А. И. Голубев, А. Е. Ромашкин, Д. В. Рычанчик

СВЯЗЬ УГЛЕРОДОНАКОПЛЕНИЯ С ОСНОВНЫМ ВУЛКАНИЗМОМ В ПАЛЕОПРОТЕРОЗОЕ КАРЕЛИИ (ЯТУЛИЙСКО-ЛЮДИКОВИЙСКИЙ ПЕРЕХОД)

Ятулийско-людиковийский переход – знаковое событие в геологическом развитии земной коры, ярко проявленное на территории восточной части Фенноскандинавского щита (ФСЩ). Сопряженная аномалия изотопно тяжелого карбонатного углерода Ломагунди-ятулий носит глобальный характер и отмечается как на территории восточной части ФСЩ, так и в ряде геологических структур других континентов (карбонатная провинция Ломагунди в Родезии, супергруппа Трансвааль Ю. Африки, строматолитовые карбонаты супергруппы Минас и кратона Вайоминг Ю. и С. Америки, западноавстралийский бассейн) (Melezhik et al., 2007). Из ряда событий архейско-протерозойского перехода, произошедших во временных рамках от 2500 млн лет до 2000 млн лет (Melezhik et al., 2010), в данной работе рассматривается трансформация глобального цикла углерода (2300-1920 млн лет), изменения в режимах магматической активности и вероятное окислительное событие в верхней мантии (2100 млн лет), а также возможная взаимосвязь этих явлений. Несколько событий составляют сущность перехода. Одно из наиболее ярких - смена цикла углерода с окислительного на накопительно-восстановительный, проявившаяся в смене биогенного карбонатообразования впечатляющим накоплением свободного углерода (Сорг.) видимо, первым столь масштабным в истории Земли. Не рассматривая изначальный (первичный) источник углерода, отметитим биогенный механизм перевода его в осадок (захороненную форму), т. е. участие его в биологическом цикле.

Глобальная положительная аномалия изотопно-тяжелого карбонатного углерода Ломагунди-ятулий (до +18‰ $\delta^{13}C_{\text{карб.}}$) сменяется в людиковии не менее значимым изотопным облегчением углерода в людиковийских осадках (до –17‰ $\delta^{13}C_{\text{карб.}}$ и –41‰ $\delta^{13}C_{\text{орг.}}$ в миграционных формах). Контрастность этих двух событий – изменение глобального цикла углерода и изменение режима его изотопного фракционирования – и составляет основное содержание ятулийско-людиковийского перехода. Очередность геологических событий, задаваемая в первую очередь тектоническим развитием структур земной коры, отражается в структурно-вещественных комплексах ятулийских и людиковийских пород. Изменения коснулись не только режимов осадконакопления, циклов углерода и развития биологической активности, но и должны были найти свое выражение в изменении интенсивности и характера магматической активности, в первую очередь – состава и объемов фиксируемых продуктов вулканизма.

Раннепротерозойский этап развития (2,5–1,8 млрд лет) характеризовался условиями рифтогенного геотектонического режима, мощными проявлениями базитового и ультрабазитового магматизма, терригенным, хемогенно-терригенным, карбонатным седиментогенезом, массовым развитием углеродсодержащих пород.

В палеопротерозое Фенноскандинавского щита циклы углерода наиболее ярко проявлены в образованиях ятулийского, людиковийского и в меньшей мере калевийского надгоризонтов карельской эонотемы. Заметно различается и степень напряженности магматизма, проявленного на соответствующих уровнях. Углеродные циклы за этот период претерпевают трансформацию от карбонатного (биогенноокисленного) через биогенно-восстановительный к пассивно-терригенному со слабыми проявлениями карбонатообразования.

Характеристика разрезов*

Образования ятулийского надгоризонта (2,3–2,1 млрд лет) в составе янгозерской, медвежьегорской и туломозерской свит представлены снизу вверх зрелыми терригенными осадками, переходящими в терригенно-хемогенную, существенно доломитовую толщу с широким участием органогенных (строматолиты, онколиты) карбонатов. Осадконакопление в ятулии происходило в условиях мелководных морских лагун, пересыхающих водоемов (себх). Осаждающийся здесь карбонат структурировался строматолитами. Строматолитовые постройки – свидетельство широкого влияния биогенных процессов как на формирование осадка, так и на изменение параметров среды (СО₂ в мелководном бассейне, pH, Eh).

