Сентябрь, № 6

Сельскохозяйственные науки

2011

УДК 630*165.52:582.475.4(470.22)

БОРИС ВЛАЛИМИРОВИЧ РАЕВСКИЙ

кандидат сельскохозяйственных наук, старший научный сотрудник Института леса, Карельский научный центр РАН

raevski@drevlanka.ru

ХОД РОСТА ГЕОГРАФИЧЕСКИХ КУЛЬТУР СОСНЫ ОБЫКНОВЕННОЙ В КАРЕЛИИ

Обобщены и проанализированы данные по росту и развитию 45 происхождений сосны обыкновенной за 30-летний период. Выявлено, что происхождения сосны из северной подзоны тайги при перемещении в южном направлении сохраняются лучше, но растут медленнее местных вариантов и при этом имеют более высокую долю плодоносящих особей. Для более южных по отношению к месту испытаний происхождений характерна обратная закономерность. Сделан вывод, что для достижения большей продуктивности культур допустимо использовать семена более южного по отношению к месту закладки происхождения, но не более чем на 1,3° по широте.

Ключевые слова: географические культуры, сосна обыкновенная, происхождения, рост, сохранность

В 1960–70-е годы в развитых странах Европы при координирующей роли IUFRO осуществлялись масштабные международные программы по закладке географических культур важнейших лесных пород. Советский Союз в тех опытах не участвовал, но самостоятельно осуществлял ряд аналогичных. В частности, по сосне обыкновенной (Pinus sylvestris L.) в 1974-1977 годах закладывалась серия географических культур с общим участием 113 происхождений на 33 участках, расположенных по всей территории страны [9]. В Карелии были созданы два участка географических культур сосны этой серии: в северной подзоне тайги (Амбарнское лесничество Чупинского лесхоза, 12 га, 29 провениенций) и в средней подзоне (Кумсинское лесничество Медвежьегорского лесхоза). Однако северный участок географических культур в силу ряда причин утратил свою информативность. Только для участка № 5 указанной серии в районе г. Медвежьегорска (63°20' с. ш., 34°03' в. д., 100 м над уровнем моря) удалось провести ретроспективный анализ данных по сохранности и росту провениенций сосны обыкновенной за всю историю существования опыта. Далее в тексте термины «происхождение», «провениенция» и «вариант» употребляются как синонимы.

ОБЪЕКТЫ И МЕТОДИКА ИССЛЕДОВАНИЙ

Культуры были созданы под научно-методическим руководством сотрудников Института леса в 1977 году на раскорчеванной вырубке изпод сосняка вересково-брусничного IV класса бонитета [6]. Обработка почвы не производилась, за исключением огневой очистки в 1976 году. Площадь культур — 15,2 га, в том числе полезная — 13,9 га. Двухлетние сеянцы из открытого грунта высаживались по вариантам в блоки 0,10 и 0,15 га с размещением 0,8 х 2,5 м, густотой око© Раевский Б. В., 2011

ло 5000 шт./га. Всего в трехкратной повторности были высажены 45 происхождений с диапазоном по широте от Мончегорска (67°51' с. ш.) до Смоленска (54°00' с. ш.) и от Эстонии (26°28' в. д.) до Якутии (130°00' в. д.) по долготе (рис. 1). В период наблюдений на участке осуществлялись почвенно-химические и лесопатологические обследования [1], [6]. Учет сохранности и замеры биометрических показателей до 1989 года проводились ежегодно, а затем через 5 лет [5]. Исследования в культурах велись в соответствии с методикой ВНИИЛМ [8].

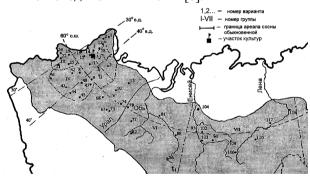


Рис. 1. Происхождения сосны обыкновенной, представленные в географических культурах (штрихпунктирными линиями показаны условные границы групп вариантов)

Во всех повторностях каждого варианта обследовались и пересчитывались все растения. Сохранность (%) определялась как отношение количества сохранившихся живых растений к общему числу высаженных. По жизнеспособности учетные деревья в зависимости от прироста, степени развития кроны, густоты охвоения, цвета и продолжительности жизни хвои разделялись на здоровые, ослабленные и усыхающие (1, 2, 3 балла соответственно). Отмечалось наличие / отсутствие свежих шишек текущего года (как альтернативный признак). Диаметр на уров**66** Б. В. Раевский

