Н. Б. Филиппов *, Н. Н. Трофимов **, А. И. Голубев **, С. А. Сергеев ***, Х. Хухма ****

НОВЫЕ ГЕОХРОНОЛОГИЧЕСКИЕ ДАННЫЕ ПО КОЙКАРСКО-СВЯТНАВОЛОКСКОМУ И ПУДОЖГОРСКОМУ ГАББРО-ДОЛЕРИТОВЫМ ИНТРУЗИВАМ

Введение

В Онежской впадине, на западном и восточном бортах структуры, располагаются две пологозалегающие пластовые интрузивные дифференцированные залежи кварцсодержащих габбро-долеритов, с которыми связаны промышленные концентрации ванадийсодержащих титаномагнетитовых руд, образующих стратиформные залежи в 20-30 м от подошвы интрузивов (рис. 1). Интрузивы характеризуются одинаковым минеральным парагенезисом, очень близким средневзвешенным составом и сформированы флюидонасыщенными высокожелезистыми расплавами. Все это и общность геодинамической позиции позволяют считать их выплавками единого магматического очага и даже, возможно, дифференциатами общей внутрикоровой камеры. Для понимания истории развития Онежской структуры, выделения наиболее важных этапов ее металлогенической специализации, изучения ресурсов Онежского рудного района важно определиться с возрастом внедрения интрузивов, отражающим определенный этап активизации структуры с установленной сквозной благороднометалльной, ванадий- и титан-железистой специализацией и, возможно, потенциально медно-никелевой. Оба интрузива - это геологические реперы, отражающие время их становления и указывающие место проявления рудного процесса.

Для решения этой задачи было отобрано три пробы: две с целью выделения цирконов в Койкарско-Святнаволокском и Пудожгорском интрузивах; третья – для получения первичных парагенетических минералов – моноклинного пироксена и основного плагиоклаза (Пудожгорский объект).

Краткая геологическая характеристика интрузивов

Пудожгорский интрузив относится к трещинному типу и представлен пластовой залежью, которая в плане имеет дайкообразную форму с резкими подворотами на флангах. Интрузив прослежен по простиранию на 25 км (рис. 2). Южным окончанием он сечет Бураковский расслоенный плутон, а северным упирается в верхнеятулийскую структуру, являясь на этом участке одновременно подводящим каналом для формирования на своем продолжении Габневского силла (Трофимов и др., 2005), имеющего аналогичный состав и дифференцированное строение. Внедрение интрузива произошло в условиях растяжения жесткой гранито-гнейсовой рамы путем заполнения расплавом полостей, образованных кулисообразно смыкающимися трещинами отрыва. Азимут простирания интрузива в среднем 340°, угол падения 10–15°.

Койкарско-Святнаволокский интрузив залегает среди вулканогенно-осадочных образований верхнего ятулия. Морфологически представляет пологозалегающий (преимущественно 15–20°) силл, внедрившийся по породам туломозерской свиты верхнеятулийского горизонта (мощность около 50 м), сложенной на этом участке в основании карбонатсодержащими аргиллит-алевролитовыми сланцами, выше – пластом доломитовых известняков, известняков и мраморизованных доломитов (Соколов и др., 1970). Последний фиксируется в обнажениях верхнего и нижнего экзоконтактов интрузива в районе озер Шитолампи и Шаргилампи (рис. 3).

В современном эрозионном срезе силл представлен двумя разобщенными телами: Святнаволокским, протягивающимся вдоль западного берега Пальеозера в районе населенных пунктов Святнаволок – Гирвас, и Койкарским – район оз. Викшозеро.

Характеристика проб

Проба № 166 на радиогенный возраст отобрана в 3 км к северу от д. Святнаволок на западном берегу залива Пюхялахти оз. Пальеозеро (рис. 3). Для опро-

^{*} ГГУП «Минерал».

^{**} Институт геологии КарНЦ РАН.

^{***} ФГУП ВСЕГЕИ.

^{****} Геологическая служба Финляндии.

бования был выбран исключительно хорошо обнаженный северный фланг интрузива в районе оз. Шитолампи. Здесь он имеет сдвоенный разрез вследствие вертикального перемещения, сопоставимого по амплитуде с мощностью интрузива (рис. 3). Силл на участке Шитолампи имеет строение полно дифференцированное, верхний и нижний контакты его обнажены.

Проба отобрана в 20 м от верхнего эндоконтакта на границе такситового и гранофирового горизонтов (рис. 4). Порода здесь имеет средне-, крупнозернистое сложение, лейкократовый состав, характеризуется высоким содержанием щелочей -5,95% Na₂O+K₂O (табл. 1) и согласно нормативному составу минералов по международной классификации (Классификация.., 1997) соответствует кварцевым монцодиоритам (рис. 5). Состав породы: плагиоклаз – 60%, амфибол – 15–20%, кварц – 10%, рудный – 10–12%, апатит – 2–3% (табл. 1–5). Плагиоклаз представлен альбитом двух генераций (рис. 6, табл. 2). Ранний высокотемпературный (Al-1) кристаллизуется в виде таблитчатых кристаллов размером 1-5 мм, определяющих гипидиоморфнозернистую структуру породы (рис. 6); поздний (Al-2) - выполняет промежутки между зернами Al_1 и Amf_1 в виде самостоятельных зерен (рис. 6, Б) или гранофировых срастаний с кварцем (рис. 6, А) примерно в равных долях. Он представлен шахматным альбитом. Обе генерации слабо пелитизированы.

Амфибол образует две генерации (рис. 7), имеющие одинаковый состав и номенклатуру – хлорные ферроэденит, феррогорнблендит и ферроэденитгорнблендит (табл. 3, 4). Amf-1 – явно первично магматический (рис. 7, Б, Г), характерный для вышележащего такситового горизонта. Он повсеместно обрастает каймой Amf-2 (рис. 7, А-Г), имеющего ситовидное строение и содержащего включения кварца и альбита. Амфибол-2 образует также спутанно-волокнистые агрегаты (рис. 7, Д), иногда розетковидной формы. Основным отличием в составе генераций является содержание хлора: Amf-1 - 0,26-0,54, среднее - 0,37%, Amf-2 - 0,54-1,04, среднее - 0,85% (табл. 3). Амфибол-2 избирательно насыщен многочисленными тонкими включениями магнетита и является, видимо, автометасоматическим. Рудные минералы представлены преимущественно поздним ксеноморфным магнетитом и ранним титаномагнетитом, в котором ильменит полностью замещен сфеном или лейкоксеном. Магнетит концентрируется в Amf-2 преимущественно и в АІ-2. Апатит, наиболее поздний минерал, развивается по альбиту и амфиболам (рис. 7, Б, Г, Д). Представлен идиоморфными кристаллами с удлинением 1 : 2-4, отвечающим по составу фторапатиту (5,13-6,39% F) с примесью Cl (0,19-0,23%) (табл. 3).

