ИССЛЕДОВАНИЕ ФАЗОВЫХ ПРЕВРАЩЕНИЙ ПРИ ФОРМИРОВАНИИ КЕРАМИЧЕСКИХ МАТЕРИАЛОВ С РАЗЛИЧНЫМИ МИНЕРАЛЬНЫМИ НАПОЛНИТЕЛЯМИ

Ильина В.П., Лебедева Г.А., Инина И.С.

ИГ КарНЦ РАН, г. Петрозаводск

На формирование структуры и свойства керамических материалов большое влияние оказывает процесс взаимодействия глинистого компонента и наполнителя при спекании керамики [1]. Поэтому при использовании новых видов наполнителей необходимо исследовать процессы фазовых превращений при разных температурах обжига керамической массы.

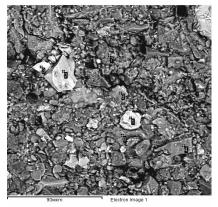
В данной работе для изучения фазовых превращений при обжиге керамической массы в качестве глинистого компонента использована кембрийская глина Чекаловского месторождения, которая применяется на Никольском заводе для изготовления керамической облицовочной плитки. Кембрийская глина характеризуется пелитовой и алевро-пелитовой структурой, слоистой и массивной текстурой. По минеральному составу она относятся к типу полиминеральных, существенно, гидрослюдистых глин. Содержание глинистой фракции в ней (< 0,005 мм - 45,75 – 59,94%), в два раза больше по сравнению с карельскими глинами, что придает кембрийской глине высокую пластичность и улучшает свойства керамики. В качестве наполнителей использованы: шлам, магнитная фракция — отходы обогащения щелочных сиенитов Елеть-озеро; талько-хлоритовый сланец из вскрышных пород Костомукшского месторождения. Такие наполнители ранее не использовались в составах керамической плитки на Никольском заводе.

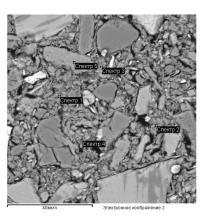
В результате проведенных ранее исследований [2] были разработаны керамические массы, изучены их свойства и показана возможность использования отходов обогащения сиенитов (шлама и магнитной фракции) в качестве наполнителя керамических масс: при производстве плиток для пола (наполнитель - магнитная фракция) и облицовочных плиток (наполнитель - шлам). Применение таких отходов возможно после получения концентратов из щелочных сиенитов для производства керамо-гранитной плитки [3]. Использование тальксодержащих сланецев в качестве наполнителя в керамической массе способствует повышению прочности и снижению усадки плиток по сравнению с традиционным составом Никольского завода, при минимальном количестве компонентов в шихте [4].

В данной работе проведены сравнительные исследования фазовых превращений и свойств в ранее разработанных керамических массах в зависимости от минерального состава наполнителя и температуры термообработки.

Исследованы фазовые превращения керамики, содержащей 30% наполнителя и 70% глины Чекаловского месторождения. Ранее было установлено, что такое соотношение компонентов является оптимальным [2 ,4]. Химические составы глины и наполнителей, приведены в таблице 1.

Таблица 1 Химический состав глины и наполнителей


Оксиды, масс %	Глина Чекаловская	Шлам, 0,1мм	Магнитная фракция	Талько-хлоритовый сланец
SiO2	62,70	54,03	46,15	54,00
TiO2	0,85	0,8	2,60	0,24
Al2O3	15,45	18,63	12,33	4,32
Fe2O3	3,24	2,67	7,00	0,45
FeO	2,70	4,24	12,12	6,25
MnO	0,03	0,2	0,63	0,041
MgO	2,50	1,38	2,50	28,42
CaO	0,97	3,37	6,71	0,36
Na2O	0,21	6,50	4,12	0,02
K2O	5,19	5,62	4,34	=
H2O	1,11	0,10	0,27	0,05
П.п.п.	4,46	1,67	1,00	6,16
P2O5	-	0,53	0,12	=


В результате изучения минерального состава использованных сырьевых материалов, по данным рентгенофазового анализа, установлено, что шлам и магнитная фракция состоят в основном из полевых шпатов, железистых силикатов (биотита, амфиболов), магнетита. При этом магнитная фракция содержит значительно больше магнетита, гематита, железистых силикатов, чем шлам. Это отражается на химическом составе сырья: большей железистости и пониженной кислотности магнитной фракции. Проба тальксодержащего сланца состоит из амфибола, карбоната, талька, биотита, хлорита, магнетита. Глина содержит в основном гидрослюды, кварц, полевые шпаты, хлорит.

