- 7. *Гришин Н.Н.*, *Белогурова О.А.*, *Иванова А.Г*. Обогащение кианита путем карботермического восстановления // Новые огнеупоры. 2010. № 6. С. 11-20.
- 8. Исследование процессов комплексной переработки небокситовых руд дальневосточного региона России / Римкевич В.С., Маловицкий Ю.Н., Демьянова Л.П. и др. // Тихоокеанская геология. 2006. Т. 25. № 3. С. 66-74
- 9. *Останин Ю.Д.* Изучение промежуточных соединений, образующихся при восстановлении кианитового концентрата углеродом // Тр. ВАМИ. № 89. Производство алюминия. / Останин Ю.Д., Бухбиндер А.И., Баймаков А.Ю. Л.: ВАМИ, 1974. С. 79-85.
- 10. Попова Б.С., Полуновский Р.М., Кривонос В.П. Ставролит новый прогрессивный вид горнометаллургического сырья // Тез. докл. VIII съезда ВМО. СПб.: СПГГИ (ТУ), 1992.
- 11. Перспективы освоения новых видов минерального сырья северо-запада России / *Нерадовский Ю.Н., Войтеховский Ю.Л., Касиков А.Г. и др.* // Северные территории России: проблемы и перспективы развития: Матер. Всерос. конф. Архангельск: изд. ИЭПС УрО РАН, 2008. С. 958-961.
- 12. Распоряжение МПР РФ от 05.06.2007 N 37-р "Об утверждении Методических рекомендаций по применению Классификации запасов месторождений и прогнозных ресурсов твердых полезных ископаемых".
 - 13. Самсонов А.Е., Самсонов А.А. // www.newchemistry.ru/letter.php?n id=385.
- 14. *Токарев В.А., Ященко А.В.* Кейвский селенистый пирротин // Матер. по минералогии Кольского пова. Вып. 6. Л.: Наука, 1968. С. 67-69.
 - 15. http://www.mineral.ru/Facts/russia/131/279/index.html.

РЗЭ В КИАНИТОВЫХ СЛАНЦАХ МЕСТОРОЖДЕНИЯ НОВАЯ ШУУРУРТА

Войтеховский Ю.Л.¹, Нерадовский Ю.Н.¹, Гришин Н.Н.²

 1 Учреждение Российской академии наук Геологический институт КНЦ РАН, Апатиты 2 Учреждение Российской академии наук Институт химии и технологии редких элементов и минерального сырья КНЦ РАН, Апатиты

voyt@geoksc.apatity.ru; nerad@geoksc.apatity.ru; grishin@chemy.kolasc.net.ru

Введение

Большие Кейвы известны как уникальное месторождение высокоглиноземистых кристаллических сланцев на северо-западе европейской части России. Геохимической особенностью кейвских сланцев является сочетание глинозема с углеродом, серой, титаном, редкими и редкоземельными элементами, золотом [2, 3, 8, 9, 10, 13]. По мнению [8], «анализ распределения петрогенных и малых элементов в разрезе пород кейвской метаморфической серии и по отдельным петрографическим разновидностям пород позволяет констатировать наличие повышенных концентраций ряда элементов, указывающих на особенности металлогенической специализации отдельных типов пород и уровней разреза. Среди этих элементов выделяются алюминий, титан, железо, медь, ванадий, фосфор, цирконий, редкие земли. Хотя металлогеническая специализация всего комплекса пород кейвской серии, безусловно, определяется наличием в составе сланцев пачки Б известных месторождений кианита, дополнительно выявленные черты металлоносности отдельных разновидностей пород и уровней стратиграфического разреза несомненно заслуживают специального изучения». Наибольший интерес представляют, на наш взгляд, редкоземельные элементы как возможный источник дополнительных полезных компонентов кианитовых руд, повышающий их значение как комплексного сырья.

