6. . ., ê . . ã êã . ., 1991. 199 . 7. ê . . ê ó // . « ã ãê ã». ê . 1999. 4 (10). 8. ê . . ã ãã ã ó // ã ó . 1997. . 38, 4. . 307­322. 9. Glebovitsky V. A., Baltybayev Sh. K., Kovach V. P. et al. Tectonic evolution of the Svecofennian accretional orogen (SE Finland and north Ladoga region) // Svekalapko WS, abstracts, 1997. P. 30. 10. ê . ., . ., ê . . . ó-ê ê : ó ã // . 2001. . 377, 5. . 667­671. 11. ê . ., . ., ê . . . , - ã ê (ê ) ( U-Pb-ã) // . 2002. . 384, 5. . 660­664. 12. ê . ., . . êêã êã óê-ó // . . óêã. ê, 2001. . 120­122. 13. . ., ê . ., . . ê // . «êê ê . êê ê ê». ., 2005. . II. . 181­184. 14. Sviridenko L. P. The evolution of the fluid phase during the crystallization of granite types: Salmi pluton, Karelia, Russia // Mineralogy and Petrology. 1994. V. 50. P. 59­67. 15. ó . . ã ó // . 27- ó. ã. êã. «ã». . 9. ., 1984. . 221­229. . . ó ãã êã , ê; ssvetov@krc.karelia.ru ãê ãê , ê óóê , ê ã , ê êê , ê, , ê-Nb , óã, ê ê ó ãã óóê , ó . ê ãê ã ê êã , êó ê , , ê, êê [1­3], ã óã. , ê, ãê ê óóê . ó ó ê ê-ãêã êã . ó êê (êó) ê (ê êê ã ê- ) ­ ê (ê ê) êã ó ( 3,05­ 100 2,95 ) óêê ê ê ê (2,90­2,80 ). ã ã êê ã . ê êêã ( , ), -ê óê -êã ã ãê ãê ó ( ê ê êã ã êã ã ê ê êã êã ê êã ê). ê óêã- êê, êó 3,1 2,7 . ê óêó-ê óêã óêê êóê ê ã, ã-ãê ê êã ãêã . ó [4], ãê ó . ó ãê . ãã-ãê -ãêó , ãê ó ãê . 1 ó (3,05­2,90 ) ê-Nb , . ê-Nb óóêê ê óêê ê ( 500-15 500-25). êó SiO2 = 50­53 .%, Mg# = 45­48 ê ê Nb > 20 ppm (20­45 ppm), ­ La (10­26 ppm), ó Cr (100­200 ppm), Ni (30­80 ppm), Zr/Y ­ 4,8­5,6, (La/Yb)pm = 4,9­6,2, Nb/Ta = 18­23, Thpm-Upm-Nbpm-Lapm-Hfpm ThpmHfpm. Nb-ã («ã »). ó ê-ãêã êã (êê, ãê, ê, ê óêê ê). ê ê , , . ê ( ) ãê óêó. K2O/Na2O ó 0,3 0,5, ã Na ê . Nb (7­11 ppm), Al2O3 ( 16­18 .%), Cr (20­200 ppm), Ni (12­140 ppm) ê ã Co, Zr, Y , Sr, Ba . óê êó Zr/Y ­ 5,4­8,8, (La/Yb)pm = 8­19, Nb/Ta = 8­19, Thpm-Upm-NbpmLapm-Hfpm Thpm> Upm>NbpmHfpm. Sm-Nd êê, ãê ê óêó ó ê ãê ê ã êã . êê óêó De Paolo [5] ó 2890 3584 , ã ­ 2970­3245 , ­ 3000­3380 . Nd (t) êê óêó ( ­ 2995 ) +1,5 ­2,3, ãê óêó ( ­ 2995 ) ó ­1,2 +2,1. ê-Mg (). ã ê, 101 ê êê óêó. óê ã (Mg# = 53­64, SiO2 = 53­64 .%), ê ê Cr (220­620 ppm), Ni (150­650 ppm) ê Nb (6­9 ppm). óê Zr/Y ­ 3,5­5,9, (La/Yb)pm = 1,9­4,5, Nb/Ta = 17­19, Thpm-Upm-Nbpm- LapmHfpm ó óó : Thpm>Upm>NbpmHfpm. ê ê ê ê-Mg óó Nb-ã («ã »). ê . ê óóêê , ê, ó ê , ~2995 , êê, ãê óã óêó ê-ãêã êã , SiO2 (54­70 .