Рис. 1. Раннепротерозойская Беломорско-Лапландская внутриконтинентальная рифтогенная структура:

1 – нерасчлененные архейские и архей-протерозойские (Беломорский блок) образования; 2 – нижнепротерозойские вулканогенно-осадочные комплексы; 3 – фанерозойские отложения; 4 – раннепротерозойские расслоенные интрузии и их радиогенный возраст; 5 – границы срединной зоны рифта и субпровинций в составе Карело-Кольской металлогенической провинции: А – Беломорской; Б – Кольской (северо-восточное плечо рифта); В – Карельской (юго-западное плечо рифта); 6 – поперечные зоны растяжения, контролирующие внедрение расслоенных интрузий; 7 – дифференцированные интрузивы с титаномагнетитовым оруденением и их возраст (на врезке). Раннепротерозойские компенсационные структуры прогибания: 1 – Онежская, 2 – Ветреный пояс, 3 – Лехтинская, 4 – Шомбозерская, 5 – Пана-Куолаярвинская, 6 – Сала-Соданкюля, 7 – Карасйок, 8 – Печенгская, 9 – Имандра-Варзугская

Рис. 2. Геологическая карта района Пудожгорского месторождения:

1 – четвертичные отложения; 2–3 – нижний протерозой, ятулийский надгоризонт (вулканогенноосадочный комплекс): 2 – эффузивы основного состава (лавы, покровы), 3 – доломиты; 4–5 – пудожгорский интрузивный комплекс: 4 – Пудожгорский интрузив габбро-долеритов с промышленным титаномагнетитовым оруденением, 5 – Габневский силл габбро-долеритов с бедным титаномагнетитовым оруденением; 6 – архей – нижний протерозой (нерасчлененный комплекс): плагиограниты, микроклин-плагиоклазовые граниты и гранито-гнейсы; 7 – элементы залегания пластовой отдельности и слоистости; 8 – тектонические нарушения; 9 – буровые скважины: 55, 355, 377 – Габневский силл, 275, 360 – Пудожгорский интрузив; 10 – место отбора пробы 467

Рис. 3. Схема геологического строения участка Шитолампи (А) и его местонахождение (Б):

1–3 – Койкарско-Святнаволокский силл: 1 – силл лейкодиоритов (апофиз основного силла), 2 – габбровая зона (подрудный и рудный горизонты), 3 – диоритовая зона (надрудный и гранофировый горизонты); 4–5 – верхний ятулий: 4 – базальтовые лавы и лавобрекчии, 5 – доломиты; 6 – средний ятулий – базальтовые лавы и вариолитовые лавы; 7 – тектоническое нарушение; 8 – элементы залегания: а – слоистости, б – пластовой отдельности; 9 – линия геологического разреза; 10 – место отбора пробы № 166

Таблица 1

Химический состав пород, мас. %

Vouro			Пудо		Койкарско-Святнаволокский силл				
LEUTLI		С-275, инт	ервалы, м		Проба 467	Средневзвешенный	Про	обы	Средневзвешенный
пенты	91,5	92,5	95,0	98,4	11000a 407	состав интрузива	166	167	состав силла
SiO ₂	37,10	41,77	45,18	43,12	63,16	50,30	56,33	54,86	46,30
TiO ₂	5,13	3,84	2,98	3,48	0,90	2,85	1,63	1,39	3,10
Al_2O_3	14,31	15,92	15,16	14,76	12,88	11,90	12,05	14,86	13,10
Fe_2O_3	11,04	7,98	6,83	7,89	4,00	7,90	6,76	7,30	6,02
FeO	16,34	12,66	12,21	14,36	6,63	12,60	7,54	3,88	13,50
MnO	0,177	0,181	0,165	0,224	0,180	0,20	0,116	0,075	0,20
MgO	3,06	2,81	3,23	3,61	0,60	2,32	1,96	1,95	4,11
CaO	7,10	7,70	7,43	7,22	3,80	4,88	5,51	4,43	7,60
Na ₂ O	2,25	3,14	3,05	2,62	5,38	3,81	5,56	7,66	3,18
K ₂ O	0,78	0,76	0,76	0,66	1,00	1,20	0,39	0,51	0,71
H_2O	0,30	0,34	0,51	0,15	0,23	0,23	0,22	0,09	0,21
ппп	1,61	2,15	1,69	1,44	0,74	1,57	1,00	2,26	1,74
P_2O_5	0,18	0,21	0,15	0,10	0,22	0,30	1,06	0,38	0,27
Cr_2O_3	0,016	0,015		0,028	0,003	-	0,004	0,003	-

Varma			Пудоз	кгорский инт	грузив		Койка	прско-Свя	тнаволокский силл
LOMIIO-		С-275, инт	гервалы, м		Проба 467	Средневзвешенный	Про	обы	Средневзвешенный
попты	91,5	92,5	95,0	98,4	11000a 407	состав интрузива	166	167	состав силла
V_2O_5	0,317	0,217	0,21	0,208	0,012	-	0,006	0,022	-
S _{сульф.}	0,03	0,03	0,02	0,05	0,02	-	<0,01	н/о	-
Сумма	99,81	99,78	92,59	99,97	99,75	100,06	100,13	99,67	100,04
Q	0,00	0,00	0,45	0,00	18,13	7,14	10,80	0,52	0,15
Ort	3,84	3,72	3,72	3,25	5,91	7,09	1,89	2,48	4,20
Al	1,04	26,57	25,81	22,17	45,52	32,24	47,04	64,81	26,91
An	27,03	27,49	25,82	26,89	8,05	11,83	6,98	4,93	19,38
Σ	31,91	57,78	55,35	52,31	77,61	51,16	55,91	72,22	50,49
Di	5,95	7,89	8,49	6,99	8,14	8,84	11,24	10,47	13,89
Hy	6,47	4,34	17,89	19,62	4,99	13,56	6,11	0,00	18,34
Ol	10,68	8,86	0,00	1,98	-	-	0,00	0,00	-
Σ	23,10	21,09	26,38	28,59	13,13	22,40	17,35	10,47	32,23
Mt	16,01	11,57	9,90	11,44	5,80	11,45	9,80	10,34	8,73
Ilm	5,85	4,37	3,40	3,97	1,71	5,41	1,86	1,58	5,89
Σ	21,86	15,94	13,30	15,41	7,51	16,86	11,66	11,92	14,62
Ар	0,43	0,50	0,36	0,24	0,52	0,71	2,51	0,90	0,64

Окончание табл. 1

Примечание. Лаборатория ИГ КарНЦ РАН, аналитики: В. А. Кукина, Г. К. Пунка, В. Л. Утицына, Н. В. Питкя.

Таблица 2

Рентгеноспектральный анализ плагиоклаза из пробы № 166

Окислы	Содержание, мас. %											
SiO ₂	70,12	69,78	70,20	69,56	69,93	70,26						
Al_2O_3	18,59	18,96	18,56	19,21	18,87	18,79						
CaO	0,32	-	-	-	-	-						
Na ₂ O	10,98	11,26	11,24	11,23	11,20	10,95						
Сумма	100,01	100,00	100,00	100,00	100,00	100,00						

Таблица З

Рентгеноспектральный анализ апатита из пр. № 166, мас. %

Компоненты	14	15	16	21	22
CaO	49,42	49,85	49,93	49,41	49,80
FeO	0,56	-	_	_	-
P_2O_5	44,07	44,27	44,73	44,74	44,60
Cl	0,23	-	0,21	0,28	0,19
F	5,72	5,88	5,13	6,39	5,67
Сумма	100,00	100,00	100,00	100,82	100,26

Таблица 4

Рентгеноспектральный анализ амфиболов из пробы № 166 Койкарско-Святнаволокского интрузива, мас. %