Структуру и фазовый состав керамики определяли с помощью электронного микроскопа VEGA 2 LSH с приставкой для микроанализа при увеличении, главным образом, в пределах 150–1200 раз, реже до 2000–4000 раз.

Для определения фазового состава применяли также рентгенофазовый анализ (РФА). Съемка велась на автоматическом дифрактометре ДРОН – 3M, на медном излучении с никелевым фильтром, в области углов 20 2-61°. Обработка экспериментальных данных проводилась пакетом прикладных программ (XRays), разработанных в Институте стали и сплавов в г. Москве. Из пакета использовались две программы: «Outset» - для начальной обработки рентгенограмм и определения параметров аморфной фазы и «Phan» - для определения фазового состава.

Согласно данным электронной микроскопии керамика со шламом, полученная при 950°С, имеет неравномерно-зернистую структуру (рис. 1). Основную массу составляют мелкие зерна размером порядка нескольких микрон. Наиболее крупные зерна размером от 10 до 50 мкм представлены в основном полевыми шпатами, биотитом, кварцем. Более мелкие зерна с помощью микроанализа не идентифицируются. При 1100°С на электронных снимках присутствуют те же кристаллические фазы, что и при 950°С, но, кроме того, между зернами обнаруживаются участки аморфной фазы (рис. 1). Аморфная фаза имеет алюмосиликатный состав, неоднородна по содержанию оксидов в различных участках образца. При этом с повышением содержания железа снижается ее кислотность (табл. 2). В аморфное состояние переходят только тонкодисперсные фракции глины и шлама, а более крупные зерна остаются без изменения.

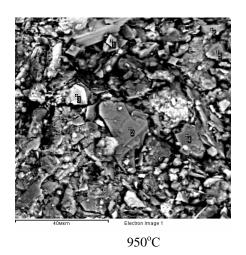
950°C 1100°C

Рис. 1. Электронное изображение структуры керамики со шламом: при 950 °C спектры 1-3 – Fe –пироксены, 4 – кварц, 5,7,8 - полевой шпат, 6 – биотит; при 1100 °C спектры 1,3,4 – аморфная фаза, 2 – кварц, 5 – K- полевой шпат

Химический состав аморфной фазы

	1 1 1						
№ п/п	SiO_2	TiO ₂	Al_2O_3	MgO	Na ₂ O	K ₂ O	Fe ₂ O ₃
1	61,38	-	23,22	3,27	0,91	5,33	5,60
2	62,90	-	21,88	3,08	1,15	5,43	5,55
3	57,56	-	20,68	3,67	0,98	6,36	10,75
4	53.85	1.18	23.06	6.12	1.11	4.18	10.51

По данным рентгенофазового анализа при 950° С идентифицируются полевые шпаты, амфибол, кварц, слюды. При 1100° С линии амфибола отсутствуют, а интенсивность максимумов слюд и полевых шпатов снижается, что свидетельствует о частичном переходе их в аморфное состояние. Линии хлорита, входившего в исходный состав глины, на обеих рентгенограммах отсутствуют, так как в интервале температур до 950° С происходит его дегидратация и разрушение решетки (это подтверждается данными ДТА) [2].


За счет дегидратации хлорита и гидрослюд, входящих в состав глин, происходит спекание керамической массы при 950° C. При 1100° C, очевидно, происходит частичное плавление эвтектической смеси, состоящей из продуктов распада глинистых минералов и железистых силикатов, входящих в шлам.

