бо для получения мелких блоков и производства мелкоразмерных штучных изделий, либо при наличии уникального камня, конечная цена которого сможет оправдать их разработку.

Таким образом, при использовании такой классификации, каждому типу месторождения будет соответствовать и своя система отработки месторождения, что уже на стадии изучения месторождения может дать необходимую характеристику по его дальнейшему использованию. Необходимо адаптировать методическую базу для геологического изучения месторождений блочного камня, не только с позиций современных требований промышленности, но и мирового рынка.

Литература

1. Классификация запасов месторождений и прогнозных ресурсов твердых полезных ископаемых. Москва, (утверждена Постановлением Совета Министров СССР от 30.11.81, № 1128).

2. Инструкция по применению Классификации запасов к месторождениям строительного и облицовочного камня. М., 1984, 36 стр. (ГКЗ при Совете Министров СССР).

3. Положение о порядке проведения геологоразведочных работ по этапам и стадиям (твердые полезные ископаемые). М., 1998, 26 стр. (ВИЭМС). (Утверждено распоряжением МПР РФ от 03.02.1998, № 16-р).

4. Классификация запасов месторождений и прогнозных ресурсов твердых полезных ископаемых. М., 1997, 16 с. (ГКЗ МПР РФ) (Утверждена приказом Министра природных ресурсов РФ 07.04.1997 № 40).

5. Методические рекомендации по применению Классификации запасов месторождений и прогнозных ресурсов твердых полезных ископаемых (строительного и облицовочного камня). М., 2007. (Приложение 37 к распоряжению МПР России от 05.06.2007 № 37-р).

6. Типы месторождений блочного камня по характеру трещиноватости. Шеков В.А., Иванов А.А. // Геология и полезные ископаемые Карелии. Вып. 11. Петрозаводск: Карельский научный центр РАН, 2008. С. 232-237: ил.8. Библиогр.

Петрология и минерагения позднеархейских синтектонических метасоматитов в Северо-Карельской шовной зоне

Юркова Р.М., Воронин Б.И.

Институт проблем нефти и газа РАН, г. Москва, e-mail: bivrmyrzb@mtu-net.ru

Синтектонические метасоматиты, сформированы в позднем архее в Кукасозёрском сегменте Северо-Карельской шовной зоны. Северо-Карельская шовная зона представляет пограничную структуру между Беломорским и Карельскими микроконтинентами (рис. 1).

Puc.1. Конвергентная складчатая структура Кукасозерского сегмента Северо-Карельского пояса (стадия Ds²) [1]. 1 - коллизионная сутура; 2 - оси складок, бергштрихами показано падение осевых поверхностей.

МИНЕРАГЕНИЯ ДОКЕМБРИЯ

Стадии	Условия	Ассоциации минералов	Т _{град}	Р _{кбар}
Деформационная	Сдвигово-надвиговые деформации на регрес- сивнм этапе развития эндогенной системы в разломной межблоковой (шовной) зоне. Дис- кретная локализация тектонитов, Поступление глубинных флюидов.	Роговая обманка, грана- ты, дистен, мусковит, ильменит	550-610	≥8
Динамотермаль- ная флюидная	Дегазация в виде мантийных струй. Восстано- вительные флюиды. Интенсивный высокогли- нозёмистый метасоматоз Гранаты, ставролит, дистен, биотит, муско- вит, хлорит турмалин, графит		от 600-650 до 650-700	4-6
Динамотермаль- ная регрессивная	Активная роль пластических деформаций при падении температуры метасоматических про- цессов	Мусковит, хлорит, кварц, клиноцоизит	500	<5
Фильтрационная	Движение кремнистых флюидов в деформаци- онно-проницаемых зонах вмещающих пород. Частичное или полное метасоматическое заме- щение исходных пород новообразованными ассоциациями минералов. Метасоматические слои и жилы слюдистых кварцитов.	Кварц, мусковит, халь- копирит	200-350	2-4