не груди (с точностью до 1 мм) и высота (с точностью до 10 см) измерялись у 50 растений в каждой повторности каждого экотипа. Все учетные растения оценивались по стройности ствола: 1 – прямой, 2 – слабо искривленный, 3 – сильно искривленный, коленчато-вильчатый, 4 – кустовидный (основной ствол плохо выражен). Первичные данные обрабатывались общепринятыми методами биометрии [2], [7]. Определялись статистические показатели роста по происхождениям и группам происхождений и запас древесины на 1 га [4]. Сохранность, рост и развитие географических культур анализировались как отдельно по вариантам, так и путем объединения последних в группы. Сравнение отдельных происхождений проводилось по отношению к варианту 14 как к местному (Медвежьегорский район), а сравнение групп – по отношению к группе II, принятой в качестве контроля (табл. 1). Данная группа представляет среднюю подзону тайги Европейского Севера России, сам же участок культур заложен на границе северной и средней подзон тайги, проходящей в Карелии в районе г. Медвежьегорска. Последний раз сплошное обследование культур было осуществлено осенью 2007 года.

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

На вересково-паловых вырубках главными лесокультурными особенностями почв являются их бедность питательными веществами, слабая водоудерживающая способность, значительные суточные колебания температур на поверхности субстрата. Посаженные сеянцы оказываются в очень жестких экологических условиях.

Таблица 1 Группы происхождений в географических культурах сосны (Кумсинское лесничество)

№ группы,	№ варианта (лесхоз)	Наимено- вания зон	Географические координаты		
подвид	(JICCAUS)	вания зон	с. ш.	В. Д.	
I lapponica	1 (Мончегорский), 2 (Кандалакшский), 3 (Пинежский), 12 (Чупинский), 18 (Кемский)	Северная подзона тайги севера европейской части России	67°51'- 64°45'	34°30°– 33°00'	
II sylvestris	4 (Плесецкий), 9 (Тотемский), 14 (Медвежьегорский), 15 (Пряжинский), 16 (Сортавальский), 17 (Пудожский)	Средняя подзона тайги севера европейской части России	62°54'- 60°00'	43°00'– 30°28'	
III sylvestris	19 (Лисинский), 21 (Великолукский), 22 (Псковский), 23 (Крестецкий), 24 (Эльвасский)	Южная подзона тайги Северо- Запада европейской части России	60°00'– 56°23'	32°28'– 26°28'	
IV sylvestris	8 (Череповецкий), 41 (Рославльский), 42 (Бежецкий), 43 (Куровский), 44 (Ковровский), 45 (Городецкий), 47 (Мантуровский), 48 (Костромской)	Центральные области европейской части России	59°20'- 54°00'	44°28'– 33°00'	

V sylvestris	10 (Корткеросский), 13 (Каджеромский), 67 (Воткинский), 68 (Слободской), 73 (Оханский), 74 (Красновишерский)	Северо- Восток европейской части России, Северный и Средний Урал	64°40'– 57°03'	57°00'- 50°06'
VI sibirica	77 (Тавдинский), 78 (Ивдельский), 81 (Сургутский), 82 (Заводоуковский), 86 (Сузунский), 88 (Колпашевский), 91 (Боровлянский)	Западная Сибирь	61°25'- 52°50'	84°27'- 60°24'
VII sibirica	93 (Красноярский), 94 (Богучанский), 102 (Северо- Енисейский), 103 (Енисейский), 104 (Туруханский), 109 (Катангский), 117 (Олекминский), 118 (Якутский)	Средняя и Восточная Сибирь	66°00'– 58°00'	130°00'– 88°00'

В год посадки средняя приживаемость по участку составила 70,1 %. Контрольная группа II занимала только пятое место (71,1 %), а местный вариант 14 — только двадцатое (74,4 %). Самые низкие показатели сохранности оказались у групп III и IV (южная подзона тайги Северо-Запада и Центра России). В числе лидеров были группы V, VII, I, VI, представляющие Северо-Восток европейской части России и Сибирь, то есть районы с континентальным климатом, где весной засушливый период достаточно ярко выражен (рис. 2).

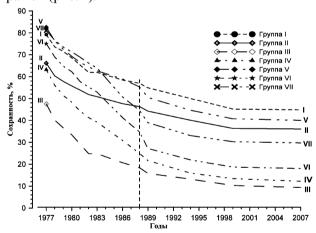


Рис. 2. Динамика сохранности географических культур сосны

По данным В. И. Крутова [1], в последующие три года одной из основных причин отпада во всех вариантах были насекомые, ответственные за 55 % всего отпада. Наибольшая гибель растений была вызвана восточным майским хрущом (Melolontha hippocastani Fabr.) и большим сосновым долгоносиком (Hylobius abietis L.) – 90–95 % всего отпада от насекомых. Определенное влияние имела и заболеваемость снежным шютте (Phacidium infestans) – 22 % всего отпада. Сильнее всего пострадали по данной причине группы III и IV – 27,7 и 29,3 % всего отпада соответственно.