^{*} Характеристика разрезов приводится с учетом данных, полученных скважинами проекта FAR-DEEP (Ромашкин, Рычанчик, 2009).

Свидетельством былых эвапоритовых обстановок являются, кроме обычных в ятулийских толщах псевдоморфоз доломита по соли и гипсу и проявлений гипсовой тектоники, отложения ангидрита и галита, обнаруженные в результате глубокого бурения в Онежской структуре.

Выделяется три фазы ятулийского вулканизма (Голубев, Светов, 1983), представленные базальтами и трахибазальтами, которые стратиграфически локализованы последовательно в терригенных осадках сегозерского горизонта, на границе сегозерского и онежского горизонтов, среди карбонатов онежского горизонта.

В людиковийское время (2,1-1,92 млрд лет) происходит резкая смена геотектонических условий, режима осадконакопления и нарастание магматической активности. Углубление бассейна седиментации, смена окислительных обстановок восстановительными, мощный всплеск активности биоты привели к одному из первых в истории Земли грандиозному накоплению органического углерода. Для базальтового магматизма заонежского вулканического комплекса характерен весьма однородный вещественный состав разнофациальных изверженных пород, а также близость к ним составов сопутствующих габбродолеритов (Голубев, Светов, 1983). Для завершающей людиковий суйсарской вспышки основного-ультраосновного магматизма выделено пять последовательных фаз активности (Куликов и др., 1999).

В переходной зоне от ятулийских к людиковийским отложениям, представленной образованиями нижней заонежской подсвиты, отразился переход от карбонатного к терригенному режиму осадконакопления. По мере углубления палео-Онежского бассейна все больше в разрезе начинают преобладать алевритистые осадки, окислительный режим сменяется восстановительным. Признаками этого процесса в переходной зоне (нижней заонежской подсвите) являются широкое развитие здесь процесса оглеения (восстановления Fe⁺³) и густая вкрапленность мелкого пирита – следы биогенной сульфат-редукции в глинисто-карбонатных породах (кривозеритах). Соответственно происходит и трансформация углеродного цикла - от полного окисления органики к ее все более нарастающему захоронению в виде органического углерода.

Ранее отмечалось (Сацук и др., 1989), что непосредственное залегание людиковийских пород на ятулийские может носить различный характер. В ряде мест людиковийские осадки с небольшим несогласием и размывом ложатся на ятулийские карбонаты, в других местах (Райгуба, Пялозеро, скв. 11А, и др.) (Сацук и др., 1989; Ромашкин, Рычанчик, 2009) наблюдается согласное залегание и постепенный переход. Отмечается, что граница надгоризонтов в различных пунктах может иметь различное геологическое выражение, обусловленное выпадением некоторых частей разреза, а также является диахронной, скользящей во времени (Сацук и др., 1989). Однако в целом представляется, что людиковийские образования согласно и без большого перерыва сменяют ятулийские. Это, в свою очередь, указывает на отсутствие резких и скачкообразных изменений тектонического и магматического режимов, т. е. сама фаза перехода была плавной и растянутой во времени, что позволяет сосредоточиться при изучении на общей направленности изменений.

Ятулийский этап начался со слабого погружения формирующихся впадин, где с резким несогласием на сариолийские породы ложатся грубые терригенные осадки нижнего ятулия. Далее осадконакопление переходит в режим карбонатоосаждения, с участием биогенных агентов (строматолиты, онколиты), отмечаются проявления магматической активности. Осадочный комплекс ятулия образовался в относительно спокойной тектонической обстановке. Он имеет значительное площадное распространение и в целом выглядит как мелководный морской бассейн, осадки которого характеризуются как фациальной изменчивостью, так и общей стабильностью условий для всего ятулийского бассейна. В модель пассивного мелководного бассейна осадконакопления хорошо укладываются некоторые особенности его строения - обилие биогенных карбонатов, масса обломочных карбонатов (перемыв мелеющих участков), пестроцветная пачка преимущественно алевролитов углубленные участки; брекчии обрушения, проявления гипсовой тектоники, псевдоморфозы по соли и гипсу, ангидрито-галитовые отложения в составе ятулийских пород. Проявления гипса и ангидрита в ятулийский образованиях отмечены в восточном борту Онежской структуры (Трофимов, Логинов, 2005).