Компо-	An	nf-1	Am	nf-2	Amf-1	1 Amf-2 Amf-1 Amf-2									
ненты	1	2	3	4	5	6	7	8	9	10	11	12	13	19	20
SiO ₂	46,66	47,50	47,61	44,11	47,40	43,53	54,55	46,39	47,42	47,43	46,65	46,48	45,64	45,98	45,77
TiO ₂	1,28	1,35	-	0,79	1,27	-	-	-	1,37	1,04	-	-	-	-	1,16
Al_2O_3	6,05	6,01	7,13	9,43	6,10	11,67	2,12	8,77	5,85	6,09	7,25	7,52	8,44	8,23	7,98
FeO	26,76	26,29	24,41	26,41	26,06	25,60	21,77	24,55	26,22	26,08	26,19	25,33	26,15	24,72	24,94
MnO	0,45	-	-	-	0,72	0,32	0,45	-	0,63	0,41	0,48	0,39	-	0,60	-
MgO	5,01	5,44	6,68	4,37	5,30	4,37	9,77	5,53	5,43	6,05	6,20	6,21	5,40	5,75	5,81
CaO	10,44	10,43	11,11	10,99	10,36	10,77	10,58	11,16	10,37	10,18	10,39	10,79	11,36	11,22	11,08
Na ₂ O	1,70	1,61	1,17	1,39	1,36	1,70	0,50	1,38	1,12	1,35	1,09	1,30	1,10	1,44	1,09
K_2O	1,25	1,06	1,03	1,47	1,05	1,19	0,25	1,15	1,06	1,01	0,99	1,10	1,00	1,08	1,28
Cl	0,39	0,31	0,85	1,04	0,26	0,57	-	0,72	0,54	0,37	0,75	0,88	0,91	0,99	0,90
Сумма	99,99	100,0	99,99	100,0	99,88	99,72	99,99	99,65	100,01	100,01	99,99	100,0	100,0	100,01	100,01

П р и м е ч а н и е . Анализ минералов в табл. 2-4, 6 выполнен на микроанализаторе TESCAN, аналитик – А. Н. Сафронов; номера точек анализирования в таблице соответствуют номерам на рисунках.

Рис. 4. Местоположение проб на радиогенный возраст в разрезе интрузивов:

А – Койкарско-Святнаволокский силл, участок Шитолампи; Б – Пудожгорский интрузив, участок Пудожгорское месторождение. 1 – базальтовые лавы и лавобрекчии верхнего ятулия; 2 – апофиз силла; 3 – доломиты, реже алевролиты и песчаники с карбонатным цементом (а) и везувиановые скарны по ним (б); 4 – эндоконтактовые зоны интрузивов (афанитовые – м/з габбродолериты); 5–7 – диоритовая зона и горизонты: 5 – такситовый, 6 – гранофировый, 7 – надрудный; 8 – габбровая зона – подрудный и рудный горизонты; 9 – титаномагнетитовый рудный; 10 – пробы на радиогенный возраст по: циркону (а), пироксену (б), 11 – образцы; 12 – плагиомикроклиновые граниты

Рис. 5. Диаграмма QAPF модального состава пород:

Пудожгорский интрузив (1–3): 1 – пр. № 467 (гранодиорит); 2 – пр. № 275 (долерит, монцодолерит); 3 – средневзвешенный состав интрузива (кварцевый монцодолерит). Койкарско-Святнаволокский силл (4–5): 4 – пр. № 166 (кварцевый монцодиорит); 5 – средневзвешенный состав (долерит)

Рис. 6. Кварцевый монцодиорит. Шл. 166 с анализатором. Структура гипидиоморфнозернистая гранофировая. Между таблитчатым альбитом в интерстициях альбитовый гранофир (А) или шахматный альбит (Б). Ширина поля зрения 2,0 мм

А

Рис. 7. Койкарско-Святнаволокский интрузив, шл. 166

Точки микрозондирования (А – общая схема) и названия породообразующих минералов (Б–Д) к табл. 3–5. Б–Г – ранний Amf-1 обрастает каймами Amf-2, содержащего включения qw и mt (белое); В – детальный профиль – переход Amf-1 в Amf-2; Д – Amf-2 волокнистого строения

Таблица 5

\sim
3
1
Z
~
12
2
4
10,
Z.
Q.
2
q
~
÷.
-
22
0
Ē
ó
١Ő
Ĭ.
5
-
Σ.
æ
<u>5</u>
2
⋗
3
5
2
Ξ
a
Ę.
5
Ξ.
Ŧ
Η.
-
=
5
<u></u>
Σ
d
0
ã.
-0-
Ð
z
2
5
ð
Ē
Ē.
2
N S
×
0
5
Ξ.
æ
E
ى
z
2
$\overline{\mathbf{z}}$
Ť.

Номен- латура		Ed-Hbl	Ed-Hbl	Ed-Hbl	Ed-Hbl	Ed-Hbl	Ed-Hbl		FEd	FHbl	FHbl	FEd	FHbl	Ed-FHbl	FAct	FHbl	FHbl	FHbl	FHbl	FEd	FEd	FEd	FHbl	
2+ F		Ч	Ц	H	Ц	Ц	F							FI										
Mg/ Mg+Fe		0,08	0,10	0,08	0,08	0,09	0,07		0,25	0,27	0,33	0,23	0,27	0,23	0,44	0,29	0,27	0,29	0,30	0,30	0,27	0,29	0,29	
ΣAI		1,83	1,90	1,82	1,81	1,77	1,94		1,09	1,08	1,27	1,71	1,10	2,11	0,37	1,57	1,05	1,10	1,30	1,36	1,53	1,49	1,43	- табл 4
Н		0,92	0,90	0,92	0,92	0,91	0,93		0,75	0,73	0,67	0,77	0,73	0,77	0,56	0,71	0,73	0,71	0,70	0,70	0,73	0,71	0,71	k 1–20 –
НО		2,00	2,00	2,00	2,00	2,00	2,00		2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00	6. точе
0		22,0	22,0	22,0	22,0	22,0	22,0		22,0	22,0	22,0	22,0	22,0	22,0	22,0	22,0	22,0	22,0	22,0	22,0	22,0	22,0	22,0	от табл
ΣT		8,00	8,00	8,00	8,00	8,00	8,00		8,00	8,00	8,00	8,00	8,00	8,00	8,00	8,00	8,00	8,00	8,00	8,00	8,00	8,00	8,00	RETCTRV
(IV)		1,29	1,33	1,35	1,29	1,27	1,31		0,83	0,77	0,79	1,18	0,77	1,31	0,06	0,94	0,76	0,79	0,87	0,90	1,01	0,97	1,02	1–6 coor
Si		6,71	6,67	6,65	6,71	6,73	6,69	166	7,17	7,23	7,21	6,82	7,23	6,69	7,94	7,06	7,24	7,21	7,13	7,10	6,99	7,03	6,98	а точек
Σc	№ 467	5,00	5,00	5,00	5,00	5,00	5,00	oo6a №]	5,00	5,00	5,00	5,00	5,00	5,00	5,00	5,00	5,00	5,00	5,00	5,00	5,00	5,00	5,00	. HOMED
Mn	, проба	0,00	0,00	0,00	0,00	0,00	0,00	силл, пр	0,02	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,01	0,00	» (1997
Fe^{2^+}	нтрузив	4,11	3,98	4,14	4,10	4,11	4,05	токский	3,43	3,29	3,01	3,38	3,32	3,20	2,57	3,12	3,31	3,20	3,16	3,13	3,25	3,16	3,13	160TOR
Mg	орский и	0,35	0,45	0,39	0,38	0,39	0,32	вятнавол	1,14	1,24	1,01	1,00	1,20	1,00	2,12	1,25	1,24	1,37	1,41	1,41	1,23	1,31	1,32	ne ambr
Ti	Тудожгс	0,00	0,00	0,00	0,00	0,00	0,00	арско-Сі	0,15	0,16	0,00	0,09	0,15	0,00	0,00	0,00	0,16	0,12	0,00	0,00	0,00	0,00	0,14	енклату
AI (VI)		0,54	0,57	0,47	0,52	0,50	0,63	Койк	0,26	0,31	0,48	0,53	0,33	0,80	0,31	0,63	0,29	0,31	0,43	0,46	0,52	0,52	0,41	ой «Ном
ΣB		2,00	2,00	2,04	2,00	2,00	2,00		2,00	2,00	2,00	2,00	2,00	2,00	1,97	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00	ндодну
Na		0,07	0,09	0,00	0,04	0,00	0,17		0,24	0,24	0,12	0, 14	0,22	0,09	0, 14	0,17	0,18	0,17	0,05	0,08	0,03	0,10	0, 14	п межл
Ca		1,80	1,77	1,85	1,87	1,85	1,75		1,72	1,70	1,80	1,82	1,69	1,77	1,65	1,82	1,70	1,66	1,70	1,76	1,87	1,84	1,81	читана г
Mn		0,10	0,08	0,07	0,09	0,07	0,08		0,04	0,00	0,00	0,04	0,09	0,05	0,05	0,00	0,08	0,05	0,06	0,05	0,00	0,06	0,00	TOB DACC
Fe^{2^+}		0,03	0,06	0,12	0,00	0,08	0,00		0,00	0,06	0,08	0,4	0,00	0,09	0,08	0,01	0,04	0,12	0,19	0,11	0,10	0,00	0,05	амфибо
ΣA		0,79	0,86	0,84	0,85	0,80	0,84	•	0,50	0,44	0,43	0,57	0,38	0,65	0,00	0,45	0,35	0,43	0,48	0,53	0,50	0,52	0,45	кпатура
К		0,57	0,54	0,57	0,54	0,49	0,60		0,24	0,20	0,20	0,30	0,20	0,24	0,00	0,22	0,20	0,20	0,20	0,22	0,20	0,20	0,26	Номен
Na		0,22	0,32	0,27	0,31	0,31	0,24		0,26	0,24	0,23	0,27	0,18	0,41	0,00	0,23	0,15	0,23	0,28	0,31	0,30	0,32	0,19	тание
№ точки		1	7	б	4	5	9		1	2	ю	4	5	9	7	8	6	10	11	12	13	19	20	Примеч