Также как и керамика со шламом, образцы с магнитной фракцией, имеют неравномерно-зернистую структуру. По данным микроанализа при 950°C крупные включения (размером от 20 – 120 мкм) представлены пироксеном, амфиболом, биотитом, магнетитом, полевым шпатом. При 1100°C между зернами этих минералов обнаруживается аморфная фаза (рис. 2). Она имеет неоднородный алюмосиликатный состав (табл. 3).

Рентгенофазовый анализ керамики, полученной при 900° C, указывает на присутствие слюд, амфибола, кварца, полевого шпата. При 1100° C резко снижается интенсивность линий слюд, отсутствуют линии амфиболов.

Рентгенофазовый анализ по сравнению с электронной микроскопией фиксирует меньшее число кристаллических фаз, так как РФА отражает только основные фазы, количество которых преобладает в данном материале. Сочетание этих методов позволило более полно охарактеризовать минеральный состав исследованной керамики.

Таблица 2

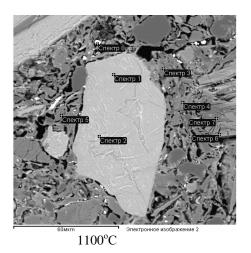


Рис. 2. Электронное изображение структуры керамики с магнитной фракцией: при 950° C спектр 1- кальцит, 2,5- пироксен, 3,6- амфибол, 4- полевой шпат; при 1100° C спектры 1,2- амфиболы, 3,4- аморфная фаза, 5- К- полевой шпат, 6,7- пироксены, 8- магнетит

Химические составы аморфной фазы

Таблица 3

№ п/п	SiO ₂	TiO ₂	Al_2O_3	Fe_2O_3	MgO	CaO	Na ₂ O	K ₂ O
1	58,42	-	24,07	4,50	4,17	1,88	1,65	5,31
2	58,34	0,56	21,38	5,89	4,62	-	1,46	7,76
3	54,09	4,17	20,98	6,55	5,42	1,88	1,56	5,35
4	61,39	-	17,41	8,40	6,04	0,95	1,20	4,67
5	48,91	0,50	20,94	12,59	10,01	1,00	0,99	4,60
6	51.21	0.90	21.80	13,44	4.78	0.83	1.99	5.06

Снижение интенсивности пиков при 1100^{0} С свидетельствует о частичном плавлении железистых минералов, образующих легкоплавкие эвтектики с другими компонентами керамической массы. Путем соответствующих расчетов рентгенограмм построена кривая, показывающая наличие аморфной фазы. На рисунке 3 (кривая 1) представлена дифрактограмма стеклообразной составляющей керамики при 1100° С.

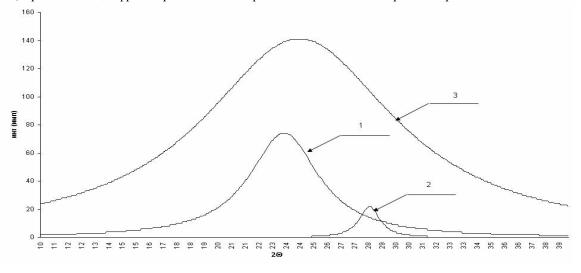


Рис. 3. Дифрактограммы аморфной фазы в керамике: 1 – плитка с магнитной фракцией при 1100 °C, 2 − плитка с талько-хлоритовым сланцем при 900°C, 3 – плитка со сланцем при 1100°C

Согласно данным электронной микроскопии и микроанализа в керамике с талько-хлоритовым сланцем, полученной при 950°C, крупные зерна размером 20–70 мкм представлены тальком, хлоритом (рис. 4-1), а также биотитом, амфиболом, полевым шпатом, кварцем. При 1100°C между крупными зернами отмечаются участки аморфной фазы (рис. 4-2,3). Участки аморфной фазы имеют неоднородный состав (табл. 4).