Распределение РЗЭ в породах Больших Кейв

Наиболее детальный анализ геохимических особенностей РЗЭ Б. Кейв ранее выполнен на основе полного разреза высокоглиноземистых кристаллических сланцев, который включает 7 пачек [2], входящих в состав трех свит: песцово-тундровской, выхчуртской и червуртской. В результате установлено неравномерное распределение РЗЭ в различных породах [8, 9] (табл. 1). Причиной неравномерного распределения РЗЭ предполагалась их связь с древними россыпями. В связи с этим особое внимание акцентировалось на породах базальной пачки А, в которых «отмечаются повышенные содержания циркония, редких земель, иногда фосфора, связанные с присутствием циркона, обнаруживающего признаки обломочного происхождения, и с другими акцессорными минералами – апатитом, сфеном, монацитом, ортитом, и верхних пачек Д, Е, Ж, в связи с приуроченностью к ним первично россыпных редкометальных рудопроявлений [6]. Наиболее перспективным участком для выявления повышенных концентраций тяжелых минералов являются литологически разнородные породы пачек Е и Ж, завершающие разрез свиты Кейв [8]. Кианитовые и ставролит-кианитовые сланцы пачек Б и Г не рассматривались как перспективные на РЗЭ в связи с отсутствием признаков концентрирования в какихлибо минералах.

По данным [9], спектры РЗЭ пород сланцевого комплекса и подстилающих гнейсов сходны (рис. 1), те и другие обогащены легкими РЗЭ, что соответствует распределению в осадочных породах [5] и

«каноническому распределению в земной коре» [7, 14]. Полученные результаты позволяют предполагать, что распределение РЗЭ в породах кейвской серии определялось условиями первично-осадочного накопления из одного источника. Важным является вывод о сохранении первичного порядка накопления РЗЭ при последующих процессах: «большинство компонентов (даже щелочи) при метаморфизме оставались инертными, т.е. не происходили мобилизации и перераспределение компонентов между отдельными разностями пород и прослоями» [9].

Таблица 1. Содержание РЗЭ (Σ Ln+Y₂O₃) в породах и минералах кейвской серии, %

Пачки	Породы и минералы	Лутц, 1967	Бельков и др., 1976	Наши данные
	Мусковит-биотитовые сланцы с гранатом		0,03	
Ж	Куммингтонит-роговообманковый кварцит		0,001	
	Двуслюдяные сланцы с гематитом и магнетитом		0,001	
Е	Флогопит-полевошпат-кварц-диопсидовые породы		0,01	
	Доломиты с диопсидом и флогопитом		0,001	
Д	Мусковит-кварцевые сланцы		0,001	
	Двуслюдяные сланцы		0,04	
	Двуслюдяные и мусковитовые сланцы	0,005-0,06		
Γ	Крупнопорфиробластические кианит-ставролитовые сланиы		0,06	
В	Мусковитовые кварциты		Не обн.	
	Мелкопараморфические ставролит-кианитовые сланцы		0,05	
	Ставролит-кианитовые сланцы	0,04-0,05	,	
Б	Кианитовые сланцы	0,32		
	Мелкоконкреционные кианитовые руды			0,0310
	Крупноконкреционные кианитовые руды			0,1447
	Кианит			0,0102
	Слюда			0,058
	Кварц			0,0228
	Графит			0,0472
A	Ставролит-гранатовые сланцы и кварциты	0,02		
	Гранат-ставролитовые и ставролит-гранатовые сланцы		0,095	
	Слюдяно-гранатовые сланцы		0,01	
Гнейсы	Двуслюдяные и биотитовые гнейсы	0,005- 0,009		
	Биотит-гранатовые гнейсы	0,01-0,02		

Примечание: минералы представлены концентратами (%): кианит - 89, слюда (смесь мусковита с парагонитом) - 82, кварц - 93, графит - 25.

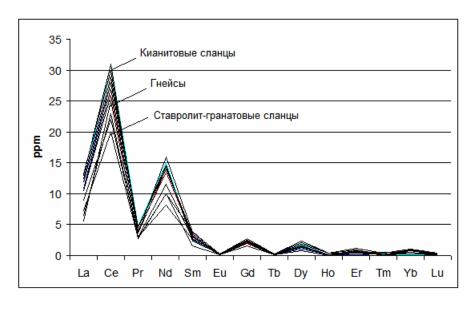


Рис. 1. Спектры РЗЭ по [9]. Обработка авторов

Новые данные о редкоземельной минерализации в кианитовых рудах месторождения Новая Шуурурта

Месторождение Новая Шуурурта – самое перспективное по размерам и изученности. Здесь проведено детальное технологическое изучение обогатимости руд и месторождение рекомендовано к первоочередному освоению [4]. В связи с этим актуально продолжение исследований редкометальной и редкоземельной минерализации в рудах месторождения. Главный тип руды на месторождении – конкреционный. Она состоит из четырех компонентов: мусковит-графит-кварцевого субстрата, конкреций кианита, кварцевых жил и параморфоз. В дополнение к ранее выполненным, нами проведены минералогические исследования формы проявления редкометальной и редкоземельной минерализации в конкреционной руде и изучено распределение РЗЭ в главных минералах кианитовых руд.