Проба № 467 на радиогенный возраст по циркону отобрана из Пудожгорского интрузива в 7 км к юговостоку от д. Римское на правом берегу р. Тубы у Михеева порога (рис. 2) из верхней части гранофирового горизонта диоритовой зоны (рис. 4). Порода, из которой она отобрана, очень близка по структуре (рис. 6, 8), химическому и минералогическому составам (табл. 1) к пр. № 166 и, согласно «Классификации...» (1997), относится к гранодиоритам (рис. 5). В ее составе: кварц -20%, амфибол – 15%, рудный – 10%, альбит – 55%, фторапатит - 1%. Кварц находится в избыточном количестве и содержится не только в гранофире, но и образует обособления до 0,2 мм (рис. 8). В отличие от шл. № 166 шахматный альбит здесь выполняет не только интерстициальные промежутки, но образует и таблитчатые гипидиоморфные кристаллы и реже каймы вокруг высокотемпературного Al-1. Амфибол также двух генераций (рис. 9, А). Преобладает Amf-1, в котором концентрируется апатит (рис. 9, Б, В). Amf-2 представлен только волокнистыми агрегатами (рис. 9, Г), находится в подчиненном соотношении, кайм не образует. Состав и номенклатура их идентичны - калиевые хлорные ферроэденит-роговообманковые амфиболы (рис. 9, табл. 4-5). От амфиболов пр. № 166 (табл. 4) они отличаются повышенным содержанием К и аномально высокими содержаниями Cl, до 2,5% (табл. 6). Обе генерации плагиоклаза являются чисто натриевыми и не содержат калия, отвечают альбиту № 0-5 (табл. 6). Апатит представлен фторапатитом (6,3-6,57% F) и, в отличие от описанного, не содержит Cl (табл. 3, 6).

Пробы 275/91,5–97; 91–92,5 м и 360/93,5 м были отобраны из разведочных скважин, пробуренных на Пудожгорском месторождении титаномагнетитовых руд в 1951–1952 гг. (рис. 2). Для датировки Sm-Nd методом использован керн из верхней части подрудного горизонта на границе с подошвой рудного горизонта в интервалах 91–97 м (С-275, разв. лин. № 8) и 93,5 м (С-360, разв. лин. № 2а) с наиболее высокой сохранностью клинопироксена (рис. 4). Химический состав породы характеризуется табл. № 1, модальный – соответствует долериту и монцодолериту (рис. 5). В нормативном составе рассчитывается оливин, хотя в породе он отсутствует. Такой расчет по оливину характерен для верхней части подрудного горизонта с низким, как у ультрамафитов, содержанием SiO₂ – 37,1–43,1% (табл. 1).

Состав первичного парагенезиса в обеих пробах идентичен и представлен минералами: главные – моноклинный пироксен, плагиоклаз, титаномагнетит (рис. 10); второстепенные – микропегматит (гранофир) ± свободный кварц (до 1–2%), апатит – 0,5% ± биотит (0,1–0,5%). Пироксен по составу соответствует авгиту – Wo 34,9 En 35,4 Fs 29,7 – Wo 35,9 En 39,1 Fs 24,4 (табл. 7, рис. 11). Отмечаются все стадии изменения пироксена – побурение, опацитизация, амфиболизация. Амфибол, замещающий пироксен, представлен ферророговой обманкой. Плагиоклаз идиоморфный, свежий, соответствует лабрадору № 54–61, до битовнита – № 71 (табл. 7). Для исследования были подготовлены навески не затронутого изменениями клинопироксена, наиболее чистые кристаллы плагиоклаза и апатита.

Морфология цирконов

Цирконы, выделенные из проб № 166 и 467, характеризуются одинаковым габитусом – удлиненнопризматическим (табл. 8, 9). На их долю приходится 95–98% кристаллов. В пр. № 166 коэффициент удлинения цирконов 4-6, в пр. № 467 более высокий – до 10. Пробы занимают одинаковое положение в разрезе интрузивов – вблизи кровли. Цирконы кристаллизовались в условиях высокой концентрации щелочей и летучих. Содержание хлора в амфиболе здесь максимальное - до 1-2,5% (табл. 3, 6), а фтора в апатитах - 5,1-6,6% (табл. 5, 6). Такой габитус цирконов характерен только для верхних частей разреза. Цирконы, выделенные из нижней части гранофирового горизонта и его границы с надрудным горизонтом (пр. 335 и 468), имеют преимущественно дипирамидально-призматический облик, гиацинтовый и цирконовый габитус. Эти части разреза также характеризуются высоким содержанием щелочей в породе (табл. 10) и наличием свободного кварца.

