rh) минерализацию, из концентрата циркона весом 14 мг на изотопное U-Pb датирование были вручную отобраны четыре популяции циркона. Фигуративные точки светлых прозрачных, размерами до 250 мкм зерен (№ 1), крупных до 350 мкм темно-коричневых кристаллов призматического облика (№2), розовых, призматических, слабо трещиноватых, до 300 мкм цирконов (№2) и светло-коричневых, призматических, трещиноватых, до 300 мкм цирконов (№2) на U-Pb диаграмме (рис. 4, табл. 1) образуют дискордию с верхним пересечением с конкордией, равным 2485±9 млн. лет, CKBO=1.2. Концентрации урана меняются от 800 до 1100 ррт, а отношения Pb²⁰⁶/Pb²⁰⁸ - от 2,05 до 2,64. Полученный новый U-Pb возраст для рудовмещающего габбро-норита пробы F2 интерпретируется временем кристаллизации породы.

В Западно-Панском блоке автором на изотопное U-Pb датирование пробы были отобраны из пород центральной части массива – габбро-нориты (SN-8) участка и из придонных оруденелых норитов (SN-6) участка.

<u>Проба SN-8</u> отобрана из тех же обнажений безрудных пойкилитовых габбро-норитов, где была ранее получена U-Pb датировка по цирконам в 2491±1,5 млн. лет (Баянова, 2004). Из этой пробы весом 50 кг был выделен концентрат циркона весом 8 мг. Из пробы вручную под

бинокулярным микроскопом были отобраны три популяции циркона с алмазным блеском: первая и вторая - крупные темно-коричневые кристаллы, размером 150 мкм, призматического облика, третья – обломки этих же кристаллов. Концентрация урана в пробах составляет 390-410 ppm. Отношения Pb²⁰⁶/Pb²⁰⁸ разных типов циркона изменяются от 2,06 до 2,25. Все три координаты точек на U-Pb диаграмме находятся на конкордии в пределах ошибок измерений. Новый U-Pb возраст по трем изученным цирконам равен 2496±7 млн. лет, СКВО=0.95 (рис. 5, табл. 1).

Рис. 4. Изотопная U-Pb диаграмма с конкордией для циркона из рудного габбро-норита (F-2) Федоровского блока.

Рис. 6. Изотопная U-Pb диаграмма с конкордией для циркона из рудовмещающего меланократового норита (SN-6) Западно-Панских тундр

Рис. 5. Изотопная U-Pb диаграмма с конкордией для циркона из габбро-норита (SN-8) Западно-Панских тундр

Проба весом 60 кг рудовмещающего меланократового норита SN-6 была отобрана из нижнего эндоконтакта пород Западно-Панского блока, содержащего Cu-Ni и Pt-Рd минерализацию. При сепарации было выделено 18 мг концентрата циркона, из которого на U-Pb датирование было вручную отобрано четыре популяции наименее измененного циркона: первая и четвертая - коричневые кристаллы размерами до 150 мкм, с алмазным блеском и их обломки, вторая и третья - темно-коричневые кристаллы до 200 мкм и их обломки. На изотопной U-Pb диаграмме дискордия, построенная по четырем точкам, имеет верхнее пересечение с конкордией, равное 2497±3 млн. лет, при СКВО=0.73 (рис. 6, табл. 1). Изменение концентрации урана в разных типах зерен цирконов составляет от 300 до 390 ppm, а отношений Pb²⁰⁶/Pb²⁰⁸ - от 1,68 до 2,06. Полученный возраст рассматривается как время кристаллизации оруденелых норитов.

Получены новые U-Pb возраста: ранней безрудной фазы - 2526-2516 млн. лет - и рудной фазы в Федоровском блоке – 2485±9 млн. лет и придонных сульфидсодержащих норитов Западно-Панского блока - 2497±3 млн. лет. Результаты этой работы подтверждают большую длительность формирования интрузива более 70 млн. лет.

Работа выполнена при финансовой поддержке гранта РФФИ 04-05-64179, НШ-2305.2003.05, Фонда содействия отечественной науке.

ЛИТЕРАТУРА

Баянова Т.Б. Возраст реперных геологических комплексов Кольского региона и длительность процессов магматизма. С.-Пб.: Наука, 2004, 174 с.

Додин Д.А., Чернышев Н.М., Яцкевич Б.А. Платинометальные месторождения России. СПб.: Наука. 2000. 755 С.

Борисова В. В., Дубровский М. И., Карпов С. М., Борисов А. Е., Реженова С. А Петрология панского расслоенного интрузива (Кольский полуостров) с позиции парагенетического анализа // Записки Всероссийского минералогического общества. 1999. №3. с. 31-49.

Докучаева В.С. Петрология и условия рудообразования в Федорово-панском интрузиве // Геология и генезис месторождений металлов. М.: Наука, 1994, с. 87-100.

Корчагин А.У., Бакушкин Е.М., Виноградов Л.А. и др. Геологическое строение нижней краевой зоны массива Панских тундр и ее платинометальное оруденение // Геология и генезис месторождений платиновых металлов. Н.:Наука. 1994. с. 100-106.