Минеральные формы изучены на СЭМ LEO-1450, аналитик Е.Э. Савченко (ГИ КНЦ РАН). Химические анализы РЗЭ выполнены в Лаборатории химических и оптических методов анализа методом ICP-MS на приборе ELAN 9000 DRC-е, аналитики С.В. Дрогобужская, О.Л. Панченко, А.И. Шлапак (ИХТРЭМС КНЦ РАН). Исходным материалом послужили мелко- и крупноконкреционные кианитовые руды месторождения Новая Шуурурта. Из крупноконкреционных руд извлечены мономинеральные фракции кианита, кварца, мусковита, графита и проанализированы на РЗЭ, а также Sc, Zr, Hf, Th, Y. Результаты анализов представлены в табл. 2, 3. Концентраты кианита, мусковита и кварца получены в Лаборатории фазового анализа ГИ КНЦ РАН (зав. Л.И. Коваль), концентрат графита — в лаборатории геолого-технологического изучения сырья ООО «Гипроникель» (зав. В.И. Максимов). Отчетливо выделяются мусковит и графит (табл. 2), в которых уровень РЗЭ выше в 2-5 раз по сравнению с кианитом и кварцем. Особенно значительно обогащение мусковита и графита La, Ce и Nd (рис. 2). По содержанию редких элементов также выделяются мусковит и графит (табл. 3), мусковит особенно выделяется высоким содержанием циркония. Минимальные содержания примесей установлены в кианите.

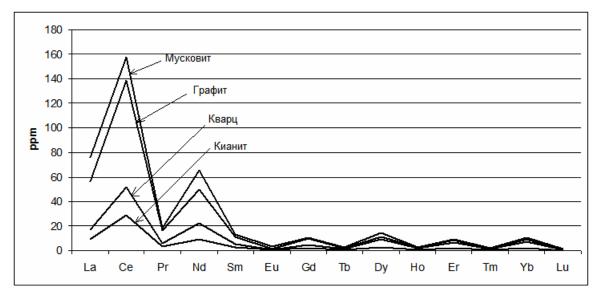


Рис. 2. Спектры РЗЭ в минералах из кианитовых руд

Для объяснения особенностей распределения РЗЭ в руде необходимо остановиться на строении конкреций. Они представляют собой плотные агрегаты игольчатого кианита радиально-лучистого строения (рис. 3), имеют разнообразные формы и строение, но наиболее распространенной является эллипсоидальная (рис. 4). Размеры конкреций на месторождении Новая Шуурурта 10-110, в среднем 36.6 мм по удлинению. Исследования показали, что независимо от размеров они сложены тонковолокнистым кианитом, образующим сноповидные агрегаты, веерообразно расходящиеся от центра к периферии. Размеры кристаллов по толщине до 0,3 мм, соотношение с длиной 1:50 - 1:100. Между зернами кианита содержатся включения графита, поэтому конкреции имеют серый цвет. Но в центре крупных конкреций встречаются выделения белого кианита, не содержащего графита (рис. 3). Химический состав кианита в конкрециях одинаков в центре и на периферии и соответствует стехиометрическому. Но в целом минеральный состав конкреций меняется от центра к периферии.