В результате буровых работ в рамках проекта FAR-DEEP вскрыт переход туломозерской свиты в заонежскую. Породы нижней части заонежской свиты представлены серыми слоистыми алевролитами и мелкозернистыми песчаниками, в некоторых интервалах в цементе присутствует карбонат. Явных следов размыва между породами заонежской свиты и строматолитовыми доломитами туломозерской свиты не отмечено, но непосредственно на контакте присутствует прослой мощностью 1,5-2 см светлого аргиллитового вещества (возможно, корочка выветривания). В алевролитах переходной зоны хорошо проявлены два процесса: окисление железа по трещинам кислородными водами ятулийских осадков и послойное оглеение - восстановление железа просачивающимися сверху водами углеродистых осадков заонежской свиты.

В Онежской структуре скважины, вскрывшие доломитовый комплекс туломозерской свиты, показали, что значительное количество карбонатных пород являются терригенными – песчаниками, гравелитами. Обломочные доломиты чередуются с микритовыми, органогенными (строматолитовыми, онколитовыми), мощными прослоями карбонатных брекчий обрушения. Широко развиты псевдоморфозы по гипсу и соли в глинистых прослоях, проявления гипсовой тектоники. В средней части вскрытого разреза присутствует мощная пестроцветная толща, состоящая из переслаивания доломитов, алевролитов и аргиллитов бурого, красного, черного и серого цветов, со следами многочисленных пластичных деформаций. Встреченное в этой пачке тело пикробазальтового состава имеет видимую мощность около 30–40 м. В одной из скважин оно начинается с относительно малоизмененной породы, вниз по разрезу постепенно нарастают изменения, выражающиеся в отальковании и хлоритизации, и к нижнему контакту порода превращается в бесструктурную хлорит-тальковую массу. В другой скважине породы тела представляют собой мелкозернистую зелено-желто-серую массу с бурыми пятнами (реликтами пироксена?), состоящую из талька с примесью хлорита.

С карбонатными породами ятулия связана глобальная аномалия изотопно-тяжелого карбонатного углерода Ломагунди-ятулий (δ^{13} С достигает +18‰, в среднем +8 ... +10‰), которая хорошо проявлена и на территории Фенноскандинавского щита (рис. 1, 2, табл. 1). Она предполагает наличие источника тяжелого углерода.

Рис. 1. Изменение изотопного состава углерода и кислорода карбонатов в разрезе нижнепротерозойских отложений Онежской структуры:

столбцы в колонке: 1 – надгоризонт, 2 – свита, 3 – подсвита

Осадочные породы заонежской свиты (людиковийский надгоризонт), вскрытые скважинами, слагаются в основном алевролитами, с прослоями мелкозернистых песчаников, туффитов и граувакк. Это ритмично слоистые терригенные осадки, представляющие собой флишоидную толщу, местами с турбидитными потоками. В верхней части вскрытого разреза встречаются карбонатные прослои и линзы, конкреции. В карбонатных частях разреза могут встречаться кремнистые конкреции, прослои фтанитов (лидитов). Эти прослои местами имеют секущие контакты с карбонатами, что свидетельствует о существовавшей фазе кремнистого геля.

