Электронно-микроскопические исследования образцов проведены на растровом электронном микроскопе "LEO EVO 40HV" (Карл Цейс, Германия), оснащенном энергодисперсионным анализатором "INCA-ENERGY", представлены на рис. 2.

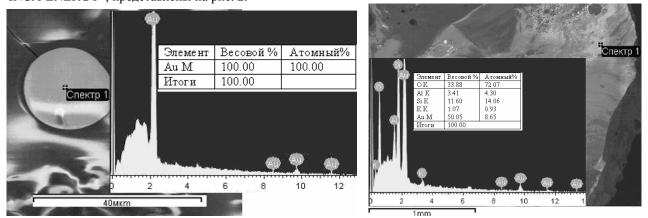


Рис. 2. Элементный анализ сферических золотин в окружении алюмосиликатной матрицы различных

Таким образом, при лазерной обработке золотосодержащего минерального сырья выявлены закономерности агломерирования и концентрирования ультрадисперсного золота, не извлекаемого гравитационными методами. Приведённые примеры применения нетрадиционных технологий для извлечения золота микронной крупности, позволяют считать, что решение проблемы трудноизвлекаемых форм благородных металлов возможно.

ЛИТЕРАТУРА

- 1. *Моисеенко В.Г., Остапенко Н.С., Миронюк А.Ф.* Нетрадиционный подход к отработке техногенных золотосодержащих россыпей // Горный журнал. 2006. № 4. С. 66-68.
- 2. *Мирзеханов Г.С.* Условия формирования, принципы прогноза и оценки ресурсов техногенных образований отработанных россыпей золота (на примере Дальнего Востока). Автореферат диссертации на соискание учёной степени доктора геолого-минералогических наук. Благовещенск, 2005 г.
- 3. Шевкун Е.Б., Кузьменко Л.П., Леоненко Н.А., Ятлукова Н.Г. Способ лазерного формообразования и обогащения благородных металлов в минеральных ассоциациях. Заявка 2003135458/02 от 04.12.2003, опубл. 10.07.2005 Бюл. № 19. Патент РФ № 2255995.

КОМПЛЕКСНОЕ ИСПОЛЬЗОВАНИЕ ПОЛИГАЛИТСОДЕРЖАЩЕГО СЫРЬЯ

Шакирзянова Д.Р., Вишняков А.К., Козленеева Л.П.

ФГУП «ЦНИИгеолнеруд», г. Казань

Наиболее распространенным калийным удобрением является хлорид калия. Однако систематическое использование его отрицательно влияет на некоторые сельскохозяйственные культуры, особенно технические, плодово-ягодные и цитрусовые. Применение под эти культуры бесхлоридных калийных удобрений способствует не только повышению урожайности, но и улучшению их качества: повышается содержание крахмала в картофеле, сахаристость свеклы, вкусовые качества винограда, цитрусовых, улучшается сортность льна [1]. В настоящее время крупных производителей бесхлоридных калийных удобрений в России нет, что обусловлено отсутствием разрабатываемой сырьевой базы сульфатных калийных солей. Одним из природного исходного сырья для получения бесхлоридных удобрений могут служить полигалитсодержащие породы (К₂МgCa₂(SO₄)₄·2H₂O) [2], широко распространенные в Европейской части России.

Применение на сульфатно-калийных месторождениях различных способов переработки этих пород, обусловило необходимость их предварительного очищения от минерала галита, оказывающего отрицательное влияние и на проведение самого процесса переработки и на ухудшение товарных свойств готовой продукции. В нашей стране исторически сложилось так, что основным методом освобождения сульфатно-калийно-магниевой породы от галита (NaCl) осуществлялось методом отмывки водой, при этом содержание остаточного NaCl не должно превышать 4% [3-7].

Для проведения экспериментов по обогащению была смоделирована трехступенчатая противоточная отмывка полигалитовой руды от галита (рис.1) [8].

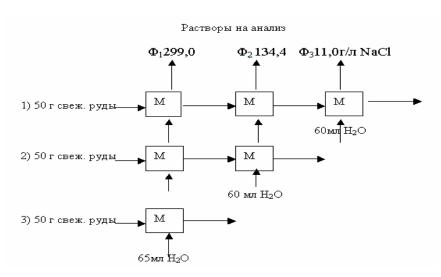


Рис. 1. Схема отмывки полигалитовой руды от галита

Результаты данных экспериментов представлены в табл. 1.