Происхождения остальных групп были в 2–3 раза устойчивее. Прочие причины главным образом абиотического характера составили 23 % общего отпада. На пятый год участие всех видов насекомых и грибных болезней в отпаде культур существенно снизилось.

В первое пятилетие жизни культур значительной переранжировки климатипов по сохранности еще не наблюдалось, но определенные тенденции уже наметились (рис. 2). Отпад в культурах происходил в течение всего наблюдаемого периода у большинства происхождений – 2–3 %, а у некоторых – 5-7 % в год. Как показано на рис. 2 вертикальной пунктирной линией, наблюдаемое в настоящее время ранжирование по степени сохранности сложилось в 12-летнем возрасте и с того момента уже оставалось стабильным. К 31-летнему возрасту относительно хорошо сохранился контрольный вариант 14 из местных семян (40,9 %). Только 11 вариантов из 45 в той или иной мере превосходили его по этому показателю. Динамика сохранности варианта 14 выглядит следующим образом: 18 лет – 53.5 %, 23 года — 41,2 %, 31 год — 40,9 %. Контрольная группа II в 2007 году при сохранности 36,1 % уступала на 8,7 % группе І из северной подзоны тайги. Группа II в 18-летнем возрасте имела сохранность 40,1 %, в 23-летнем – 36,3 %, в 31-летнем – 36,1 %. Разница с группой I по указанным выше возрастам составила 9,9, 8,9 и 8,7 % соответственно. Обе эти группы постепенно заняли лидирующее положение. Особо следует отметить динамику показателя сохранности группы V, представляющей Северо-Восток европейской части России (рис. 2). В 10-летнем возрасте (1986 год) она была абсолютным лидером по сохранности и уступила первенство группе I только после особо холодного и дождливого вегетационного сезона 1987 года. В течение последних 20 лет роста культур эта группа стабильно занимает промежуточное положение между группами I и II. Самая низкая сохранность отмечена в группах III, IV и VI (южная подзона тайги Северо-Запада РФ, центральные области европейской части России и Западная Сибирь). Происхождения из Восточной и Средней Сибири (группа VI) занимают промежуточное положение (рис. 2). В целом по культурам сохранность в 18-, 23- и 31-летнем возрастах составила 31,3, 27,9 и 27,2 % соответственно. Поскольку приживаемость культур в 1977 году равнялась 70,7 %, это соответствует итоговому падению показателя сохранности за истекший период в 2,6 раза. В итоге группы I, II, V не потеряли ни одного варианта полностью. Группа III утратила целиком 3 варианта, группа IV - 2, группа VI - 4, группа VII – 3. Различия по сохранности, обусловленные фактором географического происхождения. очевидны. Как и следовало ожидать, в данных условиях провениенции из северной и средней подзон тайги Севера и Северо-Запада европейской части России в итоге оказались наиболее адаптированными. В исследуемых культурах обнаружен ряд статистически достоверных (выделены жирным шрифтом) корреляций между географическими координатами места происхождения вариантов и показателями их роста и развития. В частности, была выявлена тесная связь между широтой происхождения семян и сохранностью вариантов (табл. 2).

Таблица 2
Коэффициенты корреляции показателей культур с географической широтой и долготой мест происхождения вариантов

	•	•
Параметры	Северная широта*	Восточная долгота*
Диаметр, см	-0,49	-0,27
Стройность ствола, балл	-0,09	0,46
Жизнеспособность, балл	0,54	0,38
Высота, м	-0,49	-0,27
Доля плодоносящих особей, %	0,74	0,09
Сохранность, %	0,71	0,17

Примечание. * - P = 0.05, N = 33.

Согласно рассчитанной регрессионной зависимости ($y = -0.291x^2 + 39.62x - 1297$; $R^2 = 0.54$), при создании лесных культур в районе 63° с. ш., где расположен опыт, использование сосновых семян более северного происхождения ($63^\circ - 66^\circ 40'$ с. ш.) способно увеличить их сохранность (максимум на 6.7%), в то время как использование более южных семян ($63^\circ - 60^\circ 40'$ с. ш.) может снизить этот показатель на 9.6% (рис. 3). Таким образом, субмеридиональное перемещение семенного материала даже в пределах границ Республики Карелии ($60^\circ 40' - 66^\circ 40'$ с. ш.) способно повлиять на показатель сохранности культур сосны.