%) ê ­ , ãó ê êê ê-SiO2 ê ­ «HAS» [6], ê- ê Na2O (3,6 320 ppm (250­600 ppm). ê ó 700 ã 2000 ppm, ê ê, ê, ê ó Sr < 280 ppm [7]. ê ê ê Ba (280­980 ppm), Zr (140­240 ppm), U (1,0­3,5 ppm), êê Zr/Y ­ 8,0­24,5, (La/Yb)pm = 8,1­31,4, Nb/Ta = 16­32, Thpm-Upm-Nbpm-Lapm-Hfpm Thpm> Upm>NbpmHfpm. ê ê ê ­ (La/Yb)n > 10, ó ê: Ho < 0,4, Er < 1,0, Tm < 0,1, Yb < 0,9, Lu < 0,11 ppm. ê ãê ê óê, ê ê-SiO2 ê [6]. êê ã ê Sr/Y ­ Y (La/Yb)n ­ Ybn ãó ê óóê ó, ã ê ê ê ê óêê óã. ó Sm-Nd ê ê, Nd ê ãê óêê ê ó +0,7 +2,3, ( De Paolo [5]) ­ 2956 3092 . ã êêã óê Nd ê +0,8 +2,0, 2979 3071 . ó Sm-Nd ­ 3014 ± 130 (Nd = +1,1, MSWD = 27, n = 15) ê ã 2990 ± 140 (Nd = +1,4, MSWD = 2,1, n = 6) ê ê. ê óê ãóêó (ê óêê ê) 2976 ± 130 (Nd = +1,2, MSWD = 15, n = 8), ­ 3005 ± 96 (Nd = +1,1, MSWD = 16, n = 18), , ó ã, êó U-Pb . . ã ê êê óêó. SiO2 = 58­65 .% , ã ó ê Mg# 35 53. ê ê Cr (270­800 ppm), Ni (100­300 ppm) ê Nb (<4 ppm). óê Zr/Y ­ 5,0­ 7,5, (La/Yb)pm = 0,9­1,9, Nb/Ta = 12­26, Thpm-Upm-Nbpm-Lapm-Hfpm ó Thpm>Upm>Nbpm>LapmNbpmNbpmHfpm. ã óê ó ê ã ã êã óêêã [8] ã , ã- óêê -, êê [9]. ê-ãêã êã ó: (La/Sm)n = 3,00 ± 0,31, (Gd/Yb)n = 2,31 ± 0,35, (Ce/Yb)n = 5,81 ± 2,81, ó ê : (La/Sm)n = 3,53­4,13, (Gd/Yb)n = 3,89­5,24, (Ce/Yb)n = 22,14­26,39. ó Sm-Nd ê Nb-ã óê óêó ê: Nd (t), ó , ó ­1 ­6 ­16 . óê ( [5]) 3074 3283 , ­ 3506 ­ ó ê . , ó Sm-Nd , , ó êó ó ê ã êã . ê . ê ã ê óêó, êê óêó ê ê ( S-80) ê ãê êê. ê ê ã ê ê ê . ó êó, ó ó ê óóêê , ó ê êê ó . ê ê Ba (270­500 ppm), Sr (200­320 ppm) ê ê Nb (3,0­3,8 ppm), Ti (3600­3800 ppm) , ó , ê ó . C Thpm-Upm-Nbpm-Lapm-Hfpm ThpmNbpmHfpm. . ê êê óêó. SiO2 = 60­63 .% ó ã (Mg# 60 63), ãê êê ã ó. ê ê Cr (100­200 ppm), Ni (28­45 ppm) ê Nb (<5 ppm). óê Zr/Y ­ 5,0­ 8,2, (La/Yb)pm = 0,7­1,7, Nb/Ta = 10­13, Thpm-Upm-Nbpm-Lapm-Hfpm Thpm>Upm>Nbpm>Lapm 0,5) ê Cr, Ni, . ê ã ã ã [3, 10, 11]. ê-Nb , Nb-ã . êNb ê Nb > 20 ppm, ó Nb-ã ê 7­20 ppm, ó ê Nb ó , ã 2 ppm [12]. ã Nb ó , êê ê [1, 2]. êê , ê ê óê ã ê; êê ã ê, êã [13, 14]. ê . ê ê ó . «» có , ê êã ê. ó êã ê óê ê. ã (óê ê ê ) ê , êê ê ó , ê óó ê ã Rb, Ba, Th, U, ê êã . ãó óê ã ê ê ã, ó ê ê ó , ó ê êó. ê , ãê ê ã óóê , ó êê ê, ê ê êã ê. 2005­2006 ãã. ê « óê». 1. Polat A., Kerrich R. Magnesian andesites, Nb-enriched basalt-andesites, and adakites from late-archean 2.7 Ga Wawa greenstone belts, Superior Province, Canada: implications for late Archean subduction zone petrogenetic processes // Contrib. to Mineral. and Petrol. 2001. V. 141. P. 36­52. 2. Polat A., Kerrich R. Nd-isotope systematics of ~2.7 Ga kites, nesian sites and arc basalts, Superior Province: evidence for shallow crustal recycling at Archean subduction zones // Earth and Planet. Sci. Letters. 2002. V. 202. P. 345­360. 