Таблица 1. Составы растворов трехступенчатой отмывки полигалита от галита

T.C.	Ступени отмывки			
Компоненты	1 ступень	2 ступень	3 ступень	
Ионный состав, г/л				
SO_4^{2-}	18,22	20,62	13,13	
Cl ⁻	181,37	81,52	6,67	
Ca ²⁺	0,44	0,75	0,58	
Ca ²⁺ Mg ²⁺ K ⁺	2,18	2,39	1,49	
K^{+}	6,98	7,65	4,77	
Na ⁺	117,67	52,89	4,33	
Солевой состав, г/л				
K_2SO_4	15,54	17,04	7,34	
$MgSO_4$	10,79	11,83	7,38	
CaSO ₄	1,49	2,54	1,97	
NaCl	299,04	134,41	11,0	
Сумма солей	326,86	165,82	27,69	
Плотность, $\Gamma/\text{см}^{3}$	1,2126	1,1128	1,0235	

Полученный при отмывке рассол можно переработать на побочный продукт – поваренную соль. Она может быть получена в процессе как галургической переработки рассола, так и в условиях их естественного выпаривания или вымораживания. Переработка данного рассола позволит получить поваренную соль с содержанием NaCl-98,18%, $MgSO_4\cdot 6H_2O-1,08\%$, $K_2Ca(SO_4)2\cdot H_2O-0,78\%$, что почти соответствует марки «высший сорт» (табл. 2).

Таблица 2. Составы пищевой соли по ГОСТ 13830-91 и соли, получаемой в результате эксперимента

Содержание компонентов, %	Сорт соли по ГОСТ 13830-91		Соль, получаемая в
	Экстра	Высший	результате эксперимента
NaCl	99,7	98,4	98,18
Ca ²⁺	0,02	0,35	0,1
Mg^{2+}	0,01	0,05	0,11
SO_4^{2-}	0,16	0,8	0,93
K^{+}	-	-	0,2
Fe_2O_3	0,005	0,005	-

Порода подвергалась разложению 19% азотной кислотой при 90-100°С. Полученная суспензия нейтрализовалась аммиаком, доводя pH суспензии до 4,5-5,0 и направлялась на вакуум-фильтры для разделения на маточник и осадок – сульфат кальция. Оставление части ${\rm SO_4}^{2-}$ в удобрении и отказ от обессульфачивания раствора выщелачивания полигалита окисью кальция позволило сократить количество сульфатных «отходов» в 3,38 раза [9, 10].

Полученный маточный раствор является жидким промпродуктом, в котором, как и в готовом продукте после выпаривания и гранулирования, содержание питательных элементов составляет (для N, K_20 и MgO) 34,12%, а с дополнительным учетом S и $Na_2O-44,77\%$. Соотношение питательных веществ: $N:K_2O:MgO:S=1,15:1,0:0,43:0,68$. В связи с тем, что в полученном удобрении присутствует, в виде аниона, сера, конечный продукт был назван «сульфонитрокалимагом». Степени извлечения калия и магния в продукт составляли 96-98%, степень разложения полигалита 99-100%.

По разработанному способу из 100 кг отмытого полигалита с учетом добавленных реагентов получается 99,41 кг удобрения. Побочный продукт по данным рентгенофазового анализа представляет собой практически чистый ангидрит (98-100%). Проведенные исследования по затворению такого материала (сульфата кальция) и испытанию на сжатие изготовленных из него кубиков показали прочность получаемых образцов 5,9 МПа, что соответствует гипсовым вяжущим марки Г-5.

Наличие в получаемом удобрении соединений серы позволяет исключить вопрос о ее дополнительного внесения для сельскохозяйственных растений. Недостаток серы в почвах СССР был обнаружен еще в 1980-е годы. В конце 80-х годов даже ставился вопрос о необходимости перестройки производств, выпускающих двойной суперфосфат, не содержащий серы, на выпуск простого суперфосфата, хотя и имеющего в 2 раза меньшее количество питательных веществ, но включающего в свой состав гипс (CaSO₄·2H₂O), как источник серы. Неоднократно поднимался также вопрос о необходимости разработки серосодержащих удобрений и их технологий производства. В этом плане, получение данного типа удобрений, в какой-то мере, решает этот вопрос, ибо в его состав сера входит в виде сульфатов калия и магния.

