УДК 581.1.

ЭКСПРЕССИЯ ГЕНОВ ПРОТЕОЛИТИЧЕСКИХ ФЕРМЕНТОВ И ИХ ИНГИБИТОРОВ ПРИ ХОЛОДОВОМ ЗАКАЛИВАНИИ ПШЕНИЦЫ

ФРОЛОВА С.А., ТИТОВ А.Ф., ТОПЧИЕВА Л.В., МАЛЫШЕВА И.Е., ТАЛАНОВА В.В., ВЕНЖИК Ю.В.

Учреждение Российской академии наук Институт биологии Карельского научного центра РАН, Петрозаводск, Россия

RNJIATOHHA

На проростках озимой пшеницы изучена экспрессия генов, кодирующих $AT\Phi$ -зависимые $(clpP,\ lon1)\ u$ цистеиновые (cp) протеиназы, а также ингибитор цистеиновой протеиназы в процессе холодового закаливания. Изменения экспрессии генов протеолитических ферментов и ингибиторов цистеиновых протеиназ предшествуют росту холодоустойчивости проростков. При достижении максимальной устойчивости содержание в клетках их листьев транскриптов указанных генов возвращается к исходному уровню.

Исследованиями последних лет установлено, что адаптация растений к неблагоприятной температуре сопровождается экспрессией большого числа генов [2]. В неблагоприятных условиях, когда происходят различные нарушения в обмене веществ и значительно возрастает потенциальная угроза появления и накопления неактивных или поврежденных пептидов, особенно важна роль генов протеолитических ферментов и их ингибиторов, контролирующих процессы деградации и модификации различных белков и ферментов [6]. Однако сведения об экспрессии этих генов у растений в условиях действия низких закаливающих температур практически отсутствуют. Между тем, учитывая, что холодовая адаптации растений сопровождается значительными изменениями в активности протеолитических ферментов и их ингибиторов [4], логично ожидать, что в ходе этого процесса происходят определенные изменения и в экспрессии контролирующих их генов. В связи с этим целью нашей работы явилось изучение экспрессии генов $AT\Phi$ -зависимых протеиназ clpP, lon1, генов цистеиновых протеиназ (cp) и их ингибиторов в процессе повышения устойчивости, индуцированном воздействием на растения пшеницы низкой закаливающей температуры.

Исследования проводили с проростками озимой пшеницы (*Triticum aesti-vum* L.) сорта Московская 39, которые выращивали в рулонах фильтровальной бумаги на питательном растворе Кнопа в камере искусственного климата при постоянных условиях. При достижении недельного возраста растения подвергали

действию в течение 7 сут закаливающей температуры 5 °C. О холодоустойчивости проростков судили по температуре, вызывающей гибель $50\,\%$ палисадных клеток паренхимы листовых высечек ($\mathrm{JT_{50}}$) после их 5-минутного промораживания в термоэлектрическом микрохолодильнике [1]. Уровень экспрессии генов анализировали методом ПЦР в режиме реального времени.

Воздействие низкой закаливающей температуры на растения пшеницы уже через 0,5-1 ч вызывало небольшое увеличение устойчивости клеток листьев, а на 4 сут

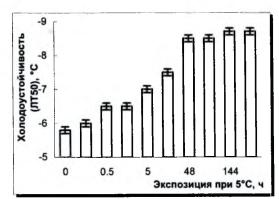


Рис. 1. Динамика холодоустойчивости проростков озимой пшеницы при действии низкой закаливающей температуры (5 °C).

УСТОЙЧИВОСТЬ ОРГАНИЗМОВ К НЕБЛАГОПРИЯТНЫМ ФАКТОРАМ ВНЕШНЕЙ СРЕДЫ

она достигала своего максимума (в данных условиях), сохраняясь в дальнейшем неизменной (рис. 1).

Наряду с этим, уже в начальный период холодового закаливания проростков одновременно с ростом холодоустойчивости в их листьях происходило достаточно быстрое (через 0.5-1 ч) увеличение уровня экспрессии гена cp, кодирующего цистеиновую протеиназу (рис. 2a). При более продолжительном низкотемпературном воздействии (1-3 сут) содержание мРНК гена cp постепенно снижалось, а через 4 сут (при достижении холодоустойчивости своего максимума) возвращалось к исходному уровню (25 °C). Аналогичные изменения наблюдались и в экспрессии гена lon1 (рис. 26).

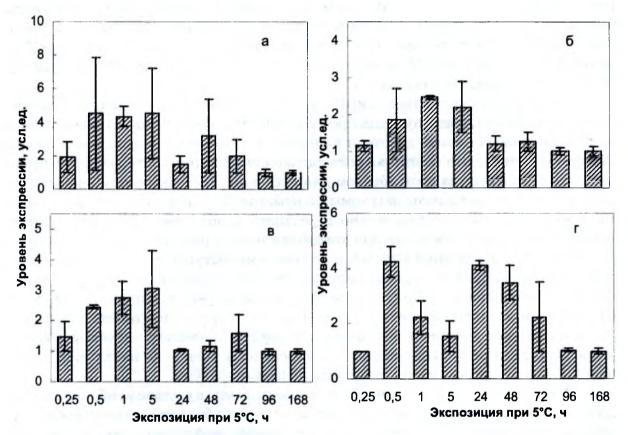


Рис. 2. Влияние температуры 5 °C на экспрессию генов *ср* (a), *lon1* (б), ингибиторов цистеиновых протеиназ (в) и *clpP* (г) проростков озимой пшеницы (*уровень экспрессии у растений контрольного варианта (25 °C) принят за единицу*).