Митрофанов Ф.П. Новые виды минерального сырья Кольской провинции: открытые и перспективы. // Смирновский сборник – 2005. Москва. 2005. С. 39-54.

Schissel D., Tsvetkov A. A., Mitrofanov F. P., Korchagin A. U. Basal Platinum-Group Element Mineralization in the FedorovPansky Layered Mafic Intrusion, Kola Peninsula, Russia // Economic geology. Vol. 97. 2002. P. 1657-1677.

Stacey J.S., Kramers J.O. Approximation of terrestrial lead isotope evolution by a two-stage model. // Earth and Planet. Sci. Lett. 1975. V. 26. № 2. p. 207-221.

ВЕРХНЕМАНТИЙНЫЕ КСЕНОЛИТЫ ИЗ КИМБЕРЛИТОВ ЯКУТСКОЙ КИМБЕРЛИТОВОЙ ПРОВИНЦИИ И ИЗ ЩЕЛОЧНЫХ БАЗАЛЬТОВ ПРИБАЙКАЛЬЯ: ПЕТРОГРАФИЯ, ГЕОХИМИЯ, ПРОЦЕССЫ ПЛАВЛЕНИЯ

Пестриков А.А.

ГГУП СФ «Минерал», Санкт-Петербург

Целью данной работы было выяснить: различается ли состав мантии по степени деплетированности ее магмофильными, редкими и редкоземельными элементами и одинаковы ли термальные режимы в мантии под архейскими кратонами в фундаменте Восточно-Сибирской платформы (Якутская кимберлитовая провинция - ЯКП) и в пределах фанерозойского Центрально-Азиатского складчатого пояса (Витимское плато - ВП).

Исследованы две коллекции верхнемантийных ультраосновных ксенолитов – ксенолиты, вынесенные щелочными базальтами ВП и кимберлитами трубок Удачная и Обнаженная (ЯКП).

Определение химического состава пород ксенолитов было произведено в химической лаборатории Санкт-Петербургского Горного института рентгено-флюорисцентным методом. Определение содержания редких и РЗЭ производилось в ЦИИ ВСЕГЕИ методом ICP MS. Для анализа были отобраны неизмененные образцы ксенолитов, которые очищались от кайм и жилок вмещающих щелочных базальтов и кимберлитов.

Химический состав минералов определялся микрозондовым методом в лаборатории ИГГД РАН на приборе LINK AN 1000 при ускоряющем напряжении 15 кВ с силой тока 0,4 - 0,5 мА и диаметром электронного пучка 2 – 5 мкм.

Валентное состояние железа и его распределение в структуре гранатов изучено методом Мессбауэровской спектроскопии в лаборатории ИГГД РАН.

Для оценки P-T условий образования глубинных ксенолитов в данной работе использовался гранатортопироксеновый термобарометр (Никитина, Иванов, 1992). Термометр, основан на обменной реакции MgSiO₃ + FeAl_{2/3}SiO₄ = FeSiO₃+MgAl_{2/3}SiO₄ и зависимости распределения железа между минералами от температуры, концентрации железа в ромбическом пироксене и кальция в гранате. Барометр, основан на зависимости растворимости Al в структуре ромбического пироксена, находящегося в равновесии с гранатом, от давления.

Породообразующими минералами пород ксенолитов являются форстерит, энстатит, диопсид, пироп и, в некоторых случаях, герцинит. В качестве акцессорных минералов присутствуют хромит, пентландит, ильменит и титаномагнетит.

Исходя из вариаций минерального состава и структурно-текстурных особенностей выделено несколько характерных групп пород:

- Пироксениты
- Лерцолиты
- Гранатовые лерцолиты
- Гранат-шпинелевые лерцолиты
- Катаклазированные гранатовые лерцолиты

На диаграмме MgO/SiO₂-SiO₂ (рис.1) фигуративные точки ксенолитов из базальтов ВП располагаются вблизи примитивной мантии (ПМ). Ксенолиты из кимберлитов ЯКП располагаются вдоль тренда (Walter, 1998) отражающего изменение состава рестита при возрастании степени плавления пиролита с образованием расплава коматиитового состава.

1 – ЯКП (тр. Удачная); 2 – ВП; 3 – состав ПМ (Taylor, McLennon, 1985; McDonough, Sun, 1995; Allegree, 1995); 4 – состав пиролита (Walter, 1998); 5 – реститовый тренд (Walter, 1998).

Такие данные свидетельствуют о различной степени плавления верхней мантии в пределах данных регионов. Это подтверждается результатами расчета степени плавления первичного субстрата (Глебовицкий и др., 2005 г.), которые выполнены с использованием уравнения (Takazava et al., 2000), полученного на основе эксперементальных данных по плавлению перидотитов:

F,%=(-1.54+0.0407MgO)·100, (при p = 3.0 ГПа).

Для большинства ксенолитов ВП характерны значения степени плавления в пределах от 0 до 10%, в то время как для большинства ксенолитов ЯКП – более 20%.