Метасоматиты залегают в зоне долго живущего глубинного разлома в крутозалегающих (70 -75°) моноклинально сжатых слоях с продольными и диагональными сдвигово-надвиговыми разрывами. Метасоматиты локально приурочены к апикальным частям малых (4 м. в поперечнике) складок запрокинутых к северу и северо-востоку. Комплекс синтектонических высокоглинозёмистых метасоматитов сформирован за счёт полосчатых кристаллосланцев, в свою очередь образованных по пакетам параллельных даек островодужного типа, если судить по палимсестовым структурам. Палимсетовыми структурами зафиксированы зоны закалки и разноразмерные центральные части извилистых и дугообразных полудаек. В преддуговых бассейнах вероятно сформировались флишоидные комплексы, которые в ходе метаморфических изменений амфиболитовой фации сохранили ритмичное строение, характерное для турбидитов. Эти комплексы с севера - северо-востока примыкают к одинаково метаморфизованным плагиогнейсам. Их положение в какой-то мере может маркировать пограничную область островная дуга-желоб [6]. Изучение показало, что метасоматиты полистадийно формировались в зоне разноглубинных сдвигово-надвиговых деформаций на регрессивном этапе развития эндогенной системы, возможно в субдукционной зоне при интенсивной фильтрации глубинных восстановительных флюидов предположительно в позднеребольский этап тектогенеза. Взрывоподобный выброс глубинных флюидов декомпрессионной природы в присдвиговых зонах растяжения прогнозирует Е.Н.Терехов [4]. В условиях амфиболитовой фации динамотермального метаморфизма (T=550-610°C, P=5-8 кбар) формировались высокоглинозёмистые стресс минералы: дистен, ставролит, гранаты, мусковит политипа 2M1. Гранаты представлены альмандином с переменным содержанием пироповой молекулы, от 16,5 до 42,3% в прямой зависимости от степени метасоматических преобразований. Характерен также высокоалюминиевый (алюминий больше 2,5 ф.е.) хлорит. Плагиоклазы представлены андезином (33-36An%). Привнос алюминия мог осуществляться только восстановительными флюидами. Струйное движение флюидов с инертным алюминием, а также с Mg, Fe, Si зафиксировано в текстурных особенностях крупно-гигантокристаллических гранатовых метасоматитов. Активная фильтрация флюидов способствовала интенсификации тектонических движений, в том числе шарьяжеобразованию без изменения напряженного состояния пород, без повышения давления (табл. 1). За счёт флюидного давления оправдано образование запрещённого в условиях амфиболитовой фации высокоалюмиевого хлорита. Специфический состав в синтонических метасоматитах имеют роговые обманки. Они отличаются высоким содержанием ионов Al, скоординированных преимущественно в октаэдрических позициях ленточной структуры амфиболов. Это позволяет с использованием барометра

Б.Лика говорить о повышенных давлениях в условиях нижней ступени амфиболитовой фации [5]. Результаты исследований свидетельствуют, что метасоматические преобразования исходных пород связаны с локальным флюидно-термальным воздействием на эти породы (при участии востановительных флюидов) в связи со сдвигово-надвиговыми деформациями, проявленными в зоне глубинного разлома, возможно маркирующего зону субдукции. В этом случае за современный аналог таких процессов можно принять динамотремальный метаморфизм высоких давлений и биметамоматоз в предостроводужной зоне примитивной Марианской островной дуги, связанные с подъёмом мантийного серпентинитового диапира (рис. 2). Взрывоподобный выброс восстановительных флюидов при подъёме хрупко -пластческого глубинного диапира прогнозирует Е.Н.Терехов [4]. В режиме быстрого высокотемпературного сгорания восстановительных газов, что характерно для архейской истории Земли, формировались дисрерсные частицы графита, присутствующие в синтектонических метасоматитах. Тепло и часть флюидов вероятно были продуцированы магмой предостроводужных толеитов, о чем свидетельствует привнос Мд в синтектонические метасоматиты. В пограничной гранулит-гнейсовой области формировались анортозит-габброноритовые комплексы, становление которых связано с процессами надвига в зоне разлома, разделяющего крупные блоки позднееархейской коры с различной историей развития [2, 3].

Рис.2. Схематический профиль, показывающий строение системы Марианская дуга-желоб (Маескаwa H. et. al., 2001).