3. Wyman D. A., Kerrich R., Polat A. Assembly of archean cratonic mantle lithosphere and crust: plume-arc interaction in the Abitibi-Wawa subduction-accretion complex // Precambrian Research. 2002. 115. P. 37­62. 4. . . ãê ê ­ ê êêã . ê, 2005. 230 . 5. DePaolo D. J., Linn A. M., Schubert G. The continental crustal age distribution: methods of determining mantle separation ages from Sm­Nd isotopic data and application to the cordilleran South-western United States // J. Geophys. 1991. Res. 96. P. 2071­2088. 6. Martin H., Smithies R. H., Rapp R. et al. An overview of adakite, tonalite-trondhjemite-granodiorite (TTG), and sanukitoid: relationship and some implication for crustal evolution // Lithos. 2005. 79. P. 1­24. 7. Martin H. Adakitic magmas: modern analogues of Archaean granitoids // Lithos. 1999. 46. P. 411­429. 8. Ort M. H., Coira B. L., Mazzoni M. M. Generation of a crust-mantle magma mixture magma sources and contamination at Cerro Panizos, central Andes // Contrib. to Mineral. and Petrol. 1996. 123. P. 308­322. 9. Orozco-Esquivel M. T., Nieto-Samaniego A. F., AlanizAlvarez S. A. Origin of rhyolic lavas in the Mesa Cetral, Mixico, by crustal melting related to extension // Jor. Volcan. and Geothermal. Res. 118. 2002. P. 37­56. 10. Kelemen P. B. Genesis of high Mg# andesites and continental crust // Contrib. to Mineral. and Petrol. 1995. V. 120. P. 1­19. 11. Calmus T., Aguillo-Robles A., Maury R. C. et al. Spatial and temporal evolution of basalts and magnesian andesites (``bajaites'') from Baja California, Mexico: the role of slab melts // Lithos. 2003. 66. P. 77­105. 12. Taylor S. R., McLennan S. M. The geochemicalevolution of the continental crust // Rev. Geophys. 1995. V. 33. P. 241­265. 13. Sajona F. G., Maury R. C., Bellon H. et al. High field strength element enrichment of Pliocene ­ Pleistocene island arc basalts, Zamboanga Peninsula, western Mindanao (Philippines) // J. Petrol. 1996. 37. P. 693­726. 14. Kepezhinskas P. K., Defant M. J., Drummond M. S. Progressive enrichment of island arc mantle by melt ­ peridotite interaction inferred from Kamchatka xenoliths // Geochim. Cosmochim. Acta. 1996. 60. P. 1217­1229. , . . ó ãã êã , ê; Sibilev@krc.karelia.ru ê êãã () ­ óê óêó, ã óó ã ã êê ê , ê (), ã- ó ã ã. ã ( ) ó ê óó AR2 ­ PR1 ê . ê , ê ã ê ã, ãã ã . ê, , ã, óê ê . ó ã [1­4 .], , «ó» ã ãêã 104 ã ãã «». ãê ê, ó ê ê êãó êã êê, êã, , êãã ãóã - êê, óêó ê, « ã» (ê?) ê êã, ããó ã ã . . , ó óêó, ó ê ã êã . ­ ê ãê ã : êã ê ã ( ê êê ­ ã 2,42­2,44 ).