Присутствие некоторого хлористого натрия в «сульфонитрокалимаге» не ухудшает его агрохимические характеристики. Вопрос о специальном снабжении растений натрием в литературе как-то, особенно, не возникал, ибо, считалось, что растения получают его в достаточном количестве с промышленным удобрением в виде хлорида калия, который содержит в своем составе до 5% NaCl. Вообще же элемент натрий для некоторых растений даже необходим. Из литературных данных известно, что недостаток в натрии могут испытывать культуры семейства крестоцветных: капуста, свекла, редис, турнепс, репа, брюква, редька. Например, в золе ботвы свеклы содержится Na_2O до 25%.

Применение полигалитсодержащих пород в качестве сыромолотого продукта для местных нужд (с высоким содержанием полигалита и низким – менее 3% – содержанием галита) представляется вполне возможным использовать его как «полигалитовую муку».

Проведенные вегетационные опыты показали, что полигалитсодержащие породы в качестве «полигалитовой муки» на дерново-подзолистой почве близки по своему действию стандартным калийным удобрениям, что позволяет говорить о возможности их использования в сельском хозяйстве в местах, близко расположенных к ее производству.

«Полигалитовая мука», как товарный продукт содержит в своем составе K_2O – от 6,24 до 12,7% (K_2SO_4 – от 11,54 до 23,49%), MgO – от 2,8 до 5,66% (MgSO $_4$ – от 8,36 до 16,9%). По составу и содержанию водорастворимых полезных компонентов она более всего соответствует калимагнезии, но в отличие от которой «полигалитовая мука» значительно обогащена сульфатом кальция.

Проведенные в ЦНИИгеолнеруд исследования позволяют наметить рациональную технологическую схему получения бесхлорного комплексного калийно-магниево-азотно-сульфатного удобрения из полигалитсодержащих пород Шарлыкской площади, как на основе азотнокислотного разложения, так и с использованием сыромолотой породы в виде удобрения «полигалитовая мука».

ЛИТЕРАТУРА

- 1. Ягодин Б.А. Агрохимия. М.: Агрохимиздат «Колос», 1982. 574 с.
- 2. Минеральное сырье. Соли минеральные. Справочник / под ред. Баталина Ю.В., Туманова Р.Р., Хуснутдинова В.А. М.: Геоинформмарк, 1999. 242, [1] с.
 - 3. Грабовенко В.А. Производство бесхлорных калийных удобрений. Л., Химия, 1980. 256 с.
 - 4. Позин М.Е. Технология минеральных удобрений. Л.: Химия, 1989. 352 с.
- 5. Переработка природных солей и рассолов. Справочник / под ред. И.Д.Соколова. Л.: Химия, 1985. 208. [6] с.
 - 6. *Кашкаров О.Д*. Технология калийных удобрений / О.Д. Кашкаров, И.Д. Соколов. Л.: Химия, 1978. 248 с.
- 7. *Сафрыгин Ю.С.* Производство бесхлорных калийных удобрений в СССР и за рубежом / Ю.С.Сафрыгин, Ю.В.Букша, В.И.Хентов. М.: НИИТЭХИМ, 1981. 39 с.
- 8. *Хуснутдинов В.А.* Отделение полигалитовой породы от галита / В.А. Хуснутдинов, А.К.Вишняков, Д.Р.Шакирзянова // Вестник Казанскоготехнологического университета. 2006. №3. С. 59-64.
- 9. *Баталин Ю.В.* Полигалитовые породы новое сырье для производства дефицитных сульфатных калийно-магниевых удобрений / Ю.В. Баталин, А.К. Вишняков, Д.Р. Шакирзянова // Разведка и охрана недр. 2007. №11. С. 29-33.
- 10. Пат.2276123 Российская Федерация МПК⁷ С05D 11/06, С05D 1/00, 5/00. Способ получения комплексного минерального удобрения / Хуснутдинов В.А., Вишняков А.К.; заявитель и патентообладатель Центральный научно-исследовательский институт геологии нерудных полезных ископаемых.-№2004120636/15; заявл. 06.07.04; опубл. 10.05.06. Бюл.№13.-5с.