Новые данные о распределении благородных металлов в межрудных сланцах курской серии КМА (Центральная Россия)

Кузнецов В.С.

Воронежский Государственный Университет, г. Воронеж, e-mail: voronezhpodkl@inbox.ru

В настоящее время среди новых нетрадиционных типов золото-платинометалльного оруденения повышенное внимание уделяется широко распространенным и значительным по масштабам развития металлоносным углеродсодержащим формациям. В пределах мегаблока КМА Воронежского кристаллического массива (ВКМ) располагается рифтогенная Тим-Ястребовская структура, в которой широким развитием пользуются раннепротерозойские углеродистые сланцы оскольской серии. На западном фланге структуры на поверхность кристаллического фундамента в виде узкой полосы выходят породы курской серии нижнего протерозоя, где среди пород железисто-кремнистой формации также встречаются углеродсодержащие сланцы. В этом районе расположен Старооскольский рудный узел с отрабатываемыми Лебединским и Стойленским железорудными месторождениями. Объектом исследований являются углеродсодержащие сланцы коробковской свиты курской серии, в которой выделяются две железорудные подсвиты (kr₁ и kr₃), и две сланцевы е подсвиты (kr₂ и kr₄). В объемах железорудных подсвит могут залегать так называемые внутрирудные сланцы мощностью 5-30 м. [4].

В данной работе приводится новая информация о содержании благородных металлов в межрудных углеродсодержащих сланцах раннепротерозойской курской серии, вскрытых на Стойленском железорудном месторождении КМА (Курская магнитная аномалия). Это месторождение (вместе с Лебединским, Стойло-Лебединским и Коробковским) входит в состав Старооскольского рудного узла, расположенного в восточной части мегаблока КМА Воронежского кристаллического массива (ВКМ), на южном замыкании Тим-Ястребовской рифтогенной структуры [4].

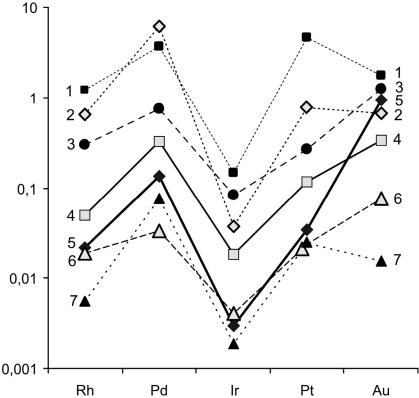
В результате предыдущих исследований в сланцах и железистых кварцитах курской серии (на Лебединском и Михайловском месторождениях) и лежащих выше по разрезу углеродистых сланцах оскольской серии были выявлены повышенные содержания элементов платиновой группы (ЭПГ) и золота и обнаружены собственные минеральные формы золота и платиновых металлов [5].

В ходе полевых работ 2008-2009 годов в карьере Стойленского месторождения были отобраны и опробованы на содержания благородных металлов образцы межрудных сланцев.

Содержания ЭПГ и Au (табл.1) в целом невелики, однако вполне сопоставимы со средними содержаниями как в других железорудных месторождениях региона, так и в лежащих выше по разрезу углеродистых сланцах оскольской серии (тимской тип оруденения) [5].

, ,,,,		,						
Номер пробы	Содержания благородных металлов, в г/т							
	Ir	Rh	Pt	Pd	Au			
ST-8	0,0118	0,0373	0,1309	0,24	0,7382			
ST-9-1	0	0	0	0,074	0,1481			
ST-9-2	0	0	0	0,12	0,05			
ST-16	0	0	0,0206	0,3587	0,3318			
ST-16 M1	0	0	0	0,0573	0,1371			
CT-17M	0,0017	0,0047	0,0003	0,011	0,027			
CT-17/1	0,0033	0,0032	0,0003	0,0097	0,0025			
CT-18	0,01	0,01	0,015	0,025	1,5			
CT-18/4	0,0011	0,0038	0,001	0,025	0,0007			
ST-18/5	0	0	0	0,1294	0,3498			
CT-44M	0,0002	0,0033	0,0003	0,028	0,0077			
ST-45 M	0	0	0	0	0,0491			
CT-51	0	0	0,387	0	0,0352			
CT-51/1	0,0017	0,002	0,0042	0,055	0,035			
ST-60 M	0	0,0117	0,0074	0,0487	0,107			

Таблица 1. Содержания ЭПГ и золота в сланцах Стойленского месторождения


^{*}Анализы выполнены в лаборатории анализа минерального вещества ИГЕМ РАН, аналитики Карташова Л.Ф., Сычкова В.А.

Модель нормализованного к хондриту распределения ЭПГ в углеродсодержащих сланцах Стойленского месторождения (рис.) демонстрирует слабо дифференцированный характер поведения платиновых металлов с несколько повышенными концентрациями легких платиноидов при дефиците тяжелых.

На диаграмме хондрит-нормализованных отношений (рис.) наблюдается сходство в трендах распределения ЭПГ и золота между сланцами Стойленского и Лебединского месторождений с коматиитами и, в некоторой мере, дунитами зональных массивов.

Таблица 2. Содержания ЭПГ и золота в межрудных сланцах курской серии и различных типах ультрамафитов (по [2,3,5]), г/т.