В то же время содержание транкриптов гена, кодирующего ингибитор цистеиновой протеиназы, увеличивалось через 0,5 ч закаливания (рис. 2в), достигая своего максимального значения через 5 ч холодового воздействия, а через 1 сут снижалось и в дальнейшем практически не изменялось.

Помимо этого, под влиянием низкотемпературного закаливания происходили некоторые изменения в уровне экспрессии гена *clpP*. В частности, он повышался через 30 мин действия на проростки температуры 5 °C (рис. 2г), в течение последующих 5 ч постепенно снижался, через 24 ч снова увеличивался, сохраняясь на достигнутом уровне в течение суток, а затем постепенно уменьшался до исходных значений.

В наших экспериментах установлено, что в процессе холодового закаливания происходит достаточно быстрое и значительное (в 2–4 раза) увеличение уровня экспрессии генов ATФ-зависимых (lon1 и clpP) и цистеиновых протеиназ, которое предшествует росту холодоустойчивости проростков пшеницы. Поэтому можно

предположить, что повышение устойчивости в первые минуты и часы охлаждения связано с активацией экспрессии этих генов, которая, вероятнее всего, направлена на увеличение активности протеолитических ферментов, участвующих в деградации и модификации поврежденных белков, а также белков, уже невыполняющих в изменившихся условиях свои функции.

Сопоставление полученных нами данных с имеющимися в литературе показало определенное сходство в изменении экспрессии генов протеиназ у разных растений при действии на них неблагоприятной температуры. Так, экспрессия генов катепсин-В-подобных (CatB) цистеиновых протеиназ усиливается у растений ячменя при воздействии на них температуры 6 °C [5]. Влияние на растения томата температуры 4 °C вызывает увеличение мРНК, кодирующей цистеиновые протеиназы [14]. О важной роли генов цистеиновых протеиназ в защите клеток от повреждения свидетельствует увеличение их экспрессии в условиях засухи [15], засоления [10], аноксии [16], механического повреждения [7], обработки этиленом [8], а также в процессе старения [17].

Усиление экспрессии генов ингибиторов цистеиновых протеиназ, регулирующих активность соответствующих протеолитических ферментов, также показано нами в начальный период действия на проростки пшеницы низкой температуры. Следует отметить, что защитная роль фитоцистатинов (ингибиторов цистеиновых протеиназ) описана главным образом для растений, способных ингибировать пищеварительные протеиназы насекомых и нематод [3]. Считается, что фитоцистатины не вовлечены непосредственно в реакцию на абиотический стресс, однако усиление их синтеза показано при холодовом шоке у растений авокадо и ячменя [5]. Кроме того, в условиях высокой и низкой температуры, а также избыточного засоления в листьях и корнях каштана отмечен повышенный уровень транскриптов цистатинов [12]. Полученные нами и имеющиеся в литературе сведения об усилении экспрессии генов ингибиторов цистеиновых протеиназ указывают на их возможное участие в регуляции активности протеолитических ферментов и предотвращении распада вновь синтезированных белков на начальных этапах действия на растения низкой закаливающей температуры.

В неблагоприятных условиях белковые комплексы в составе мембран митохондрий и тилакоидов хлоропластов также могут стать объектом протеолитического воздействия. Полученные нами результаты показывают, что реакция растений на действие низкой закаливающей температуры сопровождается быстрой (через 1 ч) экспрессией lon1 reна, кодирующего Lon протеиназы, которые локализованы, главным образом, в митохондриях и тилакоидах хлоропластов и участвуют в деградации белков с участием АТФ [13]. Интересно, что в норме содержание в клетках Lon протеиназ сравнительно невелико и составляет всего около 0,1% от общего количества белка [11], а их повышенная продукция вызывает деградацию нормальных белков и в конечном итоге летальна для клетки [9]. Вероятно, отмеченное нами снижение экспрессии lon1 reна до исходного (контрольного) уровня уже на 2 сут закаливания можно рассматривать как свидетельство начавшихся процессов стабилизации белковых комплексов в клеточных органеллах и адаптации растений к низкой температуре в целом.