Грандиозное накопление свободного углерода в отложениях верхней заонежской подсвиты связыва-

ется со всплеском жизни и прогрессирующим прогибанием бассейна, при которых все большая часть отмирающей биоты захороняется, выводя из биологического цикла огромную массу углерода. Этот процесс приводит к нарастанию восстановительного потенциала в слоях осадка и появлению стагнационных вод с режимом сероводородного заражения во впадинах дна бассейна. Биологическая сульфат-редукция в этих зонах привела к мощному накоплению сульфидов. Одновременно начинает функционировать резервуарная модель биогенного изотопного фракционирования углерода, приведшая к облегчению органического углерода в осадке до δ^{13} C –25 … –40‰. При этом отмечается значительно облегченный изотопный состав карбонатов по сравнению с ятулий-

Рис. 2. Схема изолиний δ^{13} С (отн. PDB) ятулийских карбонатных пород восточной части Фенноскандинавского щита:

1 – пункт опробования и среднее значение изотопного отношения; 2 – изолинии средних значений изотопного отношения углерода. Справа шкала значений $\delta^{13}C$

скими (как δ^{13} С, так и δ^{18} О) (рис. 1, табл. 2). Синхронный базальтовый вулканизм, гидротермальная деятельность и пепловые эксплозии обеспечивали привнос в бассейн необходимых биоте элементов, а также являлись источником кремнезема для формирования пород типа углеродсодержащих лидитов (фтанитов) и тел высокоуглеродистых пород (SiO₂ 50–70% вес., С_{орг}. 25–40% вес.).

Нарастание интенсивности магматизма в людиковийское время привело к внедрению базитовых силлов в толщу углеродсодержащих осадков, превратив разрез заонежской свиты в трапповый (силло-осадочный) комплекс. Внедрение силлов вызвало прогрев и деформации осадочной толщи, спровоцировало развитие процессов преобразования органического вещества и его вторичного обогащения. В результате, помимо высококремнистых (и высокоуглеродистых – до 40% вес. Сорг.) локализованных тел, сформировались прослои пород, насыщенных миграционными углеводородами, содержание Сорг. в которых достигает 70% вес. Мигрирующие углеводороды сформировали в породах многочисленные жилки и прожилки антраксолитового состава, содержание $C_{\text{орг.}}$ в которых составляет порядка 98% вес.

Внедрение магмы в пластичные пелитовые прослои, обогащенные органическим веществом, привело к образованию своеобразных пеперитовых структур, отмечаемых на различных стратиграфических уровнях заонежской свиты. Эти образования на контактах базитовых тел представляют собой сочетание своеобразной «шунгит-базитовой брекчии» и системы прожилков высокоуглеродистого состава в эндоконтактах базитов.

Людиковийское время на территории Онежского прогиба завершилось всплеском суйсарского базит-гипербазитового вулканоплутонизма, образовавшим мощные толщи лавовых потоков, покровов и субвулканических тел от пикрит-базальтового до плагиобазальтового составов и подавившим терригенное осадконакопление. По-видимому, в это же время завершилась и активная биологическая деятельность в бассейне.

В калевийское время (1,92–1,8 млрд лет) территория перешла в пассивный тектонический режим, где в условиях континентального склона формируются толщи ритмичных турбидитных осадков с участием привносимой пирокластики и размывающихся людиковийских образований. При этом углеводороды из людиковийских образований при поступлении в бассейн фиксируются в осадке в виде своеобразных антраксолитовых «лепешек».

Рассмотрим некоторые особенности химизма магматических (в основном вулканических) пород ятулийского, заонежского и суйсарского вулканических комплексов (табл. 3). На рис. 3 представлено положение точек составов для ятулийских, заонежских и суйсарских вулканитов в координатах TAS и (Fe₂O₃+FeO) – MgO. Для ятулийских вулканитов на диаграммах приведены средние составы по трем фазам (Голубев, Светов, 1983). Согласно диаграмме TAS (Петрографический кодекс России, 2009), вулканиты верхней части суйсарского разреза попадают в область нормальнощелочных пикробазальтов, нормальных базальтов и трахибазальтов; нижнесуйсарские – нормальных базальтов (рис. 3, А). Заонежские базальты укладываются в поле базальтов нормального состава, ятулийские базальты – трахибазальтов и базальтов (нижнеятулийская фаза) (рис. 3, Б). Таким образом, средне- и нижнеятулийские вулканиты близки к верхнесуйсарским подщелоченным базальтам, а поле нижнесуйсарских вулканитов совпадает с полем заонежских базальтов.