Рис. 3. Строение конкреции в разрезе: ядро – кианит без примесей графита, периферия – тонкоигольчатый агрегат кианита в смеси с графитом. Черное – мусковит-графит-кварцевый субстрат. На краю конкреции видна мусковит-кварцевая жила

Рис. 4. Формы конкреций в срезе кианитовой руды: кианит (Ку), кварц (Qz), субстрат кварц+мусковит (Qz+Ms). Кварцевые прожилки развиты по тектоническим трещинам, частично обволакивающим конкреции

В минеральном составе конкреций выявлена закономерность: в периферической части конкреций во включениях в кианите и в сростках с ним, кроме обычного кварца и графита, присутствует группа редких акцессориев, в том числе рутил, циркон, монацит и другие минеральные вкрапления с (Zn, Fe, Mg), которые в центральной части конкреций не встречаются. Она может быть объяснена гипотезой метасоматического роста кианита в конкрециях и накопления примесей графита по краям конкреций [3]. Согласно этой гипотезе, конкреции образуются за счет замещения кианитом мусковит-графит-кварцевого субстрата. При этом кианит не включает примеси графита и рутила из субстрата, а «выталкивает» их к границам зерен, что ведет к накоплению примесей в краевых частях конкреций и в кварцевых прожилках. Наши исследования показали, что некоторые минеральные фазы отсутствовали в исходном субстрате и были привнесены в процессе роста конкреций. Об этом свидетельствует состав и структура субстрата.

Вмещающая среда конкреций — мусковит-графит-кварцевый субстрат. Обычно он представляет собой тонкозернистый агрегат кварца 88% (80-95%) с примесью мусковита 6% (1-10%), графита 5% (3-10%) и рутила 2% (1-5%) (рис. 5). В его составе отсутствует кианит. Размеры зерен кварца преимущественно менее 0,1 (0,05-0,09, мм). Исследование с помощью электронного микроскопа выявило в субстрате между зернами кварца многочисленные субмикроскопические включения циркона (рис. 6).

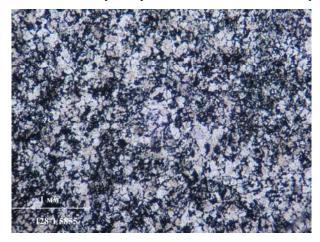


Рис. 5. Тонкозернистая структура первичного кварцевого субстрата с графитом (черное). Фото в проходящем свете. Николи II

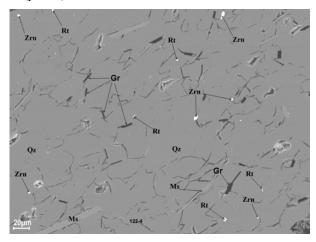


Рис. 6. Минеральный состав субстрата: кварц (Qz), мусковит (Ms), графит (Gr), рутил (Rt), циркон (Zrn). Изображение в отраженных электронах

Но местами субстрат неравномерно рассланцован, пронизан минерализованными зонами сдвига, в которых сформированы жилки, где кроме первичных минералов – кварца, мусковита, рутила и графита, появляются новые минералы – циркон и монацит (рис. 7, 8). Мощность прожилков – до 5 мм. В основном они

проходят по субстрату, но также контактируют с конкрециями и параморфозами, пересекают их. Минеральный состав прожилков (%): кварц 85-93, мусковит 5, рутил 1-10, графит 0-1. Содержание примеси рутила и графита возрастает в тонких прожилках. Общее направление трещин согласуется с удлинением конкреций по сланцеватости. Жилки часто пересекаются, переходят одна в другую согласно плоскостям рассланцевания (рис. 8, 9). В жилках кварц, мусковит и графит обычно укрупняются относительно исходного субстрата (рис. 7).

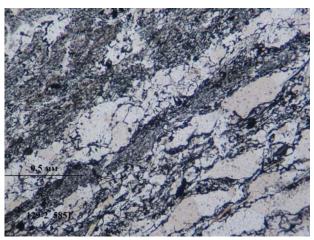


Рис. 7. Полосчатая текстура рассланцованного субстрата, видно укрупнение зерен кварца и мусковита между швами сдвига

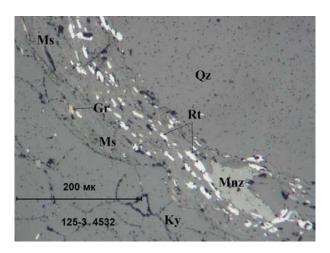


Рис. 8. Жилка мусковит-кварцевого (Ms-Qz) состава с примесью рутила (Rt), графита (Gr) и монацита (Mnz) по зоне рассланцевания. Фото в проходящем свете. Николи II

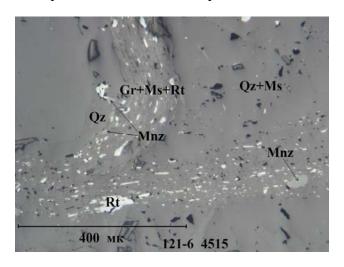


Рис. 9. Пересекающиеся жилки мусковит-кварцевого (Ms-Qz) состава с примесью рутила (Rt), графита (Gr) и монацита (Mnz) по зонам рассланцевания.

