Определенные по НСН программе устойчивые в растворе кремний содержащие частицы и их содержания приведены в таблицах 2 и 3.

Обсуждение результатов расчетов. Согласно расчетам, в растворах могут присутствовать как незаряженные частицы: H_4SiO_4 , $Si(OH)_2F_2$, SiF_4 , так и заряженные частицы: $H_3SiO_4^-$, SiF_5^- и SiF_6^{-2-} .

Уровень и распределение частиц при различных давлениях остаются близкими. На рис. 2 показаны данные для давления 100 МПа. Из рисунка видно, что до концентраций 0,01m HF в растворе преобладает комплекс Si(OH)₄, типичный для чисто водного раствора. При концентрациях выше 0,1m HF наибольшую концентрацию в растворе уже имеет нейтральная частица Si(OH)₂F₂, т.е. начинает преобладать Si-частица также с четверной координацией, но где половина (OH)-групп замещено фтором.

Содержания других комплексов в растворе, равновесном с кварцем при 200°С и в диапазоне концентраций от чистой H_2O до 1m HF, остаются очень низкими, менее 10^{-5} m, т.е. пренебрежимо малы. Причем, согласно расчетным данным содержание заряженного комплекса H_3SiO_4 , не содержащего в своем составе F, уменьшается с ростом концентрации HF в растворе. Содержание других F-содержащих частиц: SiF₄, SiF₅⁻ и SiF₆²⁻ напротив, - резко возрастает с увеличением концентрации HF в растворе. Но даже при 2m HF в растворе их концентрации остаются заметно ниже концентраций Si(OH)₄ и тем более Si(OH)₂F₂.

Если сравнить результаты расчетов с экспериментальными данными, когда «валовой», суммарной, кажущейся частицей остается частица Si(OH)₃F, то тогда следует предположить распределение наиболее устойчивых частиц в растворе при этих параметрах: Si(OH)₄ и Si(OH)₂F₂, как 1/1, согласно соотношению: 2 Si(OH)₃F = Si(OH)₂F₂ + Si(OH)₄.

Работа поддержана грантами РФФИ № 06-05 64980 и НШ-7650.2006.05

ЛИТЕРАТУРА

Аксюк А.М. (2002) Экспериментально обоснованные геофториметры и режим фтора в гранитных флюидах // Петрология. Т. 10, № 6, с. 630-644.

Аксюк А.М., Жуковская Т.Н. (1998) Растворимость кварца в водных растворах фтористоводородной кислоты при температурах 500-1000°С и давлениях 100-500 МПа // ДАН, 301, № 2, с. 244-247.

Буслаев Н. С. и др. (1960) // Изв. СО АН СССР. Сер. техн. наук. Тю10, с. 57-63.

Haselton H. T. (1984) // Amer. Geophys. Union Trans. vol. 65. P. 308.

Manning C. E. (1994) The solubility of quartz in the lower crust and upper mantle // Geochim. Cosmochim. Acta. 58, No 22. P. 4831-4839.

Shapovalov Yu.B., Balashov V.N. (1990) Quartz solubility in hydrofluoric acid solutions at temperatures between 300 and 600°C and 1000 bar pressure // Experiment-89. Informative volume. M.: Nauka, 1990, p. 72-74.

Shvarov Yu. V. (1999) Algoritmization of the numeric equilibrium modeling of dynamic geochemical processes // Geochemical International. V. 37. P. 571-576

ВЛИЯНИЕ ВЫСОКОТЕМПЕРАТУРНОГО ОТЖИГА НА СОДЕРЖАНИЕ АЛЮМИНИЕВЫХ ПАРАМАГНИТНЫХ ЦЕНТРОВ В КВАРЦЕ

Котова Е.Н.

Институт геологии Коми НЦ УрО РАН, Сыктывкар, enkotova@geo.komisc.ru

Результаты работы базируются на радиоспектроскопическом изучении жильного кварца и горного хрусталя приполярноуральской кварцевожильно-хрусталеносной провинции. Задачей настоящих исследований являлись выявление и оценка содержания наиболее распространенных структурных примесей алюминия в основных промышленных и потенциально промышленных типах жильного кварца. К таковым относятся гигантозернистый молочно-белый и прозрачный жильный кварц, в том числе его высокопрозрачные разности, гранулированный кварц, первично-мелкозернистый кварц, а также горный хрусталь. В рабочую коллекцию было включено около сотни образцов кварца, отобранных на месторождениях (Желанное, Николайшор, Центральная Лапча, Центральный и Верхний Парнук) и некоторых кварцевожильных проявлениях Верхнекожимского района.