В координатах (Fe₂O₃+FeO) – MgO (рис. 3, В) ятулийские вулканиты укладываются в более широкое поле заонежских и нижнеятулийских базальтов, а также резко обособляется поле более магнезиальных верхнесуйсарских вулканитов. Таким образом, отчетливо проявлена разнонаправленность процессов развития магматизма от ятулия к заонежской свите и от заонежской к суйсарской.

До сих пор достоверно не установлено возрастное положение и количество фаз мощной пачки основных силлов, имеющих близкий состав и располагающихся в толще заонежских и суйсарских образований (Куликов и др., 1999). Также вскрытое скважинами проекта FAR-DEEP среди карбонатов тело пикробазальтового состава, возможно, не является ятулийским (табл. 3). Несмотря на местное маркирующее значение этого тела, доказательства его природы крайне спорны ввиду сильных вторичных изменений.

Таблица 1

Изотопная характеристика верхнеятулийских карбонатов и их аналогов восточной части Фенноскандинавского щита (Хейсканен и др., 2002)

)		δ^{13} C PDB. ‰		δ^{18} O SMOW, ‰		П		
№ п/п	n	X _c	Yc	Xo	Yo	Пункт опробования	Свита, формация	
1	59	9,66	5,66	21,44	4,86	Пялозеро	Туломозерская	
2	1	8,12		17,23		Muhos		
3	6	5,11	4,82	19,15	4,73	W. Kainuu	Horkankallio, Eskosenvaara	
4	4	7,9	0,11	17,41	2,14	E. Kainuu	Hyrynsalmi	
5	9	11,76	2,39	18,8	6,11	Misi		
6	21	7,23	7,46	20,18	5,79	Perapohja	Krivalo, Kvartsimaa, Rantamaa	
7	5	6,19	3,77	16,63	4,51	Juuka	Viistola	
8	10	7,84	6,17	19,04	3,38	Kiihtelysvaara	Viistola	
9	5	5,89	0,35	16,52	5	Сортавала	Нижнепиткярантская	
10	13	4,55	3,67	17,94	4,78	Kuopio	Petonen	
11	3	9,9	7,88	19,7	3	Salla	Aatsinginhauta, Matovaara, Kelloselka	
12	3	9,5	5,08	14,22	0,45	S. Kuusamo	Saricite schist, Siltstone	
13	7	10,66	5,35	19,45	2,78	N. Kuusamo	Dolomite	
14	6	6,8	4,81	13,06	4,51	Sodankyla	Middle Lapponian	
15	5	10,03	7,41	16,55	4,82	Pelkosenniemi	Middle Lapponian	
16	7	9,23	8,42	16,59	3,21	Kittila	Upper Lapponian	
17	4	8,88	0,81	24,2	6,32	Олений остров	Туломозерская	
18	4	13,43	4,86	17,57	8,55	Медвежьегорск	Туломозерская	
19	2	10,06		20,06		Суоярви	Туломозерская	
20	6	8,85	4,22	18,49	2,94	Туломозеро	Туломозерская	
21	9	4,04	2,11	16,59	5,71	Усть-Поной	2-я, 3-я карбонатная	
22	11	3,19	7,1	13,17	3,74	Имандра-Варзуга	Умбинская	
23	120	7,25	1,34	17,03	6,98	Печенга	Куэтсярвинская	
24	10	6,41	2,21	16,19	15,52	Pasvik	Koievann	
25	3	2,24	0,96	12,98	0,09	Polmak	Vuopp'ejavri	
26	2	2,7		16,17		Karasjok	Gallebai'ke	
27	26	7,18	7,76	16,16	6,54	Куолаярви	Соваярвинская	
28	11	3,5	1,23	21,42	0,92	Соваярви	Соваярвинская	
29	72	9,81	5,33	22,3	2,41	Заонежье	Туломозерская	
30	6	7,82	14,67	16,77	23,87	Лехта	Верхний ятулий	
31	5	12,57	0,65	22	5,38	Сегозеро	Верхний ятулий	
32	1	8,37		21,31		Янисъярви		
33	4	14,05	7,56	23,3	5,62	Чирка-Кемь	Туломозерская	

П р и м е ч а н и е . Порядковый номер соответствует номерам точек на рис. 2; n – количество проб; X – среднее значение; Y – стандартное отклонение.