Таким образом, с конкрециями постоянно связаны кварцевые жилы, приуроченные к сложной системе флексурообразных тектонических трещин, пересекающихся между собой и, частично, обволакивающих конкреции. Образование кварцевых жил тесно связано с ростом конкреций кианита. Чем более крупные конкреции, тем больше в руде кварцевых жилок с поздними минералами. Тектонические трещины и формирующиеся в них жилки кварца важны для локализации минералов редких и редкоземельных элементов. В этих трещинах в ассоциации с кварцем, кроме мусковита, графита и рутила, локализуются циркон и монацит (рис. 8, 9). Обычно они имеют микрозернистые размеры и рассеяны в субстрате, но благодаря развитию тектонических трещин перекристаллизовываются и отлагаются в поздних мусковит-кварцевых жилах, которые фактически являются местом концентрирования переотложенных графита, рутила, монацита и циркона. Особенно интересен монацит, присутствие которого не выявлено в первичном субстрате (рис. 6).

Исследования руд с конкрециями разных размеров показали, что суммарная концентрация РЗЭ возрастает в крупноконкреционных рудах более чем в 4 раза по сравнению с мелкоконкреционными, при этом легкие РЗЭ (от La до Gd) возросли в 5 раз, а тяжелые (иттриевая группа) – в 3 раза. Содержания редких элементов в крупноконкреционных рудах уменьшились по сравнению с мелкоконкреционными в 1,5 раза, в основном за счет уменьшения Zr_2O_3 . Отсюда следует вывод о различной подвижности редких и редкоземельных элементов и различных носителях РЗЭ. При формировании крупноконкреционных руд циркон менее подвижен, чем монацит.

Таблица 2. Содержание РЗЭ в конкреционных рудах и минералах месторождения Новая Шуурурта

		Лёгк	ие TR	Се		Тяжёлые TR _Y										
						Лантаноиды Ln									Y	
		Церие	вые Li	n _{Ce}		Иттриевые Ln _Y										
	Цериевые (легкие) Ln _{Ce}					Самариевые (средние) Ln _{Sm}					Эрбиевые (тяжелые) Ln _{Er}					
	La ₂ O ₅	CeO ₂	Pr_2O_3	Nd_2O_3	Pm	Sm_2O_3	Eu_2O_3	Gd_2O_3	Tb ₂ O ₃	Dy_2O_3	Ho ₂ O ₃	Er_2O_3	Tm_2O_3	Yb ₂ O ₃	Lu ₂ O ₃	Y_2O_3
Мелкокон- креционная	53,0	120.0	12,9	42,9		8,3	1,1	7,5	1,2	6,9	1,3	4,6	0,7	4,4	0,5	44,3
руда	33,0	120,0	12,7	42,7		0,5	1,1	7,5	1,2	0,7	1,3	4,0	0,7	7,7	0,5	74,3
Крупнокон-																
креционная	254,3	612,3	67,1	224,4	-	43,7	4,9	38,1	4,1	24,9	3,4	13,4	1,9	12,7	0,6	140,9
руда																
Кианит	10.9	35.6	3.9	11.1	-	2.9	0.4	2.5	0.8	3.2	0.7	2.6	0.5	2.5	0.2	23.6
Мусковит	88.9	193.7	21.2	76.9	-	15.4	3.7	12.2	2.8	16.5	3.1	10.6	1.8	11.7	1.0	121.2
Кварц	20.3	63.3	6.7	25.9	-	5.6	0.5	5.2	1.4	10.4	2.2	7.5	1.3	8.3	0.7	68.6
Графит	65.3	171.0	18.6	58.2	-	13.1	1.3	11.3	2.3	12.7	2.9	9.5	1.5	10.2	0.6	93.7
Концентрат	3042,5	7087,3	801,7	2935,7	-	567,1	55,5	421,6	30,15	192,6	10,9	82,7	8,75	59,6	0,875	866,5

Примечание: классификация РЗЭ приведена по [11].