Рис. 8. Гранодиорит. Шл. 467 с анализатором. Структура гипидиоморфнозернистая гранофировая. Белое – кварц. Ширина поля зрения 2,0 мм

Рис. 9. Пудожгорский интрузив, шлиф № 467. Точки микрозондирования (А – общая схема) и к табл. 4, 6 названия породообразующих минералов: Б, В – Атf-1 и Г – Атf-2

Γ	a	б	л	И	ц	а	6
---	---	---	---	---	---	---	---

Компо-			Амф	рибол				Плаги	юклаз		Апатит	
ненты	1	2	3	4	5	6	7	8	9	10	11	12
SiO ₂	41,32	41,34	40,90	1,51	41,67	41,34	69,36	69,67	69,59	69,75	-	-
Al_2O_3	9,56	9,96	9,50	9,51	9,32	10,19	19,06	18,56	18,78	18,75	-	-
FeO	30,45	29,97	31,32	30,29	31,01	29,94	-	-	-	-	-	0,74
MnO	0,71	0,54	0,47	0,61	0,51	0,54	-	-	-	-	-	-
MgO	1,45	1,86	1,61	1,59	1,61	1,32	-	-	-	-	-	-
CaO	10,36	10,24	10,60	10,80	10,70	10,07	0,36	-	-	-	49,29	48,93
Na ₂ O	0,96	1,30	0,89	1,13	1,02	1,29	11,21	11,77	11,64	11,50	-	-
K ₂ O	2,73	2,61	2,74	2,67	2,33	2,92	-	-	-	-	-	-
P_2O_5	-	-	-	-	-	-	-	-	-	-	44,14	44,04
Cl	2,47	2,19	1,98	1,88	1,82	2,37	-	-	-	-	-	-
F	-	-	-	-	-	-	-	-	-	-	6,57	6,30
Сумма	100,01	100,01	100,01	99,99	99,99	99,98	99,99	100,00	100,01	100,00	100,00	100,01

Рентгеноспектральные анализы минералов пробы № 467 Пудожгорского интрузива, мас. %

Рис. 10. Подрудный горизонт. Шлиф скв. 275, инт. 97 м. Долерит. Белое идиоморфное – плагиоклаз. Серое – свежий клинопироксен. Темно-серое – амфибол по клинопироксену, видны реликты последнего. Черное – титаномагнетит

		Клиног	ироксен		Плагиоклаз							
Компонент	Инт	гервал, м – №	точки на рис	c. 6, 7		Инте	рвал, м – №	точки на рис	. 6, 7			
	92,5-1	92,5-2	97–2	97–5	92,5-3	92,5–4	92,5–7	92,5–9	97–1	97–4		
SiO ₂	52,30	51,39	51,18	51,8	54,39	53,53	53,75	53,96	52,25	52,25		
TiO ₂	0,83	0,67	0,67	0,67	0,00	0,00	0,00	0,00	0,00	0,00		
Al_2O_3	1,32	2,27	0,95	1,89	28,92	28,92	28,54	28,17	27,98	27,03		
Fe_2O_3	0,33	_	1,34	_	0,00	0,00	0,00	0,00	0,00	0,00		
FeO	16,81	15,32	13,97	14,54	0,77	1,16	1,54	1,54	0,90	1,03		
MnO	_	_	0,52	_	0,00	0,00	0,00	0,00	0,00	0,00		
MgO	11,44	11,94	13,93	13,60	0,00	0,00	0,00	0,00	0,00	0,00		
CaO	15,66	17,20	17,48	17,48	11,33	12,03	11,89	10,63	13,15	11,89		
Na ₂ O	1,21	_	-	_	4,31	3,91	3,91	4,45	2,96	3,64		
K_2O	_	_	-	_	0,24	0,48	0,36	0,84	0,00	0,36		
Wo (%)	34,86	37,58	35,88	36,61								
En (%)	35,42	36,29	39,11	39,62								
Fs (%)	29,72	26,13	24,35	23,77								
F (%)	45,60	71,90	37,90	37,50								
Al					0,402	0,360	0,365	0,409	0,289	0,348		
An					0,584	0,611	0,613	0,540	0,711	0,629		
Ort					0,015	0,029	0,022	0,051	0,00	0,023		

Таблица 7

Рентгеноспектральный анализ минералов Пудожгорского интрузива. Подрудный горизонт, скв. № 275, мас. %

Примечание. CAMSKAN – 4DV, аналитик – Ю. Л. Крецер.

Б

Рис. 11. Точки микрозондирования, к табл. 7. Прозрачно-полированный шлиф – скв. 275, инт. 97 м. А – точки 3, 4, 7 – плагиоклаз. Точки 1, 2, 5 – клинопироксен. Точка 6 – титаномагнетит. Б – точки 1, 4 – плагиоклаз (черное идиоморфное). Точки 2, 3, 5 – клинопироксен (основное темно-серое поле). Светло-серое – титаномагнетит

Инликаторные		Выл	еляемые группы цирн	сонов	
генерационные	Призматическая	Цирконовая	Эллипсовидная	Обломочная	Сростки
признаки	Группа 1	Группа 2	Группа 3	Группа 4	Группа 5
Степень идиоморфизма	Высокая, средняя	Высокая	Низкая	Низкая	Высокая, средняя
Габитус	Призматический	Пирамидально- призматический	Близкий к изометричному	Остроугольные обломки	Призматический
Облик	Удлиненный, уплощенный	Коротко- призматический	Овальный	Обломочный	Удлиненный
Коэффициент удлинения	4,0-6,0	1,0–2,0	1,5	1,5	2,0-4,0
Цвет	Розовый, желтоватый до бурого	Темно-бурый	Светло-розовый	Розовый, бурый	Бурый
Состояние поверхности	Ожелезненная, мат трещин	говая, с изломами, юватая	Блестящая, почти ровная	Ожелезненная, трещиноватая	Ожелезненная
Строение (внутреннее)	Простое, низкое, трещиноватость прод	двупреломление, ольная и поперечная	Простое, пониженное двупреломление	Низкое двупрелом- ление	Низкое двупрелом- ление
Включения	Черные, нег	прозрачные	Без видимых включений	Черные, редкие	
Зональность	Отсут	ствует	Нечеткая полизональность	Незональные	Незональные
Люминесценция		В ультрафио	олетовых лучах не лю	минесцирует	
Радиоактивность		Ради	оактивность не обнар	ужена	
Морфогенетический тип	Призматический	Цирконовый			
Содержание	Около 95%	Редкие зерна	Редкие зерна	Около 5%	Редкие зерна

Таблица 8 Характеристика цирконов из пробы № 166 Койкарско-Святнаволокского силла

П р и м е ч а н и е . Здесь и в табл. 9: генерационный анализ выполнен в лаборатории технологической минералогии ИГ КарНЦ РАН, аналитик – П. И. Кукушкина.

Таблица 9

Характеристика цирконов из пробы № 467 Пудожгорского интрузива

Индикаторные и		Морфологи	ческие группы цирконо	В	
генерационные признаки	Призматическая	Карандашная	Цирконовая	Гиацинтовая	
Степень идиоморфизма	Высокая, средняя	Высокая, средняя	Высокая	Средняя, низкая	
Габитус	Призматический	Призматический	Дипирами	дально-призматический	
Облик	Удлі	иненный	Близки	й к изометрическому	
Коэффициент удлинения	До 10,0	До 8,0	1,5–2,5	1,5–2,5	
Цвет		Светло-розовый, жел	товатый, пятнисто-оже	тезненный	
Состояние поверхности	Шерохо	ватая, трещиноватая, ожел	Блестящая, гладкая		
Строение (внутреннее)	Простое	Простое	Простое	Простое и сложное	
Включения		Гидроокислы железа		Микровключения не исследованы	
Зональность		Отсутствует		Зональный и незональный	
Количество зерен с ядром	Нет	Нет	Нет	Два зерна	
Форма ядра				Бесформенное, трещиноватое	
Люминесценция		В ультрафиоле	говых лучах не обнаруя	кена	
Радиоактивность		Н	е обнаружена		
Морфогенетический тип	Призматический	Карандашевидный	Цирконовый	Гиацинтовый	
Солержание. %	98%	1%	1%	Ел. зн. (5 зерен в концентрате)	

Таблица 10

Морфологические особенности цирконов в зависимости от положения в разрезе Пудожгорского интрузива

		Распр											
№ пробы	П	ризматиче соэффицие	ская нтом	Ди	пирамидально- с коэффициенто	Изомет-	Содержание в породе: числитель – Na_2O+K_2O ,						
		удлинени	я	гиацинтовые	цирконовые	ричная	$Mac = \frac{Ma_2 O}{K_2 O}$						
	3-5	до 8	до 10	1,5–3,0	1–3	2-3 до 5 до 8		до 8	1,0-1,5	Mac. 70			
Надрудный горизонт (кровля)													
335	25	-	-	10	65	-	-	-	_	$\frac{4,72}{2,3}$			
	Гранофировый горизонт (подошва)												
468	-	-	-	100	-	-			-	<u>5,43</u> 7,8			
				Г	ранофировый г	оризонт (кровля)						
467	-	1	98*	Ед. зн.	1*	-	-	-	-	<u>6,38</u> 5,4			
]	Вмещающи	ие плагиомикрон	клиновые гранит	гы (120 м	от верхнег	о контак	га по разрезу)			
336	-	-	-	90	_	2	2	3	3	<u>7,98</u> 0,85			

П р и м е ч а н и е . * – группы цирконов, по которым проводились аналитические исследования U-Pb системы.