Таблица 2

Изотопные характеристики карбонатов по с	кважинам проекта FAR-DEEP (средние значения)
--	--

Canyuratuna	Свита, серия	Скважина	n	$\delta^{13}C$	Стандартное от-	$\delta^{18}O$	Стандартное
Структура				PDB, ‰	клонение	SMOW, ‰	отклонение
Имандра-Варзугская	Полисаркская	3A	15	-0,52	0,82	9,57	0,95
Печенгская	Куэтсярвинская	5A	8	7,53	0,45	17,52	1,05
Онежская	Туломозерская	10B	27	10,49	1,78	21,33	1,10
Онежская	Туломозерская	10A	50	8,89	0,86	19,66	1,16
Онежская	Туломозерская	11A	44	8,95	1,42	18,62	0,73
Печенгская	Коласйокская	8B	16	0,06	1,83	17,68	2,42
Онежская	Заонежская	12B	14	-5,14	5,72	14,98	1,75
Онежская	Заонежская	12A	4	-9,65	4,25	17,46	3,03
Онежская	Заонежская	13A	9	-9,10	4,06	16,65	2,60

П р и м е ч а н и е . п – количество анализов. Анализы выполнены А. Фалликом в Центре экологических исследований Шотландских университетов, г. Глазго.

В переходной зоне от терригенной к существенно карбонатной части разреза и нижних частях доломитовой толщи ятулийского надгоризонта выделяются три фазы ятулийского вулканизма (Голубев, Светов, 1983), различающиеся геохимическими характеристиками и степенью окисленности (отношение $Fe^{3+}/Fe^{3+}+Fe^{2+}$). Возможно, избыток относительно тяжелого CO₂ связан с процессом мантийного окисления базальтов, признаки которого фиксируются в вулканогенных образованиях данного уровня на Кольском полуострове. В составе вулканогенной части куэтсярвинской серии Печенгской структуры, стратиграфически сопоставимой с ятулийским надгоризонтом, встречены базальты с лопардитовыми текстурами – с шаровой отдельностью, в которой шары и межшаровое пространство зонально окислены и приобретают цвета от зеленого и желтого до оранжевого и красного, образуя полосчатый и пятнистый узор породы. Средняя степень окисленности этих вулканитов составляет 0,37, возраст представлен как 2060 млн лет. Скважинами вскрыто более 300 м таких высокоокисленных базальтов, которые могут интерпретироваться как следы окисления магмы в верхнемантийных очагах (Melezhik et al., 2010).

Рис. 3. Положение точек составов магматических пород в координатах TAS (A, Б) и (Fe_2O_3+FeO) – MgO (B):

1 – базальты и пикробазальты верхней части суйсарской свиты; 2 – базальты нижней части суйсарской свиты; 3 – базальты заонежской свиты; 4 – базальты фаз ятулийского вулканизма Гирвасской зоны. Жирной линией выделены поля средних значений фаз ятулийских базальтов

Степень окисленности ятулийских базальтов в целом сопоставима с куэтсярвинскими, а в некоторых разрезах она может достигать даже 0,75 (рис. 4). В пользу гипотезы окисления свидетельствует характерный красноватый цвет отдельных ятулийских базальтов и обильная вкрапленность гематита в некоторых частях разреза. Можно представить и альтернативный вариант первичного окисления базитов – в коровых очагах. В этом случае разные порции выжимаемой магмы должны были бы иметь разную степень окисленности.