Таблица 3. Содержание редких элементов в рудах и минералах месторождения Н. Шуурурта (ррт)

		•						
Marrananara		Компоненты						
Минералы и руды	Sc_2O_3	ZrO_2	HfO_2	Th_2O_3				
Мелкоконкреционная руда	6,7	2430	11,2	15,4				
Крупноконкреционная руда	27,8	1503,8	27,1	65,1				
Кианит	7,5	581	12,0	3,4				
Мусковит	163,8	2168	39,5	19,1				
Кварц	9,7	1101	25,1	8,2				
Графит	4,1	1751	34,6	22,6				
Концентрат	37,35	2769	43,4	843				

Оценка баланса РЗЭ в кианитовых рудах

Лабораторным методом из крупноконкреционной руды нами был получен черновой концентрат редких и редкоземельных элементов. Достигнуто содержание суммы P3Э и иттрия 1,62%, редких элементов – 0,37%. Концентрирование P3Э происходит неравномерно, P3Э концентрировались в 11-13 раз относительно исходной руды, тяжелые P3Э – в 1,5-8 раз. В 13 раз увеличилась и концентрация Тh. Рентгенометрические данные показали присутствие в концентрате монацита. С учетом всех минералогических данных можно предполагать, что основной концентратор Р3Э цериевой группы и Th – монацит. Таким образом, доказана возможность получения концентрата редких и редкоземельных элементов из рядовых конкреционных кианитовых руд. Дальнейшие исследования позволят оценить реальный выход его при комплексном обогащении. Потенциальные ресурсы редких и редкоземельных элементов оцениваются нами как весьма высокие.

Результаты химических анализов редких и редкоземельных элементов показали, что в конкреционной кианитовой руде содержание РЗЭ может варьировать от 0,04 до 0,18%. В пересчете на прогнозные ресурсы кианитовых руд до глубины 100 м это даёт 11,7 млрд. т. [4], ресурсы РЗЭ – от 4,7 до 21,1 млн. т. Содержание Sc, Zr, Hf, Th составляет в сумме 0,23-0,25%, что позволяет оценить их ресурсы в 27-29 млн. т. По этим

показателям Б. Кейвы сопоставимы с крупными месторождениями РЗЭ [11, 12] и превосходят запасы некоторых стран-экспортёров РЗЭ, что позволяет рассматривать их как новую потенциальную базу редких элементов и редких земель.

Обсуждение результатов

Рассмотренные материалы показывают, что на кианитовые сланцы с конкрециями наложены поздние тектонические трещины, по которым проходили гидротермальные растворы, способствовавшие перекристаллизации первичных минералов (кварца, мусковита, графита, рутила) и привносу редкометалльных и редкоземельных элементов, концентрировавшихся в цирконе, монаците и других соединениях. На заключительном этапе кристаллизации кианит конкреций захватывал их в виде минеральных включений. В результате создались условия для обогащения минерализованных трещин и краевых частей конкреций РЗЭ.

В общем виде наши наблюдения согласуются с выводами И.В. Белькова [2], но мы рассматриваем механизм обогащения краевых частей конкреций титаном, цирконием и редкими элементами не только за счет накапливавшегося вещества, «выталкиваемого» кианитом в процессе роста. Скорее, имел место привнос редких элементов в сланцы и отложение (или переотложение) монацита на заключительной стадии формирования конкреций. Об этом свидетельствует значительная разница в концентрации РЗЭ в мелко- и крупноконкреционных рудах. Монацит – новая фаза в прожилках, ранее он не отмечался в кианитовых сланцах. Известен был ортит, но он не содержит фосфора, который фиксируется в ассоциации с Се и другими ТR.

Источником редкометальной минерализации могли быть сами кианитовые сланцы. Известно, что в разрезе кейвской серии сланцы пачек А, Б и Д обогащены редкими элементами за счет присутствия кластогенного материала [8], а в высокоглиноземистых породах пачки Д в Вост. и Мал. Кейвах [6] имеются древние редкометальные россыпи с цирконом, монацитом, ортитом, а также ильменитом, рутилом, титанитом, флюоритом, молибденитом и золотом. Метаморфизм мог привести к переотложению редких минералов первично осадочного происхождения.