В наших опытах также установлено, что действие низкой закаливающей температуры сопровождается быстрой (через 30 мин) экспрессией clpP гена, которая предшествует росту холодоустойчивости растений. Вместе с тем, полученные данные показывают, что экспрессия гена clpP, кодирующего ClpP протеиназу хлоропластов, носит транзитный характер: ее уровень значительно снижается,

УСТОЙЧИВОСТЬ ОРГАНИЗМОВ К НЕБЛАГОПРИЯТНЫМ ФАКТОРАМ ВНЕШНЕЙ СРЕДЫ

когда устойчивость начинает расти, затем на 2 сут закаливания вновь увеличивается и далее возвращается к исходному уровню одновременно с максимальным повышением холодоустойчивости. Характер изменений экспрессии данного гена подтверждает его возможное участие в регуляции протеолиза белков хлоропластов не только на самых ранних этапах холодовой адаптации, но и при пролонгированном действии низкой температуры.

Следует также отметить, что по мере роста холодоустойчивости (через 2 сут охлаждения) изменения в экспрессии генов clpP, lon1, cp и генов, кодирующих фитоцистатины, становятся менее значительными, а при достижении устойчивости своего максимума, уровень экспрессии изучаемых генов возвращается к исходным значениям. Отсюда следует, что наиболее важные изменения в экспрессии генов протеолитических ферментов и их ингибиторов происходят именно в первые часы воздействия холода и являются частью тех изменений, которые приводят, в конечном счете, к повышению устойчивости растений.

ЛИТЕРАТУРА

- 1. *Балагурова Н.И.* Метод определения устойчивости растительных тканей к промораживанию / Н.И. Балагурова, С.Н. Дроздов, Н.И. Хилков. Петрозаводск: Карельский филиал АН СССР, 1982. 6 с.
- 2. Колесниченко А.В. Белки низкотемпературного стресса у растений / А.В. Колесниченко, В.К. Войников. Иркутск: Арт-пресс, 2003. 196 с.
- 3. *Мосолов В.В.* Участие протеолитических ферментов во взаимодействии растений с фитопатогенными микроорганизмами / В.В. Мосолов, Т.А. Валуева // Биохимия. 2006. Т. 8. С. 1034—1042.
- 4. Фролова С.А. Активность протеолитических ферментов и ингибиторов трипсина в листьях пшеницы в начальный период действия и в последействии низкой закаливающей температуры / С.А. Фролова, А.Ф. Титов // Изв. АН. Сер. биол. 2008. Т. 35. С. 549—552.
- 5. A cathepsin B-like cysteine protease gene from *Hordeum vulgare* (gene *CatB*) induced by GA in aleurone cells is under circadian control in leaves / M. Martinez [et al.] // J. Exp. Bot. 2003. Vol. 54. P. 951-959.
- 6. Beers E.P. Plant proteolitic enzymes: possible roles during programmed cell death / E.P. Beers, B.J. Woffenden, C. Zhao // Plant Mol. Biol. 2000. Vol. 44. P. 399-415.
- 7. Circadian expression and induction by wounding of tobacco genes for cysteine proteinases / H.J.M. Linthorst [et al.] // Plant Mol. Biol. 1993. Vol. 21. P. 685-694.
- 8. Ethylene-sensitivy regulates proteolytic activity and cysteine protease gene expression in petunia corollas / M.L. Jones [et al.] // J. Exp. Bot. 2005. Vol. 56. P. 2733-2744.
- Goff S.A. An increased content of protease La, the lon gene product, increases protein degradation and block growth in Escherihia coli / S.A. Goff, A.L. Goldberg // J. Biol. Chem. 1987. Vol. 262. P. 4508-4515.
- Jones J.T. A salt- and dehydration-inducible pea gene, Cyp15a, encode a cell-wall protein with sequence similarity to cysteine proteases / J.T. Jones, J.E. Mullet // Plant Mol. Biol. 1995. Vol. 28. P. 1055-1063.
- 11. Maurizi M.R. Protease and protein degradation in E. coli / M.R. Maurizi // Experienta. 1992. Vol. 48. P. 178-201.
- 12. Pernas M. Biotic and abiotic stress induce cystatine expression in chestnut / M. Pernas, R. Sanches-Monge, G. Salcedo // FEBS Letters. 2000. Vol. 467. P. 206-210.
- 13. Protein substrates and heat shock reduce the DNA-binding ability of Escherichia coli Lon protease / S. Sonezaki [et al.] // Appl. Microbiol. Biotechnol. 1995. Vol. 44. P. 484-488.
- 14. Schaffer M.A. Analysis of mRNA that accumulate in response to low temperature identifies a thiol protease in tomato / M.A. Schaffer, R.L. Fisher // Plant Physiol. 1988. Vol. 87. P. 431-436.
- 15. Structure and expression of two genes that encode distinct drought-inducible cysteine protein-ases in Arabidopsis thaliana / M. Koizumi [et al.] // Gene. 1993. Vol. 129. P. 175-182.
- Subbaiah C.C. A Ca²⁺-dependent cysteineprotease is assotiated with anoxia-induced root tip death in maize / C.C. Subbaiah, K.P. Kollipara, M.M. Sachs // J. Exp. Bot. - 2000. -Vol. 51. - P. 721-730.
- 17. Vacuolar cysteine proteases of wheat (Triticum aestivum L.) are common to leaf senescence induced by different factors / D.E. Martinez [et al.] // J. Exp. Bot. 2007. Vol. 58. P. 1099-1107.