Спектры электронного парамагнитного резонанса (ЭПР) порошковых препаратов кварца регистрировались на серийном спектрометре Х-диапазона SE/X-2547 (RadioPAN, Польша). Содержание структурных примесей алюминия в кварце оценивалось по стандартной методике на основе измерения концентраций связанных с ними парамагнитных центров (Экспрессное..., 1991). Такие центры образуются при радиационном облучении кварца и обусловлены возникновением областей с локальным избытком электрического заряда при изоморфном замещении примесью алюминия ионов кремния в структуре минерала. Для выявления примесных парамагнитных алюминиевых центров и оценки их концентраций нами использована следующая методика. Сначала образцы отжигались при 530°С и облучались дозой γ-лучей в 30 Мрад, что приводило к интенсивному захвату дефектами свободных электронов или дырок и обеспечивало переход регулярных алюмощелочных комплексов в парамагнитные $[AlO_4]^0$ -центры, их концентрация – С₁. Далее проводился высокотемпературный отжиг проб при температуре 1000 °C, в течение часа, с последующим облучением дозой 30 Мрад. Следует отметить, что ранее высокотемпературный отжиг проб жильного кварца приполярноуральских объектов не проводился, хотя он очень важен, поскольку регистрируемая ЭПР концентрация (C₂) отвечает общему количеству примесного алюминия в кварце, а отношение (C₂/C₁) растет с увеличением степени дефектности кварца и его насыщенности ОНгруппами.

Результаты оценки содержания структурных примесей алюминия в изученном кварце приведены в таблице. Большой интерес представляет природа возрастания алюминиевых центров при высокотемпературном отжиге проб. Ранее отмечалось, что это может быть связано либо с присутствием в кварце алюминия в неструктурной форме, который при высоких температурах входит в кристаллическую структуру, либо с присутствием структурного алюминия, остающегося в непарамагнитной форме при облучении отожженных при 530 °С проб (Вахидов, 1975; Кузнецов, 1998). Рассчитанные нами коэффициенты термической активации алюминиевых центров $K_T = C_2/C_1$, отражают степень их возрастания при высокотемпературном отжиге (см. таблицу). Замечено, что чем больше общее содержание алюминиевых центров (С₂), тем выше значение К_Т (рис. 1). Максимальный эффект возрастания этих центров в результате высокотемпературного отжига характерен для дымчато-цитриновых кристаллов. Эти же кристаллы, как известно, характеризуются наиболее сильным поглощением в инфракрасной области, указывающим на высокое содержание в них ОН-групп. Наиболее вероятной причиной возрастания содержания алюминиевых центров при высокотемпературном отжиге проб является распад алюмоводородных и других сложных дефектов, связанных с алюминием и их переход в обычные парамагнитные [AlO₄]⁰-центры (Лютоев, 2004). На диаграмме соотношения содержания алюминиевых центров и коэффициента К_т фигуративные точки, отвечающие различным типам кварца распадаются на две области (рис. 1). В первой области мы наблюдаем прямую корреляционную зависимость между содержанием алюминиевых центров и К_г. Очевидно, что существенный вклад в содержание алюминиевых центров здесь вносят алюмоводородные разновидности дефектов, переходящие в парамагнитное состояние после высокотемпературного отжига и облучения. В эту область попадают окологнездовой кварц и дымчатоцитриновые кристаллы. Для второй области точек характерен широкий диапазон значений К_т при относительно узкой вариации содержания алюминиевых центров и, следовательно, отсутствие корреляционной зависимости между этими величинами. Общему содержанию алюминия во втором случае отвечают в основном алюмощелочные разновидности дефектов. В данную область попадают гигантозернисый молочно-белый, первичный мелкозернистый, стекловидный, гранулированный, высокопрозрачный реликтовый кварц и дымчатые кристаллы.

Vanaktonuotuka khanua	Циала проб	[AlO ₄] ^{0центры}		
ларактеристика кварца	число проо	С ₁ , усл.ед.	С ₂ , усл.ед.	K _T
Первично мелкозернистый (согласные жилы)	11	$\frac{7-23}{13}$	$\frac{18-45}{32}$	$\frac{1.2-3.6}{2.5}$
Гигантозернистый молочно- белый слабопрозрачный (согласные жилы)	9	<u>12–29</u> 17	<u>25–58</u> 35	<u>1.1–3.8</u> 1.9
Гигантозернистый стекловидный(согласные жилы)	7	<u>30–66</u> 52	<u>55–76</u> 68	$\frac{1.1-2.1}{1.4}$
Гранулированный (согласные жилы)	15	$\frac{1-36}{19}$	<u>10–95</u> 41	$\frac{1.4-3.2}{2.0}$
Гигантозернистый молочно- белый слабопрозрачный (секущие жилы)	22	$\frac{13-41}{24}$	$\frac{22-64}{45}$	$\frac{1.3-2.8}{2.1}$
Гигантозернистый высокопрозрачный (реликты в слабопрозрачном кварце секущих жил)	9	$\frac{17-51}{39}$	<u>45–98</u> 65	$\frac{1.0-2.8}{1.8}$
Гигантозернистый полупрозрачный окологнездовый	7	<u>46–119</u> 76	<u>68–161</u> 123	$\frac{1.2-2.8}{1.7}$
Горный хрусталь (дымчатые кристаллы)	12	$\frac{15-63}{33}$	<u>29–101</u> 57	$\frac{1.2-3.1}{1.8}$
Горный хрусталь (дымчато-цитриновые кристаллы)	8	$\frac{60-116}{90}$	$\frac{144-359}{268}$	$\frac{1.8-3.8}{3.0}$