Вместе с тем, редкие элементы и фосфор могли поступать со щелочными интрузиями, внедрившимися в кейвскую толщу на западе и оказавшими активное контактово-метасоматическое воздействие на кианитовые сланцы. Щелочные интрузии несут широкий спектр акцессорных минералов, по элементному составу соответствующий минерализации кейвских сланцев [1]. С этими интрузиями может быть связано поступление растворов, обогащенных Се, Р и обусловивших развитие монацитовой минерализации.

Образование монацита в поздних мусковит-кварцевых жилках, секущих кристаллические сланцы пачки Б, указывает на движение редких металлов с растворами в период метаморфизма зеленосланцевой фации и противоречит ранее сделанному заключению об инертности всех компонентов системы [2, 9]. В отдельных участках кианитовых сланцев создавались условия для переноса и концентрирования различных элементов.

Заключение

Проведенные минералого-геохимические исследования редкоземельной минерализации в высокоглиноземистых сланцах Б. Кейв свидетельствуют о нескольких формах нахождения РЗЭ: 1) в виде самостоятельной минеральной фазы – монацита, 2) в виде примеси в мусковите, графите, цирконе, ортите и других минералах.

Монацит, циркон, мусковит и графит входят в поздние прожилки, секущие глиноземистые сланцы. Развитие минералов РЗЭ по трещинам и в периферических частях конкреций кианита свидетельствует о подвижности РЗЭ в метаморфическом процессе и переносе их в пределах рассматриваемого типа сланцев. РЗЭ не были инертными в процессе метаморфизма и перемещались, по крайней мере, в пределах вмещающей толщи сланцев.

Образование монацита произошло вследствие переотложения минералов первично-осадочного материала или привноса РЗЭ под воздействием щелочных интрузий. По времени оно согласуется с заключительной стадией формирования конкреций кианита. Минералогические данные указывают на то, что первичные фазы редких и редкоземельных элементов имели субмикроскопические размеры и укрупнились в ходе метаморфизма. Он способствовал перераспределению РЗЭ в кианитовых сланцах, что не исключает переноса за их пределы. В ходе метаморфической кристаллизации монацита были созданы условия для его укрупнения, что является предпосылкой получения концентрата РЗЭ при промышленном использовании кианитовых сланцев.

Кейвские кианитовые сланцы имеют большие потенциальные ресурсы редких и редкоземельных элементов и заслуживают тщательного исследования как новое комплексное сырье.

ЛИТЕТАТУРА

- 1. *Бельков И.В.* Акцессорная минерализация щелочных гранитов западных Кейв // Матер. по минералогии Кольского п-ова. Вып. III. Выборг: Типография Леноблполиграфиздата, 1962. С. 5-20.
 - 2. Бельков И.В. Кианитовые сланцы свиты Кейв. М.-Л.: Изд-во АН СССР, 1963. 21 с.
- 3. Бельков И.В. Минералы титана в кианитовых сланцах Кейв // Минералы и минеральные парагенезисы горных пород Кольского п-ова. Апатиты: Изд-во КФ АН СССР, 1981. С. 43-48.