Компо-	1	2	2		-		-	0
ненты	1	2	3	4	5	6	/	8
SiO ₂	0.13	0.00	0.02	0.24	0.03	0.11	0.09	не опр.
Al_2O_3	0.14	0.00	0.04	0.13	0.09	0.08	0.07	не опр.
TiO ₂	51.16	51.03	0.05	52.34	53.30	53.02	50.72	54.02
FeÕ	44.03	44.05	92.89	45.05	44.50	44.88	44.80	43.95
MnO	3.44	0.00	0.05	0.02	0.08	0.09	0.06	0.13
MgO	0.24	0.00	0.03	0.73	0.04	0.06	0.05	2.42
Cr_2O_3	0.17	0.00	0.08	0.03	0.03	0.02	0.02	0.20
Сумма	99.31	95.08	93.16	98.53	98.07	98.26	95.81	100.72
Ti	1.00	1.01	0.00	1.00	1.02	1.02	1.01	1.00
Fe ²⁺	0.90	0.97	0.98	0.95	0.95	0.96	0.98	0.90
Fe ³⁺	нет	нет	1.95	0.00	0.00	0.00	0.00	0.00
Mn	0.07	0.00	0.01	0.03	0.00	0.00	0.00	0.00
Mg	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.09
Cr	0.01	0.00	0.01	0.00	0.00	0.00	0.00	0.00
Сумма	1 98	1 98	2.95	1 98	1 97	1 98	1 99	1 99

Таблица 2. Содержание окислов (%мас.) и ионов ильменита [3(O)] и магнетита [4(O)] по данным электроннозондового микроанализа

Примечание. Минералы: 1-2 и 4-8 – ильмениты, 3 – магнетит. Породы: 1 – плагиогнейсы, 2, 4-8 – синтектонические метасоматиты, 3 – троньдъемиты. Суммарное железо представлено в форме FeO. Разделение на Fe²⁺ и Fe³⁺ исходя из теоретического состава.

Таблица 3. Содержание элементов (%мас.), атомные (2 S) и мольные пропорции в сульфиде синтектонического метасоматита по данным электронно-зондового микроанализа

Компоненты	Fe	Cu	S	Сумма	Fe ²⁺	Cu	S	Сумма	CuFeS ₂
Содержание	32.70	29.61	31.92	92.04	0.58	0.46	1.00	2.04	100

Черные рудные компоненты в синтектонических метасоматитах представлены ильменитами, которые наследуют, в основном, состав ильменитов исходных пород, в частности плагиогнейсов (табл. 2). Отличие составов рудных компонентов состоит в том, что ильмениты синтектонических метасоматитов в ряде случаев имеют более высокое содержание TiO2 и низкое MnO (см. табл. 2). Образование Fe-Cu сульфидов в синтектонических метасоматитах связано с заключительной стадией флюидодвижения в шовной зоне. Плотные преимущественно кремнезёмистые флюидные потоки способствовали гидротермально-метасоматическому преобразованию синтектонических метасоматитов (см. табл. 1). Сульфиды представлены халькопиритом (табл. 3). Халькопирит развивается по крупным зёрнам и порфиробластам (до 5 – 8 см) альмандина и образует гнездовидные и прожилковые скопления в основной массе породы. Вкрапленное гнездовидно-прожилковое оруденение и рассеянные зёрна халькопирита характерны также для новообразованных мусковит-кварцевых слоёв и жил (см. табл. 1). Образование этих слоёв и жил связано с внедрением субвулканических тел риолит-дацитов в заключительный этап магматизма в шовной зоне.

Литература

1. Бабарина И.И. Стадии формирования Кукасозёрского сегмента Северо-Карельского пояса Бальтийского щита //Тектоника, геодинамика и процессы магаматизма и метаморфизма. М.:ГЕОС, 1999. С. 54-58.

2. Богатиков О.А., Шарков Е.В., Суханов М.К. Анортозиты докембрия//Магматические горные породы. Основные породы. М.: Наука, 1985. С. 240-277.

3. Богданова С.В., Лобач-Жученко С.Б., Марков М.С., Симон А.К., Богатиков О.А. Магматизм и геодинамика древних структур Земли//Магматические горные породы, Эволюция в истории Земли. М.:Наука, 1987. С. 146-172.

4. *Терехов Е.Н.* Структурные закономерности размещения и геохимические особенности метасоматитов эпохи эксгумации беломорского комплекса//Беломорский подвижный пояс и его аналоги. Матер, научн. конф. Петрозаводск.: ин-т КарНЦ РАН, 2005. С. 300-302.

5. Leake B.E. The relationship between tetrahedral aluminium and the maximum possible octahedral aluminium in natural calciferous and subcalciferous amphiboles //Amer. Miner. 1965 b. Vol. 50, № 7/8. 2. P. 843-851.

6. Maekawa H., Yamamoto K., TeruakiJ., Ueno T., Osada Y. Serpentinite seamounts and hydrated mantle wedge in the Jzu-Bonin and Mariana forearc regions//Bull/Eanhq. Res. Inst. Univ. Tokyo. 2001. V. 76. P. 355-366.