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Abstract. The widespread use of artificial nestboxes has led to significant advances in our knowledge of the ecology,
behaviour and physiology of cavity nesting birds, especially small passerines. Nestboxes have made it easier to perform
routine monitoring and experimental manipulation of eggs or nestlings, and also repeatedly to capture, identify and
manipulate the parents. However, when comparing results across study sites the use of nestboxes may also introduce
a potentially significant confounding variable in the form of differences in nestbox design amongst studies, such as their
physical dimensions, placement height, and the way in which they are constructed and maintained. However, the use
of nestboxes may also introduce an unconsidered and potentially significant confounding variable due to differences
in nestbox design amongst studies, such as their physical dimensions, placement height, and the way in which they are
constructed and maintained. Here we review to what extent the characteristics of artificial nestboxes (e.g. size, shape,
construction material, colour) are documented in the ‘methods’ sections of publications involving hole-nesting passer-
ine birds using natural or excavated cavities or artificial nestboxes for reproduction and roosting. Despite explicit previ-
ous recommendations that authors describe in detail the characteristics of the nestboxes used, we found that the
description of nestbox characteristics in most recent publications remains poor and insufficient. We therefore list the
types of descriptive data that should be included in the methods sections of relevant manuscripts and justify this by
discussing how variation in nestbox characteristics can affect or confound conclusions from nestbox studies. We also
propose several recommendations to improve the reliability and usefulness of research based on long-term studies of
any secondary hole-nesting species using artificial nestboxes for breeding or roosting.

Key words: methods, nestboxes, nest sites, passerines, secondary cavity-nesting birds, field experiments, tit, flycatcher,
Ficedula, Parus, Cyanistes

Received — Aug. 2009, accepted — April 2010



2 M. M. Lambrechts et al.

INTRODUCTION

Half of the avian orders use some form of cav-
ity for nesting or roosting (Gill 2007), with up
to 30% of the bird species present in some loca-
tions being cavity-nesters (Newton 1994, Bai &
Miihlenberg 2008). While primary hole-nesters
such as woodpeckers are able to excavate their
own nest holes in trees, obligate secondary hole-
nesters do not have the physical force to drill large
holes in hard wood, although some are capable of
modifying or enlarging existing cavities in dead or
decaying trees (Newton 1994, Schepps et al. 1999,
Martin & Norris 2007, Atienzar et al. 2009).
Consequently, secondary hole-nesters must rely
upon natural tree cavities or unoccupied holes
excavated by primary hole-nesters (Martin &
Eadie 1999, Remm et al. 2006). Thus, the availabil-
ity and characteristics of tree holes suitable for sec-
ondary hole-nesters is partly influenced by the
activity and abundance of primary hole-nesting
species, which in turn depend upon the character-
istics of the tree species present (e.g. size and age,
architecture, hardness) as well as the activity of
other taxonomic groups, such as micro-organisms
(including fungi), insects, amphibians, reptiles,
and mammals (Conner 1977, Wilson et al. 1991,
Bednarz et al. 2004, Jackson & Jackson 2004, Ojeda
et al. 2007, Wesotowski 2007, Camprodon et al.
2008, Koch et al. 2008, Lambrechts et al. 2008,
Matsuoka 2008). Fluctuations in external factors
such as ambient temperature and the intensity
and direction of wind or rain can also influence
the availability and characteristics of holes (e.g.
East & Perrins 1988, Walankiewicz 1991,
Wesolowski et al. 2002). For instance, persistent
strong winds or rain may increase the erosion of
existing small cavities, blow branches from trees
so that new cavities are created, or blow down
dead trees containing cavities.

Each natural hole found in a dead or living tree
probably has a unique combination of variables,
such as the position, orientation and shape of the
entrance hole, and the cavity’s material, wall
thickness, depth, diameter, floor area, shape,
colour, volume, internal surface, light conditions
and age (van Balen et al. 1982, Nilsson 1984, East
& Perrins 1988, Rendell & Robertson 1989, Carlson
et al. 1998, Czeszczewik & Walankiewicz 2003,
Wesolowski & Rowifiski 2004, Mazgajski 2007b;
Table 1). The size or other characteristics of cavities
occupied by secondary hole-nesting birds can
vary within and between species (Table 1). Studies
of these cavities can provide the necessary

background data for the better design of re-
search that uses man-made nestboxes (e.g.
Nilsson 1975, 1984, Meller 1989, 1992, Wesolowski
2007).