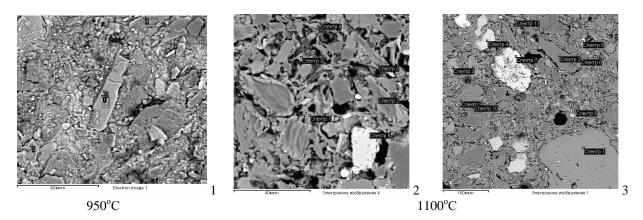


Рис. 4. Электронное изображение структуры керамики с талько-хлоритовым сланцем. При 950° C: (1) — спектры: 1-3 хлорит; 4 тальк. При 1100° C: (2) — спектры: 1-3 полевой шпат; 4 -6 аморфная фаза; (3) - 1,3 калиевый полевой шпат; 2 плагиоклаз; 4 апатит; 5-6 кварц; 7, магнетит; 8 клиноэнстатит; 9 ортит; 11 хлорит

Химические составы аморфной фазы

5,21

16,92

№ п/п

2

3

 SiO_2

65,36

70,11

67,51

60,31

1,61

TiO₂ Al_2O_3 Fe_2O_3 CaO MgO Na₂O K_2O 0,44 16,89 8,06 2,89 1,91 3,84 0,55 0,55 13,04 7,46 3,75 2,85 0,77 1,46 0,61 15,97 5,04 5,19 1,37 3,41

11,41

1,30

3,24

По данным РФА керамика при 950°C содержит тальк, слюды, амфиболы, полевые шпаты, кварц. Отсутствуют линии хлорита, входившего в состав глины и талькового сланца. При 1100°C преобладающими минералами являются кварц и клиноэнстатит, линии которых отмечаются на рентгенограмме. Линии остальных минералов (талька, амфибола, полевых шпатов) отсутствуют. На основании этих данных процесс формирования керамики из массы, содержащей глину и талько-хлоритовый сланец, представляется следующим образом: при 900°C происходит дегидратация гидрослюд и распад решетки хлорита, участвующего в образовании аморфной фазы, при 1100°C происходит распад талька с образованием клиноэнстатита. Этот процесс затрагивает, главным образом, мелкие фракции шихты. На рисунке 3 (кривые 2, 3) представлена дифрактограмма гало, подтверждающая наличие аморфной фазы при 900 и 1100°C.

Проведено сравнение физико-механических свойств керамических плиток, содержащих отходы обогащения щелочных сиенитов и талько-хлоритовый сланец (табл. 5).

Таблица 5 Свойства керамики с различными наполнителями

	Наполнители					
Свойства	Магнитная фракция	Шлам	Талько-хлоритовый сланец			
Усадка, % при, °С:						
100	3,07	6,30	4,78			
950	5,00	6,40	4,80			
1100	11,80	9,87	9,50			
Водопоглощение, %, при °C:						
950	11,95	16,03	14,10			
1100	2,35	13,67	5,36			
Прочность при изгибе, МПа,						
при, °С:						
1050	29,05	23,63	37,15			
1100	31,10	26,20	53,64			
Объемный вес, г/см3, °С,						
при:						
950	2,45	2,65	2,58			
1050	2,43	2,70	2,57			
1100	2,49	2,67	2,49			

Таблица 4

У керамики со шламом при 950 и 1100°С наблюдается более высокое водопоглощение по сравнению с другими наполнителями. Это связано с ухудшением спекаемости керамики в результате большого содержания отощающих полевошпатовых компонентов в шламе и незначительного количества аморфной фазы. Из-за низкого содержания стеклофазы уменьшается механическая прочность керамики.

Использование в качестве наполнителя магнитной фракции, содержащей большее по сравнению со шламом количество железистых силикатов и магнетита, способствует повышению количества стеклофазы при 1100°С, улучшению спекаемости массы, о чем свидетельствует повышение усадки при этой температуре. Это приводит к увеличению механической прочности и снижению водопоглощения.

Наполнитель с высоким содержанием талька и хлорита способствует снижению усадки и водопоглощения по сравнению со шламом, а также значительному повышению механической прочности керамической плитки, как со шламом, так и с магнитной фракцией. Очевидно, это является следствием положительного влияния на процессы спекания и стеклообразования магнезиальных минералов: клиноэнстатита и продуктов распада хлорита.