Таблица З

Средние химические составы магматических пород

Компоненты	1	2	3	4	5	6	7
SiO ₂	44,93	48,50	48,16	48,14	49,40	48,99	42,27
TiO ₂	1,70	1,38	1,85	2,41	1,05	1,97	1,19
Al_2O_3	11,57	14,70	12,89	13,32	14,72	13,25	13,07
Fe ₂ O ₃	1,23	3,30	3,00	9,14	9,48	7,08	13,79
FeO	10,49	9,50	11,68	6,49	2,09	7,92	
MnO	0,163	0,171	0,208	0,140	0,150	0,190	0,035
MgO	12,55	6,52	6,17	6,71	8,43	5,39	13,94
CaO	7,63	8,38	8,35	6,37	5,29	6,74	1,68
Na ₂ O	2,44	2,98	2,57	4,81	4,33	3,23	0,45
K ₂ O	0,44	0,29	0,64	0,35	1,05	0,72	1,55
H_2O	0,18	0,12	0,16	0,14	0,23	0,12	
ппп	6,03	3,83	3,79	1,81	3,95	3,43	
P_2O_5	0,29	0,25	0,29	0,26	0,06	0,14	0,08
Cr_2O_5	0,099	0,017	0,010	0,010	0,031	0,008	0,024
V_2O_5	0,053	0,053	0,064	0,055	0,047	0,068	0,086
CoO	0,008	0,007	0,007	0,006	0,008	0,009	
NiO	0,064	0,012	0,012	0,012	0,020	0,010	0,017
CuO	0,019	0,014	0,033	0,004	0,010	0,017	0,005
ZnO	0,013	0,012	0,015	0,000	0,000	0,000	0,005
Сумма	99,90	100,02	99,92	100,50	100,37	99,45	99,89
Na ₂ O+K ₂ O	2,88	3,26	3,21	5,16	5,38	3,95	2,00
$Fe^{3+}/Fe^{2+}+Fe^{3+}$	0,097	0,237	0,188	0,559	0,803	0,446	
Кол-во							
анализов	15	6	45	24	34	39	7

П р и м е ч а н и е . 1 – базальты и пикробазальты верхней части суйсарской свиты; 2 – базальты нижней части суйсарской свиты; 3 – базальты заонежской свиты; 4–6 – базальты фаз ятулийского вулканизма Гирвасской зоны (Голубев, Светов, 1983): 4 – позднеятулийской, 5 – среднеятулийской, 6 – раннеятулийской, 7 – пикробазальты среди туломозерских доломитов (по данным проекта FAR-DEEP). 1–3 – образцы магматических пород предоставлены волонны в лаборатории Института геологии Карельского НЦ РАН; 7 – RFA анализы выполнены в лаборатории Норвежской геологической службы (г. Тронхейм).

Связанная с ятулийским уровнем глобальная аномалия изотопно-тяжелого карбонатного углерода Ломагунди-ятулий (б¹³С достигает +18‰) требует существования источника, вводящего тяжелый углерод в среду осадконакопления. Поскольку организмы-строматостроители фиксировали в своей биомассе облегченный углерод ($\delta^{13}C_{opr.}$ –25‰), который быстро окислялся в условиях мелководного аэрируемого бассейна и в виде изотопно-облегченного СО2 поступал обратно в бассейн и атмосферу, изотопный состав осаждающихся в нем карбонатов также должен был постепенно облегчаться. Таким образом, необходим дополнительный источник изотопно-тяжелого СО2, не компенсированного биогенным изотопным фракционированием, для осаждения карбонатов состава до $\delta^{13}C$ +18‰. Вброс изотопно-тяжелого СО2 может быть связан с проявлениями ятулийского основного магматизма. На территории восточной части Фенноскандинавского щита аномалия имеет амплитуду в среднем +8 ... +10‰ $\delta^{13}C_{\kappa ap \delta}$. Данные, имеющиеся по изотопам С и О карбонатов, приведены в табл. 1, 2, рис. 1 и 2, где показаны усредненные значения. Как видно из этих данных, сариолийские карбонаты, вскрытые скважиной проекта FAR-DEEP в Имандра-Варзугской структуре, имеют нормальный изотопный состав углерода, близкий к нулю. Аномалия тяжелого углерода в ятулийских

Рис. 4. Степень окисленности базальтов верхнеятулийского комплекса (Голубев, Светов, 1983):