Результаты изотопно-геохронологических исследований

Процедура U-Pb анализов на SHRIMP-II

U-Pb датирование цирконов осуществлялось на ионном микрозонде SHRIMP-II в Центре Изотопных Исследований ВСЕГЕИ им. А. П. Карпинского.

Отобранные вручную зерна цирконов были имплантированы в эпоксидную смолу вместе с зернами цирконовых стандартов TEMORA и 91500. Далее зерна цирконов были сошлифованы и приполированы приблизительно на половину своей толщины. Для выбора участков (точек) датирования на поверхности зерен использовались оптические (в проходящем и отраженном свете) и катодолюминесцентные изображения, отражающие внутреннюю структуру и зональность цирконов.

Измерения U-Pb отношений на SHRIMP-II проводились по методике, описанной в статье I. S. Williams (1998). Интенсивность первичного пучка молекулярных отрицательно заряженных ионов кислорода составляла 4 нА, диаметр пятна (кратера) -20 мкм. Обработка полученных данных осуществлялась с использованием программы SQUID (см.: Ludwig, 2000). U-Pb отношения нормализовались на значение 0,0668, приписанное стандартному циркону ТЕМОRА, что соответствует возрасту этого циркона 416,75 млн лет (Black, Kamo, 2003). Погрешности единичных анализов (отношений и возрастов) приводятся на уровне одной сигма, погрешности вычисленных конкордантных возрастов и пересечений с конкордией приводятся на уровне двух сигма. Построение графиков с конкордией проводилось с использованием программы ISOPLOT/EX (Ludwig, 1999).

Процедура Sm-Nd изотопного анализа

Аналитические исследования выполнялись в лаборатории Геологической службы Финляндии (г. Эспоо). Образцы весом 150 мг были растворены в смеси HF-HNO₃ в тефлоновых бомбах в течение 48 часов. После тщательного выпаривания флюоридов (с HNO₃) остаток был растворен 6 М HCl, что позволило получить чистый раствор. Смешанный трассер (¹⁴⁹Sm-¹⁵⁰Nd) добавлялся в образец до растворения. Измерения производились динамическим методом на масс-спектрометре VG Sector 54 d в трехленточном режиме. На основании повторяемых измерений установлена ошибка в отношении 147 Sm/ 144 Nd – 0,4%. Отношение ¹⁴³Nd/¹⁴⁴Nd нормализовано по отношению к 145 Nd/ 144 Nd = 0,7219. При измерении в трехленточном режиме среднее значение стандарта La Jolla coставило по отношению ¹⁴³Nd/¹⁴⁴Nd 0,511851 ± 0,000006 (стандартное отклонение, n = 48).

Результаты изотопного Sm-Nd и U-Pb анализов по Пудожгорскому интрузиву

Анализировались четыре образца, по которым было выполнено 11 измерений по породе в целом и выделенным минеральным фракциям (пироксены, плагиоклазы и апатит) (табл. 11). Сепарация минеральных фракций производилось в Институте геологии КарНЦ РАН. Плагиоклазы оказались сильно измененными, и из них были отобраны наиболее свежие зерна под бинокулярным микроскопом. Ввиду вторичных изменений минералов отмечается их незначительная гетерогенность. По двум фракциям плагиоклаза навеска оказалась очень маленькой (0,05 g с содержанием около 60 ng Nd), что определило существенную аналитическую погрешность. Остальные пробы удовлетворяют требованиям анализа. Изохрона, построенная по всем 11 анализам, показывает возраст 2174 ± 74 Ma (ϵ (Nd) = +1,3, MSWD = 3,1), однако аналитическая ошибка все же существенна (рис. 12).

Расчеты возрастов по отдельным образцам по программе ISOPLOT показали следующие результаты (рис. 13, 14):

Большая ошибка в последнем образце вызвана значительным разбросом точек на диаграмме и математической погрешностью аппроксимации данных. Для остальных образцов полученные результаты можно считать приемлемыми. Тем не менее отмечается некоторый разброс точек и для проб из скважины 275. Причина этого может быть связана с метаморфическими изменениями пироксена и незначительным присутствием амфиболов и других вторичных минералов в анализируемых навесках.

Представляется, что наиболее точные результаты получены по образцам Jt 275/1 и Jt 275/2, показывающим близкие возрасты – около 2,2 Ga, хотя отмечаются некоторые отличия в первичных значениях є. Это может свидетельствовать о различной степени контаминации интрузива архейскими гнейсами.

Таким образом, результаты определения возраста по Sm-Nd методу подтверждают ранее существовавшие представления о ятулийском времени формирования интрузива. Мафические дифференцированные интрузии с возрастом около 2,2 Ga также широко распространены в Финляндии, где они локализуются в большинстве случаев вблизи контакта архейских гнейсов и протерозойских супракрустальных образований. Sm-Nd данные по ним показывают первичные значения ε(Nd) около +0,6 (Hanski et al., in prep.).

Однако результаты анализа цирконов на ионном зонде SHRIMP-II не подтвердили полученных возрастов. Всего было проанализировано 12 зерен цирконов (табл. 12, рис. 15). По трем конкордантным точкам было получено средневзвешенное значение U-Pb возраста 1984 ± 8 Ма (рис. 16). При этом подавляющее число зерен цирконов (11 зерен) являются первично магматическими с возрастом примерно 1980 Ма.

Т	а	б	Л	И	ц	а	1	1
---	---	---	---	---	---	---	---	---

Аналитические данные по Sm-Nd системе минералов Пудожгорской интрузии проб С-275/91-97, С-360/93,5

№ анализа	Минерал,	Sm, Nd,		¹⁴⁷ Sm/ ¹⁴⁴ Nd	$\pm 0.4\%$	143 Nd/144 Nd	250	T Ma	s (T)
Jie analinsa	порода	ppm	ppm	Sill/ ING	0,0040	inu/ inu	230	1, 1910	c(1)
Jt 275/1 (275/91–92,5)	Долерит	4,16	15,41	0,1633	0,0007	0,512234	0,000020	2200	1,5
Jt 275/1 apt	Апатит	406	1589	0,1543	0,0015	0,512120	0,000020	2200	1,8
Jt 275/1 Pl	Плагиоклаз	0,54	3,08	0,1049	0,0004	0,511386	0,000024	2200	1,5
Jt 275/2 (275/97)	Долерит	5,31	19,45	0,1652	0,0007	0,512244	0,000020	2200	1,2
Jt 275/2 Pl	Плагиоклаз	0,50	2,48	0,1216	0,0005	0,511592	0,000020	2200	0,8
Jt 275/2 Cprx	Пироксен	3,88	11,47	0,2043	0,0008	0,512795	0,000020	2200	0,9
Jt-275/91,5	Долерит	4,19	15,59	0,1624	0,0006	0,512219	0,000015	2200	1,5
Jt-275/91,5 Pl	Плагиоклаз	0,24	1,37	0,1080	0,0004	0,511461	0,000040	2200	2,1
360/93,5	Долерит	5,64	21,03	0,1620	0,0006	0,512226	0,000020	2200	1,7
360/93,5 Cprx	Пироксен	4,83	15,55	0,1877	0,0008	0,512559	0,000020	2200	0,9
360/93,5 Pl	Плагиоклаз	0,32	1,58	0,1212	0,0005	0,511611	0,000060	2200	1,2