- 4. *Бельков И.В., Истомин А.В., Матвеев Б.А.* Экономические предпосылки разработки кианитовых руд открытым способом месторождения Н. Шуурурта // Теория и практика работы карьеров Заполярья. Апатиты: Изд-во КФ АН СССР, 1974. С. 14-18.
- 5. *Виноградов А.П.* Среднее содержание химических элементов в главных типах изверженных горных пород земной коры // Геохимия. 1962. № 7. С. 125-132.
- 6. *Гаскельберг В.Г., Рубинраут Г.С.* Комплексная минерализация в разрезах Больших и Малых Кейв // Вопр. геологии и металлогении Кольского п-ова. Вып. V, ч. I. Апатиты: Изд-во КФ АН СССР, 1974. С. 208-212.
- 7. *Гоулс Г.Г.* Геохимия редкоземельных элементов в докембрийских плутонических породах // Тр. XXII МГК. Геология и геохимия рудных месторождений. М.: Мир, 1971. С. 248-257.
- 8. К геохимии метаморфических пород кейвской серии / Бельков И.В., Белолипецкий А.П., Ильин Ю.И. $u \ \partial p$. // Геохимическая эволюция метаморфических комплексов докембрия Кольского п-ова. Апатиты: Изд-во КФ АН СССР, 1976. С. 5-14.
- 9. *Лути Б.Г.* Парагенетический анализ и TR минерализация глиноземистых пород амфиболитовой и гранулитовой фаций Алдана и Кольского п-ова // Редкие элементы в породах различных метаморфических фаций. М.: Наука, 1967. С. 30-58.
- 10. Перспективы освоения новых видов минерального сырья северо-запада России *Войтеховский Ю.Л., Нерадовский Ю.Н., Касиков А.Г. и др.* // Северные территории России: проблемы и перспективы развития: Матер. Всерос. конф. Архангельск: изд. Ин-т экол. проблем Севера УрО РАН, 2008. С. 958-961.
- 11. Распоряжение МПР РФ № 37-р "Об утверждении Методических рекомендаций по применению Классификации запасов месторождений и прогнозных ресурсов твердых полезных ископаемых" от 05.06.2007.
 - 12. Самонов А.Е., Самсонов А.А. // www.newchemistry.ru/letter.php?n id=385
- 13. Сидоренко С.А., Сидоренко А.В. Органическое вещество в осадочно-метаморфических породах докембрия // Тр. ГИН АН СССР. М.: Наука, 1975. 115 с.
- 14. Relative and absolute terrestrial abundances of the rare earths / Haskin L.A., Haskin M.A., Frey F.A. et al. // Proc. Sym. of Int. Assoc. for Geochemistry and Cosmochemistry. Paris, 1967. P 150-155.

КОМПЛЕКСНЫЕ ИССЛЕДОВАНИЯ ПРОДОЛЬНОВОЛОКНИСТОГО ХРИЗОТИЛ-АСБЕСТА БАЖЕНОВСКОГО МЕСТОРОЖДЕНИЯ

Лузин В.П.

ФГУП «ЦНИИгеолнеруд», Казань; root@geolnerud.net

Баженовское месторождение хризотил-асбеста расположено на Среднем Урале в Асбестовском районе Свердловской области. Оно открыто в 1885 году А.Я. Лодыженским.

Хризотил-асбест на месторождении представлен двумя видами — поперечноволокнистым хризотил-асбестом с расположением в жилах асбестовых агрегатов перпендикулярно стенкам трещин-вместилищ и продольноволокнистым хризотил-асбестом с расположением в жилах асбестовых агрегатов параллельно стенкам трещин-вместилищ. Наиболее распространенным является поперечноволокнистый хризотил-асбест, началом его добычи считается 1889 год. Продольноволокнистый хризотил-асбест имеет меньшее распространение, из-за недостаточной изученности он считался не пригодным к применению и при эксплуатации месторождения в течение 84 лет вывозился в отвалы пустых пород. Промышленное освоение продольноволокнистого хризотил-асбеста было начато после установления возможности применения его в различных направлениях индустрии по результатам глубокого изучения свойств комплексом методов в полевых, лабораторных и промышленных условиях.

Формы выделения и условия нахождения продольноволокнистого хризотиласбеста

На Баженовском месторождении продольноволокнистый хризотил-асбест распространен в рассланцованных серпентинитах лизардитового или существенно лизардитового состава. Представлен он мягкими волокнами высокой (нормальной) прочности, которые имеют повсеместное распространение в названных породах, а также жесткими (ломкими) или полужесткими (полуломкими, пониженной прочности), которые встречаются локальными участками подобно аналогичным разновидностям поперечноволокнистого хризотил-асбеста.

В жилах расположение волокнистых агрегатов продольноволокнистого хризотил-асбеста параллельно по отношению к стенкам трещин-вместилищ обычно сохраняется и при изменении направления жилы. В естественном состоянии волокна хризотил-асбеста могут быть прямолинейными или изогнутыми. Размеры их самые разнообразные и исчисляются долями миллиметра, миллиметрами и десятками миллиметров (до 35 мм и больше). Таким образом, продольноволокнистый хризотил-асбест по длине волокон представлен, аналогично поперечноволокнистому хризотил-асбесту, всеми геологическими сортами (от АК и I до VII). Средняя длина