1 – область континентального выветривания и сноса обломочного материала; 2 – область бассейнового осадконакопления; 3 – основные магмовыводящие разломы; 4 – лавовые поля; 5 – местоположение опорных разрезов и коэффициент окисленности базальтов

карбонатах имеет тенденцию к стратиграфическому и фациальному (бассейновому?) контролю (рис. 1, 2). Положительные значения $\delta^{13}C_{\text{карб.}}$ выходят за

рамки нормальных морских и пресноводных карбонатов. В зоне перехода (нижняя заонежская подсвита) значения $\delta^{13}C_{\text{карб.}}$ приближаются к нулю. В верхней заонежской подсвите изотопный состав карбонатов стремительно облегчается. Вероятно, карбонаты здесь преимущественно диагенетические, связанные с изотопно-легким свободным углеродом. Общий тренд изменений изотопного состава кислорода карбонатов в целом указывает на прямую корреляцию с трендом изотопного состава углерода, с небольшим запаздыванием δ^{18} О относительно δ^{13} С (рис. 1).

Итак, ятулийская аномалия δ^{13} С карбонатного углерода характеризуется высокой контрастностью значений и неоднородностью локализации. К сожалению, приведенные на рис. 2 значения не всегда имеют четкую стратиграфическую привязку к разрезу ятулийских пород. И все же намечается некоторая грубая зависимость между амплитудой аномалии δ¹³С_{карб.} и степенью окисленности сопряженных ятулийских базальтов. Можно предположить, что с увеличением степени окисленности вулканитов нарастает и доля ¹³С в карбонатах. Так, например, в Печенгской структуре при средней степени окисленности базальтов, равной 0,37, $\delta^{13}C_{\text{карб.}}$ составляет в среднем +6,4‰, а в Онежском районе, где значения Fe³⁺/Fe³⁺+Fe²⁺ около 0,5 (Медвежьегорская вулканическая зона) и 0,7 (Гирвасская вулканическая зона) (рис. 4), уровень δ^{13} С достигает +10‰ и более. Для сравнения, степень окисленности заонежских базальтов не превышает в среднем 0,22.

Эти обстоятельства позволяют предположить, что существует связь между степенью окисленности вулканитов и изотопным составом углерода близковозрастных с ними карбонатов.

ЛИТЕРАТУРА

Голубев А. И., Светов А. П. Геохимия базальтов платформенного вулканизма Карелии. Петрозаводск, 1983. 192 с.

Куликов В. С., Куликова В. В., Лавров Б. С. и др. Суйсарский пикрит-базальтовый комплекс палеопротерозоя Карелии (опорный разрез и петрология). Петрозаводск, 1999. С. 96.

Петрографический кодекс России. Издание 3-е. СПб., 2009. С. 200.

Ромашкин А. Е., Рычанчик Д. В. Результаты реализации первых этапов проекта FAR-DEEP // Геология и полезные ископаемые Карелии. Вып. 12. Петрозаводск, 2009. С. 125–129.

Сацук Ю. И., Макарихин В. В., Медведев П. В. Ятулийский надгоризонт // Проблемы стратиграфии нижнего протерозоя Карелии / Под. ред. А. П. Светова. Петрозаводск, 1989. С. 67–105. *Трофимов Н. Н., Логинов В. Н.* Эвапориты или флюидизатно-эксплозивные образования восточного Прионежья? // Геология и полезные ископаемые Карелии. Вып. 8. Петрозаводск, 2005. С. 75–81.

Хейсканен К. И., Светова А. И., Рычанчик Д. В. Отчет о научно-исследовательской работе по теме № 159 «Геохимия раннедокембрийских седиментационных бассейнов Карелии» / Институт геологии. Петрозаводск, 2002. 157 с.

Melezhik V., Lepland A., Romashkin A. et al. The Great Oxidation Event Recorded in Paleoproterozoic Rocks from Fennoscandia // Scientific Drilling. 2010. N 9. P. 23–29.

Melezhik V. A., Huhma H., Condon D. J. et al. Temporal constraints on the Paleoproterozoic Lomagundi-Jatuli carbon isotopic event // Geology. 2007. N 35. P. 655–658.