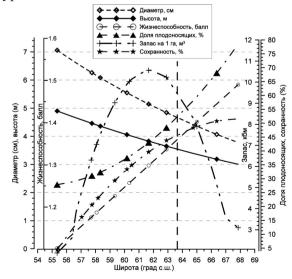


Рис. 3. Регрессия ряда показателей географических культур в градиенте широты

68 Б. В. Раевский

Анализ хода роста культур в высоту по группам провениенций (рис. 4) дает картину практически обратную динамике сохранности. Группы северного происхождения (I и V) оказываются в числе самых медленно растущих. Переранжировка климатипов (вертикальные пунктирные линии на рис. 4) по данному показателю происходила практически в течение всего периода роста культур, последняя отмечена в районе 25летнего возраста.

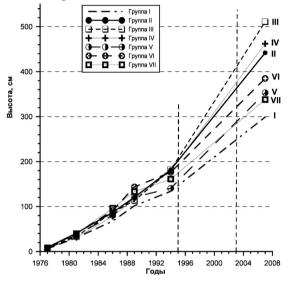


Рис. 4. Ход роста групп происхождений в высоту

Таким образом, определились две схожие по форме, но противоположные по содержанию тенденции в сохранности и росте провениенций сосны обыкновенной. В таежной зоне происхождения сосны из северной подзоны тайги при перемещении в южном направлении сохраняются лучше, но растут медленнее местных вариантов и при этом имеют более высокую долю плодоносящих особей. Для более южных по отношению к месту испытаний происхождений характерна обратная закономерность. Интегральным результатом сочетания этих противоречивых тенденций является параболическая форма кривой запаса варианта в пересчете на гектар (рис. 3). Что касается оценки жизнеспособности растущих особей, то своеобразие ситуации заключается в том, что у северных происхождений отмечается значительная доля живых, но в различной степени ослабленных особей, в то время как немногочисленные сохранившиеся растения более южных происхождений имеют более здоровый вид. В табл. 3 приведены данные по достоверности различий контрольной группы в сравнении с остальными. Как следует из табл. 3, группа II имела достоверное превосходство по диаметру, стройности ствола и жизнеспособности перед группами I, V, VI и VII. Самыми медленно растущими оказались происхождения из группы I, которые уступали контрольной группе II по диаметру на 40,4 %.

Таблица 3 Достоверность различий групп происхождений по ряду параметров*

№ груп- пы	N	Диаметр, см	Т- крите- рий	Стройность ствола, балл	Т- кри- терий		Т- крите- рий
I	674	3,1	12,40	1,7	-7,00	1,5	-8,70
II	850	5,2	_	1,4	_	1,2	_
III	132	6,3	-3,10	1,5	-2,25	1,1	2,30
IV	550	5,5	-1,80	1,6	-4,00	1,1	4,20
V	550	3,9	7,11	1,5	-3,56	1,3	-2,36
VI	350	4,4	3,74	1,7	-8,26	1,4	-4,27
VII	550	3,6	8,48	1,8	-10,20	1,5	-7,90
Общее сред- нее	3656	4,4	-	1,6		1,3	_

Примечание. * — стандартные значения критерия Стьюдента (tst) при $n > 176 \{1,96-2,58-3,29\}$

Данные табл. 4 свидетельствуют об очень значительном преимуществе, с которым, по результатам 30-летних испытаний, лидирует группа местных происхождений (II). Ее ближайшие географические соседи (группы III и V) имеют практически двукратное отставание по запасу, обусловленное либо низкой сохранностью, либо замедленным ростом.

Таблица 4
Основные таксационные показатели групп происхождений сосны

<u>№</u> группы	Диаметр, см	Высота,	Сохранность,	Запас, м ³ /га	Ранг по запасу
I	3,1	3,0	42,7	4,4	7
II	5,2	4,40	36,7	12,2	1
III	6,3	5,11	10,1	5,2	6
IV	5,5	4,60	14,2	5,5	5
V	3,9	3,50	39,1	6,6	2
VI	4,4	3,90	29,6	6,5	3
VII	3,6	3,40	39,6	5,9	4
Общее среднее	4,4	3,90	32,1	7,2	_

ЗАКЛЮЧЕНИЕ

Безусловно, стремясь к надежности и предсказуемости результатов при создании культур сосны, предпочтение следует отдавать семенному материалу местного происхождения, заготовленному в сходных с лесокультурной площадью условиях местопроизрастания. Для центральнокарельского семенного подрайона карельского семенного района (64°30'-63°00' с. ш.), на южном пределе которого расположен наш участок, согласно действующему лесосеменному районированию [3], потенциальным поставщиком семян может быть вся территория Карелии в диапазоне 60°40'- 66°40'. Однако ход кривой за-

паса варианта на рис. 5 показывает, что для достижения большей продуктивности культур полезно использовать семена более южного по отношению к месту закладки происхождения (не более чем на 1,3° по широте).