Рис. 12. Sm-Nd изохрона для Пудожгорского интрузива

№ 275, интервал 91–97 м

Рис. 14. Sm-Nd изохрона для пробы С-360/93,5

Рис. 15. Морфология цирконов и точки анализирования. Проба № 467 к табл. 12

Результаты цирконометрии убедительно свидетельствуют о людиковийском возрасте Пудожгорской интрузии. Нарушение Sm-Nd изотопной системы может быть объяснено существенной коровой контаминацией при внедрении силла в жесткую архейскую раму. Прямым доказательством этого служит обнаруженное зерно ксеногенного циркона (точка 467.1.1) с возрастом 2718 Ма. Данный возраст весьма характерен для гранитоидов фундамента Онежской структуры (Куликов и др., 1990).

Таблица 12 Аналитические данные по U-Pb системе цирконов пробы № 467

№ анализа	U, ppm	Th, ppm	$\frac{\frac{204}{Pb}}{\frac{206}{Pb}}$	±, %	²⁰⁶ Pb*, ppm	²⁰⁶ Pb _c , %	$\frac{(1)}{\frac{207}{Pb}^{*}}{\frac{206}{Pb}^{*}}$	±, %	$\frac{(1)}{\frac{207\text{Pb}^{*}}{235}\text{U}}$	±, %	$\frac{\overset{(1)}{^{206}\text{Pb}^*}}{\overset{^{206}\text{Pb}^*}{^{238}\text{U}}}$	±, %	(1) возраст ²⁰⁶ Pb ²³⁸ U Ma	±	(1) возраст ²⁰⁷ Рb ²⁰⁶ Рb Ма	±
467.1.1	320	57	0,00007	20	134,7	0,13	0,1872	0,4	12,64	0,6	0,4895	0,4	2569	9	2718	7
467.2.1	140	123	0,00156	8	40,1	2,91	0,1208	1,7	5,37	1,8	0,3226	0,7	1802	11	1968	30
467.3.1	455	545	-	-	130,2	-	0,1206	0,5	5,54	0,6	0,3331	0,4	1853	6	1966	9
467.4.1	355	447	0,00007	37	104,7	0,13	0,1216	0,6	5,74	0,7	0,3423	0,4	1898	7	1980	11
467.5.1	331	366	0,00013	26	96,1	0,23	0,1216	0,7	5,66	0,8	0,3375	0,4	1875	7	1980	13
467.6.1	221	219	0,00000	0	68,4	0,00	0,1213	0,6	6,03	0,8	0,3602	0,5	1983	9	1976	11
467.7.1	193	176	0,00095	9	56,2	1,77	0,1220	1,3	5,59	1,4	0,3323	0,6	1850	9	1986	23
467.8.1	194	121	0,00033	16	53,1	0,62	0,1211	0,9	5,30	1,1	0,3172	0,6	1776	9	1972	16
467.6.2	244	227	0,00012	26	70,2	0,22	0,1216	0,7	5,61	0,9	0,3345	0,5	1860	8	1980	13
467.9.1	245	264	0,00009	34	67,6	0,17	0,1217	0,8	5,37	1,0	0,3202	0,5	1791	9	1981	14
467.10.1	299	378	0,00001	97	93,1	0,02	0,1214	0,7	6,07	0,9	0,3624	0,5	1993	8	1977	13
467.10.2	305	387	0,00003	87	94,2	0,05	0,1220	0,6	6,04	0,8	0,3594	0,5	1979	8	1985	11

П р и м е ч а н и е . 1. Ошибка – 1 σ ; Рb_e и Pb^{*} – общий и радиогенный свинцы. 2. Ошибка по калибровке с использованием стандарта 91500 – 0,22% (среднее из 18 анализов). (1) – содержание общего Рb откорректировано по замеренному ²⁰⁴Pb. D% – дискордантность, %.

Б

Рис. 16. График с конкордией для определения возраста цирконов из проб № 467 (А) и № 166 (Б)

~
C1
—
а
Ц
И
Б
6
а
H

Аналитические данные по U-Pb системе цирконов пробы № 166

err	corr		0.02	00/.	7 <i>9</i> 7.		.775		010	.810		.812		.807		061.	I3MEDEH-
$^{(1)}_{^{206}\text{Pb}^*}$	238 U	=%0	0,3575	0,45	0,3599	0,43	0,3612	0,46	0,3644	0,43	0,3601	0,43	0,3626	0,43	0,3602	0,44	зованием т
$^{(1)}_{^{207}\text{Pb}^*}$	/ ²³⁵ U	±%	6,015	0,58	6,021	0,54	6,023	0,59	6,093	0,53	6,068	0,53	6,050	0,53	6,061	0,55	ан с исполь
$^{(1)}_{207} Pb^*$	$/^{206} Pb^*$	∓%	0,12203	0,36	0,12132	0,33	0,12095	0,37	0,12126	0,31	0,12223	0,31	0,12102	0,32	0,12202	0,34	DDREKTUDORS
$^{(1)}_{2^{38}\text{U}/}$	$^{206}\mathrm{Pb}^{*}$	±%	2,797	0,45	2,778	0,43	2,769	0,46	2,744	0,43	2,777	0,43	2,758	0,43	2,776	0,44	бший Рһ ско
1 otal ²⁰⁷ Pb	^{206}Pb	$\pm \%$	0,12242	0,35	0,12164	0,31	0,12140	0,35	0,12157	0,30	0,12229	0,31	0,12135	0,30	0,12236	0,32	30 5 %65
Total	0 707	0/H	2,796	0,45	2,777	0,43	2,767	0,46	2,743	0,43	2,777	0,43	2,757	0,43	2,775	0,44	составила (
% Dis-	cor-	dant	-	I	0	0	-1		-		0		-1		0		апибловки
$^{(1)}_{208Pb}$	232 Th	возраст	1,906	±11	1,915	± 10	1,903	±11	1,936	± 10	1,927	± 10	1,912,4	$\pm 10,0$	1,913	±12	нлартной к
$^{(1)}_{207}$ Pb	^{206}Pb	возраст	1,986,1	±6,5	1,975,7	±5,8	1,970,3	±6,6	1,974,9	±5,5	1,989,0	±5,5	1,971,3	±5,6	1,986,0	$\pm 6,0$	Ошибка ста
$^{(3)}$	238 U	возраст	1,989	±11	1,998,7	$\pm 9,8$	2,011	±11	2,022	± 10	1,995,4	$\pm 9,5$	2,013,9	$\pm 9,7$	2,009	±12	HO HACTE 2
^{206}Pb	238 U	возраст	1,967,9	± 8.9	1,982,8	±8,5	1,990,3	±9,1	2,007,6	$\pm 8,6$	1,981,5	±8,5	1,998,0	±8,6	1,982,9	±8,7	оалиогенну
$^{(1)}_{206}Pb$	238 U	возраст	1,970,3	±7,7	1,981,9	±7,4	1,987,6	±7,8	2,003,2	±7,4	1,982,5	±7,3	1,994,5	±7,4	1,983,4	±7,5	обшию и
²⁰⁶ Pb*,	bpm		050	250		776	252		356		346		350		317		зывает н
232 Th	238 U			2,03		1,17	101	1,91	1 07	1,2,1	1,68		1,71		2,36		и Рһ* чка
Th,	bpm		1 500	1598		1 000	1500	nnci	0710	7100	1070	10701	1861		7220	1667	1α. Ph. 1
'n,	bpm	mqq		C10	1040		811		1138		1118		1124		1072	C701	шибка –
²⁰⁶ Pb _c ,	²⁰⁶ Pb _c , %		100	0,04	100	10,0	200	cnín	100	0,04	0.01	10,01	100	0,04	700	0,04	e 1 Or
	№ анализа		1 1 10 221024	NC100.01.1.1	1 6 10 22107	NC100.01.2.1	1 6 10 22102	NC100.01.5.1	1 1 10 22102	NC100.01.4.1	1 2 10 22107	NC100.01.7.1	1 7 10 77107	NC100.01.0.1	1 2 10 991 2 1	NC100.01./.1	Примечани