Выводы

- 1. Исследования фазовых превращений при обжиге керамики при 950 и 1100°C с различными наполнителями показывают, что в процессе твердофазного спекания и стеклообразования участвуют тонкие фракции глины и наполнителей. Более крупные зерна минералов остаются практически мало измененными.
- 2. Наполнители, содержащие магнезиально-железистые силикаты (амфибол, пироксен, хлорит, биотит, тальк) способствуют более интенсивному процессу спекания за счет эвтектического плавления тонкодисперсных зерен минералов глины и наполнителя с образованием аморфной фазы, что позволяет улучшить механическую прочность и водопоглощение керамики по сравнению с существенно полевошпатовым сырьем (шламом)

ЛИТЕРАТУРА

- 1. Химическая технология керамики // Под ред. И.Я. Гузмана. М.: ООО РИФ «Стройматериалы», 2003. С. 134-135.
- 2. *Ильина В.П., Лебедева Г.А., Озерова Г.П., Инина И.С.* Влияние талько-хлоритовых сланцев на свойства керамической плитки // Стекло и керамика № 11. 2005. С.18-20.
- 3. Киселев В.А, Ноздря В.И. и др. Опыт обогащения нефелинсодержащих сиенитов в качестве сырья для изготовления керамо-гранитной плитки на сепараторах с постоянными магнитами // Проблемы рационального использования природного и техногенного сырья Баренцева региона в технологии строительных и технических материалов: матер. 2 Междун. Науч.-практич. Конф. Петрозаводск, 2005. С. 100-102.
- 4. Лебедева Г.А, Ильина В.П., Скамницкая Л.С. Технологические исследования щелочных сиенитов и отходов обогащения с целью комплексного использования // Значение исследований технологической минералогии в решении задач комплексного освоения минерального сырья: Мат. Второго Российского семинара по технологической минералогии. Петрозаводск, 2007. С. 151-156.

ИССЛЕДОВАНИЕ ХИМИЧЕСКОЙ НЕОДНОРОДНОСТИ ТИТАНСОДЕРЖАЩИХ СТЕКОЛ МЕТОДАМИ ЭЛЕКТРОННОЙ МИКРОСКОПИИ И МИКРОАНАЛИЗА

Лебедева Г.А.

ИГ КарНЦ РАН, г. Петрозаводск

В Институте геологии КарНЦ РАН разработаны составы и режимы получения декоративных стекол, содержащих (мас.%): SiO_2 35–55, TiO_2 10–35, Al_2O_3 2–20, Fe_2O_3 +FeO 0,2–4, MgO 0,2–12, CaO 5–25, Na₂O 2–10, K₂O 0,3–4 [1]. В качестве сырья использованы кислые и щелочные горные породы, промышленные отходы, продукты обогащения полезных ископаемых.

Лабораторные исследования проведены при плавлении шихт в силитовых печах в тиглях объемом 250 – 500 мл, в окислительной атмосфере, изучено около 100 составов.

В полупромышленных условиях шихты плавили в печах, работающих на жидком моторном топливе, в кварцевых тиглях объемом 3-4 л.

Особенностью этих расплавов является способность к глушению при охлаждении ниже температуры ликвидуса. При отливке расплавов на металлическую плиту и последующем отжиге формируются непрозрачные либо полупрозрачные материалы с огненно-полированной поверхностью и узорчатым рисунком в синих, голубых, бежевых, коричневых, сиреневых и других тонах. Материалы рентгеноаморфны, не содержат кристаллических фаз, по физико-механическим свойствам близки к природному камню. Интересная цветовая гамма и комплекс свойств позволяют использовать разработанные глушенные стекла для изготовления сувениров, ювелирно-поделочных изделий, инкрустаций, плиток для отделки каминов, интерьеров.

Для выявления природы узорчатой окраски стекол проведено исследование их структуры с помощью электронного микроскопа VEGA II LSH с приставкой для микроанализа, при увеличении 80–210 раз.