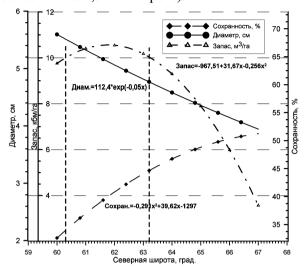


Рис. 5. Регрессия сохранности, среднего диаметра и запаса варианта в градиенте широты

Несомненно, следует признать возможным использование здесь семян более северного происхождения. Но, во-первых, как правило, вопрос так не ставится, поскольку урожай таких семян всегда меньше. Во-вторых, положительный эффект от повышенной сохранности культур все же не будет компенсировать их несколько замедленный рост, что в итоге скажется на накоплении запаса. В общем случае для Карелии может быть сформулировано следующее правило: в диапазоне с 30°00' по 38°00' в. д. происхождение семян для посева и посадки леса не должно отличаться более чем на 1,3° по широте от соответствующей координаты лесокультурной площади.

Характер выявленных зависимостей показывает, что лесосеменное районирование Карелии, по всей видимости, следует совершенствовать в направлении создания системы лесосеменных зон, ориентированных в субширотном направлении.

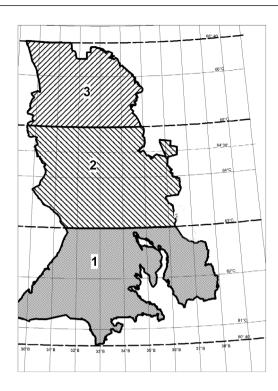


Рис. 6. Предлагаемые лесосеменные зоны для сосны обыкновенной

Южнокарельская зона (№ 1) должна располагаться между 60°40'...63° с. ш., следующая (центральнокарельская, № 2) – между 63°...65° с. ш., а самая северная (северокарельская, № 3) – в районе 65°...66°40' с. ш. Таким образом, ширина предлагаемых лесосеменных зон составила бы 2°20', 2°00' и 1°40' соответственно. Следует отметить, что данных одного опытного участка, даже несмотря на его удачное расположение, в общем недостаточно, чтобы сделать окончательные выводы в отношении перемещения семенного материала сосны в масштабах всей Карелии, особенно для ее северной части. Однако других информативных участков географических культур сосны в настоящее время в республике нет, и создание такого рода новых опытов в обозримой перспективе не планируется.

СПИСОК ЛИТЕРАТУРЫ

- 1. Крутов В. И. Влияние лесопатологических факторов на приживаемость и сохранность географических культур сосны в Карельской АССР // Адаптация древесных растений к экстремальным условиям среды: Тез. докл. Всесоюзн. совещ. 13-15 августа 1981 г. Петрозаводск, 1981. С. 68-70.
- 2. Лакин Г. Ф. Биометрия: Учебник для вузов. М.: Высш. шк., 1973. 343 с.
- 3. Лесосеменное районирование основных лесообразующих пород в СССР. М.: Лесн. пром-сть, 1982. 368 с. 4. Казимиров Н. И., Кабанов В. В. Лесотаксационные таблицы. Петрозаводск, 1976. 32 с.
- 5. Малышев И. И., Щербакова М. А. Сравнительная оценка экотипов сосны и ели разного происхождения и выделение из них наиболее перспективных для Карелии // Селекция и лесное семеноводство в Карелии: Сб. ст. Петрозаводск,
- 6. Марьин Е. М. Географические культуры сосны обыкновенной в Карелии // Селекция и лесное семеноводство в Карелии: Сб. ст. Петрозаводск, 1979. C. 47–59.
- Плохинский Н. А. Биометрия: Учебник для вузов. М.: Высш. шк., 1970. 343 с.
- 8. Проказин Е. П. Изучение имеющихся и создание новых географических культур. Пушкино, 1972. 52 с.
- 9. Shutayev A. M., Giertych M. Height growth variation in a comprehensive Eurasian provenance experiment of *Pinus* sylvestris L. // Silvae Genetica. 1997. Vol. 46(6). P. 332–348.