ć 11 р и м е ч а н и е. 1. Ошиока – 16; РЪ, и РЪ* указывает на оощую и радиотенную часть. 2. Ошиюка стандартнои калиоровки составила 0,5У%. Э. Оощии РО скорректирован с использование но 2³⁰⁶ Pb/²³⁸ U-²⁰⁷ Pb/²³⁸ U-²⁰⁷ Pb/²³⁸ U-²⁰⁷ Pb/²³⁸ U-²⁰⁷ Pb/²³⁸ U-²⁰⁷ Pb/²³⁸ U-²⁰⁷ Pb/²³⁸ U-²⁰⁶ Pb/²³⁸ P

Результаты изотопного U-Pb анализа по Койкарско-Святнаволокскому силлу

Ранее возраст Койкарско-Святнаволокского силла был определен Sm-Nd изохроной и составлял 2186 ± 68 Ма (Беляцкий и др., 2000). Для подтверждения полученных данных были выполнены измерения на ионном зонде SHRIMP-II зерен цирконов из пробы КС 166.01. Всего было проанализировано семь зерен (рис. 17). Результаты измерений приведены в табл. 13. Все семь конкордантных точек дают средневзвешенное значение возраста 1983,4 \pm 6,5 Ма (рис. 16), что так же, как и в Пудожгорском интрузиве, не совпадает с данными, полученными Sm-Nd методом. Измеренные цирконы уверенно интерпретируются как первично магматические. Следует отметить, что при датировании цирконов, отобранных из тела в каньоне р. Суны ниже Гирвасской плотины, был также получен возраст 1976 ± 9 Ма (Куликов и др., 1999). Эти данные корреспондируются с U-Pb возрастами цирконов для серии диабазовых даек, прорывающих ятулийские осадки в Финляндии, -1965 ± 10 Ma (Vuollo, Piirainen, 1992). Аналогичный возраст получен и для крупного Кончезерского габбро-перидотитового силла -1975 ± 24 Ма (Куликов и др., 1999).

Удревление Sm-Nd возраста, вероятно, может быть объяснено процессами коровой контаминации при внедрении интрузии. Ксенолиты подстилающих сланцев и ксеногенные ставролиты, гранаты и цирконы, обнаруженные в вулканических лавах (Куликов и др., 1999), являются непосредственным свидетельством коровой контаминации. Захваченный в процессе подъема магматических расплавов ксеногенный материал мог являться причиной нарушения Sm-Nd изотопной системы.

Заключение

В результате проведенных исследований установлен абсолютный возраст дифференцированных интрузий Пудожгорского комплекса Онежской структуры – 1983–1984 млн лет. Таким образом, традиционные представления об ятулийском возрасте этих массивов должны быть пересмотрены и внесены необходимые измененения в региональную стратиграфическую шкалу. Также следует переинтерпретировать геодинамические модели развития Онежской структуры и схемы металлогенической эволюции.

Полученные возрасты интрузивов позволяют более уверенно прогнозировать наличие крупных Cu-Ni месторождений, в связи с людиковийской активизацией рифта, в Онежском рудном районе. Результаты показывают ограничения использования Sm-Nd метода для датирования раннепротерозойских интрузивных комплексов.

Исследования выполняются при финансовой поддержке программы № 2 ОНЗ РАН «Фундаментальные проблемы геологии, условия образования и принципы прогноза традиционных и новых типов крупномасштабных месторождений стратегических типов минерального сырья».

ЛИТЕРАТУРА

Беляцкий Б. В., Богачев В. А., Голубев А. И. и др. Новые данные по U-Pb и Sm-Nd изотопному датированию архейских и раннепротерозойских магматических комплексов Карелии // Общие вопросы расчленения докембрия. Апатиты, 2000. С. 42–44.

Голубев А. И., Светов А. П. Геохимия базальтов платформенного вулканизма Карелии. Петрозаводск, 1983. 192 с.

Классификация магматических (изверженных) пород и словарь терминов: Рекомендации Подкомиссии по систематике изверженных пород Международного союза геологических наук / Пер. с англ. М., 1997. 248 с.

Куликов В. С., Симон А. К., Куликова В. В. и др. Эволюция архейского магматизма Водлозерского блока Карельской гранит-зеленокаменной области // Геология и геохронология докембрия Восточно-Европейской платформы. Л., 1990. С. 92–100.

Куликов В. С., Куликова В. В., Лавров Б. С. и др. Суйсарский пикрит-базальтовый комплекс палеопротерозоя Карелии (опорный разрез и петрология). Петрозаводск, 1999. 96 с.

Номенклатура амфиболов: доклад Подкомитета по амфиболам комиссии по новым минералам и названиям минералов международной минералогической ассоциации (КНМНМ ММН) // Записки всероссийского минералогического общества. 1997. № 6. С. 82–97.

Соколов В. А., Галдобина Л. П, Рылеев А. В. и др. Геология, литология и палеогеография ятулия центральной Карелии. Петрозаводск, 1970. 366 с. *Трофимов Н. Н., Голубев А. И.* Геодинамическая позиция перспективных платиноносных формаций Карелии // Геология и полезные ископаемые Карелии. Вып. 6. Петрозаводск, 2003. С. 26–33.

Трофимов Н. Н., Голубев А. И., Смирнова Н. К. Особенности морфологии и перспективы рудоносности Пудожгорского интрузива // Геология и полезные ископаемые Карелии. Вып. 8. Петрозаводск, 2005. С. 68–74.

Black L. P., Kamo S. L. et al. TEMORA 1: a new zircon standard for U-Pb geochronology // Chemical Geology. 2003. 200. P. 155–170.

Ludwig K. R. User's manual for Isoplot/Ex, Version 2.10, A geochronological toolkit for Microsoft Excel. Berkeley Geochronology Center Special Publication No. 1a, 2455 Ridge Road, Berkeley CA 94709, USA, 1999.

Ludwig K. R. SQUID 1.00, A User's Manual; Berkeley Geochronology Center Special Publication. No. 2, 2455 Ridge Road, Berkeley, CA 94709, USA, 2000.

Vuollo J. I., Piirainen T. A. The 2.2 Ga old Kola layered sill: the low-Al tholeiitic (karjalitic) magma and its differentation in northern Karelia, eastern Finland // Geol. Foren Stockholm Forh. 1992. N 114. P. 131–142.

Wetherill G. W. Discordant uranium-lead ages // Trans. Amer. Geophys. Union. 1956. 37. P. 320–326.

Williams I. S. U-Th-Pb Geochronology by Ion Microprobe // McKibben, M. A., Shanks III, W. C. and Ridley, W. I. (eds.). Applications of microanalytical techniques to understanding mineralizing processes / Reviews in Economic Geology. 1998. 7. P. 1–35.