T 🗂 1	0			
Таолина Г	Солержание	структурных	ппимесеи в	кварие
таолица т.	Содержание	erpy krypnbia	npmatecen b	прара

Примечание: C_1 – содержание алюминиевых центров в кварце измеренное в пробах после отжига 500°С и облучения дозой 30Мрад; C_2 – содержание алюминиевых центров в кварце измеренное в пробах после отжига 1000°С и облучения дозой 30 Мрад; K_T – коэффициент термической активации алюминиевых центров (C_2/C_1). В числителе интервал, в знаменателе – среднее значение.

Рис. 1. Соотношение содержания $[AlO_4]^0$ -центров в кварце и коэффициента термической активации ($K_T=C_3/C_2$) для различных типов жильного кварца: 1 – гигантозернистый молочно-белый согласных жил, стекловидный, гранулированный, первично-мелкозернистый; 2 – гигантозернистый; 3 – окологнездовоый; 4 – дымчатые кристаллы; 5 – дымчато-цитриновые кристаллы.

Таким образом, различные типы жильного кварца приполярноуральских месторождений дифференцированы как по общему содержанию алюминиевых центров, так и по их алюмощелочной специализации. Работа поддержана грантами Президента РФ «Молодые кандидаты наук» МК-1044.2005.5.

ЛИТЕРАТУРА

Вахидов Ш. А., Гасанов З. М., Самойлович М. И., Яркулов У. Радиационные эффекты в кварце. Ташкент: ФАН, 1975.188 с.

Кузнецов С. К. Жильный кварц Приполярного Урала. СПб.: Наука, 1998. 203 с

Лютоев В. П. Особенности вхождения примесей алюминия в кристаллическую структуру минералов кремнезема // Материалы Междунар. семинара «Кварц, кремнезем». Сыктывкар: Геопринт, 2004. С. 28—31.

Раков Л. Т. Поведение парамагнитных дефектов при термическом отжиге кварца // Кристаллография. 1983. Т. 34, вып. 1. С. 260—262.

Экспрессное определение методом ЭПР содержаний изоморфных примесей в образцах кварцевого сырья: Методические рекомендации. М.: ВИМС,1991.

РЕДКОМЕТАЛЛЬНАЯ МИНЕРАЛИЗАЦИЯ КАРБОНАТИТОВ ВУЛКАНА КЕРИМАСИ (ВОСТОЧНО-АФРИКАНСКИЙ РИФТ, С.ТАНЗАНИЯ)

Купцова А.В., Петров С.В.

СПбГУ, Санкт-Петербург, irbis_313@mail.ru

Исследование редкометалльной минерализации проводилось в элювиальных отложениях кратерных фаций паразитических конусов карбонатитового вулкана Керимаси (Северная Танзания). В работе применен шлиховой метод опробования, который позволил впервые выделить и проанализировать редкие минералы эффузивных карбонатитов (карбонатитовые туфы и туфобрекчии) и базальтовых лито- кристаллокластических туфов (содержащих, в том числе, и обломки кальцитовых карбонатитов).

В тяжелой немагнитной фракции шлихов обнаружены: бастнезит, кальциртит, бадделеит, пирохлор, перовскит, титанит, апатит, флюорит, барит, кальцит.

Минералы группы пирохлора были классифицированы по габитусу и морфологии поверхностей. Выделено три группы: кристаллы октаэрического, кубооктаэдрического габитуса и кристаллы с комбинацией граней (111), (100), (110). Последние две грани всегда имеют подчиненное значение, по отношению к граням октаэдра и наблюдаются лишь в комбинациях с ним (рис.1a,b,c).

По морфологии поверхностей минералы группы пирохлора не отличаются разнообразием, в отличие от пирохлоров из древних карбонатитов и их кор выветривания. Различаются кристаллы: 1) с неразвитым микрорельефом, гладкие, с острыми ребрами; 2) с мелкочешуйчатым рельефом, «округленными» ребрами; 3) пористые, с червеобразными углублениями (puc.1d,e,f).

Химический состав пирохлоров прослежен по результатам 11 микрозондовых анализов (табл. 1). Состав пирохлоров существенно не отличается как друг от друга, так и в пределах одного зерна. Они характеризуются низкой дисперсией содержаний Na, Ca, Ti, Nb и Al. По соотношению главных катионов в позиции В изученные пирохлоры относятся к подгруппе собственно пирохлоров (Nb+Ta>2Ti).