	Ir	Rh	Pt	Pd	Au	Pt/Pd
Сланцы Стойленского месторождения	0,002	0,005	0,036	0,075	0,221	0,480
Сланцы Лебединского месторождения	0,010	0,010	0,120	0,180	0,050	0,670
коматииты месторождения Камбалда	0,045	0,060	0,270	0,402	0,188	0,670
Норильское месторождение	0,020	0,130	0,790	3,320	0,100	0,240
Риф Меренского, Бушвелдский массив	0,080	0,240	4,780	2,035	0,26	2,350
дуниты зональных массивов	0,002	0,004	0,024	0,018	0,011	1,300
клинопироксениты зональных массивов	0,001	0,001	0,025	0,041	0,002	0,600

Rh Pd Ir Pt Au Содержания ЭПГ в различных породах, нормализованные к хондриту C1 (по [2,3,5], с дополнениями):

Общая схема распределения благородных металлов в межрудных сланцах Стойленского и Лебединского месторождений имеет вид Au \square Pd \square Pt \square Rh \square Ir, отношение Pt/Pd в межрудных сланцах составляет \sim 0,5-0,6. Как видно из таблицы 2, подобные отношения характерны для коматиитов и клинопироксенитов зональных массивов. Исходя из вышеизложенного можно отметить

^{1 -} Риф Меренского, Бушвелдский массив, ЮАР ; 2 – Норильское месторождение; 3 – коматииты месторождения Камбалда, Австралия; 4 – межрудные сланцы Лебединского месторождения; 5 – межрудные сланцы Стойленского месторождения (авторские данные); 6 – дуниты зональных массивов; 7 - клинопироксениты зональных массивов.

сходство в распределении благородных металлов в межрудных сланцах курской серии и коматиитах, а возможно и зональных массивах. В кристаллическом фундаменте мегаблока КМА достаточно широко распространены коматиитсодержащие зеленокаменные пояса. Они (совместно с гипербазитовыми интрузивамими) отмечаются как в составе раннеархейского обоянского плутоно-метаморфического комплекса (т. н. «нижние» зеленокаменные пояса), так и в объеме александровской свиты михайловской серии позднего архея (т.н. «верхние» зеленокаменные пояса) [1,6]. Эти образования могли служить одним из источников поступления ЭПГ в бассейны седиментации курской серии. Таким образом, полученные результаты позволяют поставить вопрос о проведении дополнительных исследований по выявлению источников ЭПГ в железорудных толщах КМА.

Работа выполнена при финансовой поддержке РФФИ (проект № 08-05-00158-а) и ФЦП «Научные и научно-педагогические кадры инновационной России на 2009-2013 г.» (Гос. контракт № 02.740.11.0021).

Литература

- 1. *Бочаров В.Л., Фролов С.М., Плаксенко А.Н. и др.* Ультрамафит-мафитовый магматизм гранит-зеленокаменной области КМА // Воронеж, 1993. 176 с.
- 2. *Лазаренков В.Г.*, *Петров С.В.*, *Таловина И.В.* Месторождения платиновых металлов. Санкт-Петербург: Недра, 2002. 298 с.
- 3. *Налдретт А.Дж*. Магматические сульфидные месторождения медно-никелевых и платинометалльных руд. Санкт-Петербург: СПбГУ, 2003. 487 с.
 - 4. *Орлов В.П.* Железные руды КМА. М.: Геоинформмарк, 2001. 616 с.
- 5. *Чернышов Н.М.* Золото-платинометалльное оруденение черносланцевого типа Курско-Воронежского региона (Центральная Россия). Воронеж: Издат.-полиграф. центр Воронеж. гос. ун-та, 2007. 177 с.
 - 6. Чернышов Н.М., Бочаров В.Л., Фролов С.М. Гипербазиты КМА. Воронеж, 1981. 252 с.

Особенности минерагении докембрия Кокшетауского срединного массива (Казахстан)

Кузовенко А.И.¹, Жуковский В.И.², Мальченко Е.Г³.

¹ Комитет геологии и недропользования. Республика Казахстан, г. Астана, e-mail: komitet@korsh.kz. ² МТД «Центрказнедра» Комитета геологии и недропользования, Республика Казахстан,

г. Караганда, e-mail: rood@nursat.kz.

³ TOO «GeoMineProject», Республика Казахстан, г. Алматы.

Территория Казахстана расположена в пределах западной части Урало-Монгольского складчатого пояса. В процессе развития складчатого пояса происходило формирование его как все усложняющейся мегасистемы, состоящей из докембрийских массивов - микроконтинентов и покровно-складчатых сооружений салаирской, каледонской и герцинской тектонических эпох [2]. В связи с этим для структур Казахстана характерно сочетание древних сиалических массивов (микроконтинентов) с каледонскими островодужными и окраинно-континентальными вулканическими образованиями, фрагментами геоблоков коры океанического типа, впадинами с терригенным характером осадконакопления.

В тектонических структурах Северного Казахстана центральное место принадлежит Кокшетаускому срединному массиву, представляющему собой крупный геоблок земной коры площадью более 82500 км². Мощность земной коры Кокшетауского геоблока составляет 37-45 км [7]. Наиболее древними породами, слагающими эту структуру, являются глубоко метаморфизованные породы зерендинской серии (кумдыкольская, берлыкская и даулетская свиты), отнесенные условно к архею-раннему протерозою, представляющие комплекс основания (гнейсовый фундамент). Метамор-