The use of nestboxes to study secondary
hole-nesters

Many secondary hole-nesting species readily
breed in man-made artificial cavities, most of
which are nestboxes placed against tree trunks,
fences or walls, or erected on posts (von
Haartman 1969, Kibler 1969, Perrins 1979, Pikula &
Beklova 1980, Newton 1994, Lesifski 2000, Zingg
et al. 2010). The use of such artificial cavities in
avian research has greatly advanced our under-
standing of breeding behaviour in cavity-nesting
species. Nestboxes allow researchers to perform
routine monitoring and experimental manipula-
tion of eggs or nestlings, as well as repeatedly cap-
ture, identify and manipulate the parents or off-
spring (e.g. Sanz 1998, Visser et al. 2003, Both et al.
2004, Griffith et al. 2008). The use of nestboxes
often increases the local population of secondary
hole-nesters available for study, and it may also
help to better control, reduce, or eliminate sto-
chastic effects associated with abiotic factors or
predation, thus increasing sample sizes and facili-
tating data analyses or interpretation. Since the
pioneering investigations of G. Wolda in the
Netherlands (Kluyver 1951, Lack 1955), artificial
nestboxes have been used to aid research in a
range of sub-disciplines of the behavioural and
environmental sciences e.g. behavioural ecology,
cognitive ecology, conservation biology, ecotoxi-
cology, evolutionary ecology, functional ecology,
molecular ecology, population ecology (e.g. Busse
& Olech 1968, Perrins 1979, Lundberg & Alatalo
1992, Koenig et al. 1992, Newton 1994, Schlaepfer
et al. 2002, Blondel et al. 2006, Seppédnen &
Forsman 2007, Slagsvold & Wiebe 2007, Mazgajski
2008, Liedvogel et al. 2009, Mand et al. 2009,
Holveck et al. 2010, Van den Steen et al. 2010,
Zingg et al. 2010). Nestbox studies have also con-
tributed significantly to the development of life-
history theory in free-ranging organisms (Clut-
ton-Brock 1988, Newton 1989) because of the ease
with which manipulations can be performed.
Consequently, secondary hole-nesting passerines
have become one of the most intensively investi-
gated free-living bird groups of the world (e.g.
Riddington & Gosler 1995), and occupy top posi-
tions with respect to the total number of papers
returned by two ISI Web of Science searches of
passerine studies by common and scientific name
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(Average number of publications of the two
searches in 2010 for cavity-nesters: Parus major —
1807, Sturnus vulgaris — 1293, Passer domesticus —
999, Ficedula hypoleuca — 880, Cyanistes caeruleus —
756, Tachycineta bicolor — 744, Sialia sialis — 414
versus non-cavity nesters: Hirundo rustica — 663,
Melospiza melodia — 609, Agelaius phoeniceus — 488,
Carpodacus mexicanus — 335).

However, studies involving birds breeding in
nestboxes have been criticized on the grounds
that the boxes differ in several ways from natural
or excavated cavities, and that avian research
in free-ranging populations is overwhelmingly
dominated by a few ‘classic’ model systems.
Consequently results derived from these studies
may fail to reflect natural variation potentially
reducing their general validity or applicability
(e.g. Nilsson 1975, Meller 1989, 1992, but see
Koenig et al. 1992, Wesotowski 2007). For instance,
van Balen et al. (1982) cites the main difference
between natural holes and artificial nestboxes
erected in the same location as a higher rate of
nest failure in natural holes because of water log-
ging or competition from bigger animals, factors
that are often excluded when nestboxes are used.
Whether nestboxes are safer than natural cavities
from nest predators or competitors may depend
on differences in height or positioning between
artificial and natural cavities (Nilsson 1984,
McCleery et al. 1996), or whether protective devices
have been added to the nestboxes to reduce pre-
dation. For instance, metal plates or wire mesh fit-
ted around the entrance hole of nestboxes may
prevent the hole being enlarged by woodpeckers
or mammals, and pipes placed in the entrance-
hole may prevent predators from reaching the
contents. Also, treating wooden nestboxes with
chemicals, such as preservatives or pesticides,
may prevent them from decay due to fungal rot or
burrowing arthropods (e.g. Kibler 1969, Nilsson
1984, McCleery et al. 1996, Miller 2002, Main-
waring & Hartley 2008, Skwarska et al. 2009).

Nestboxes are also designed so that researchers
can frequently inspect their contents which may
cause rapid changes in the chemical environment
within the nest (e.g. CO, concentrations influenc-
ing attractiveness of flying insects exploiting avian
hosts — see Tomas et al. 2008) or micro-climate
that do not occur in natural or excavated holes.
Nestbox studies may also be prone to biased sam-
pling because they may only be occupied by indi-
viduals or species that accept artificial cavities,
while the remainder retain a preference for
natural or excavated cavities (Dhondt 2007). The

proportion of individuals that use either natural
or artificial holes may therefore depend on the dif-
ference in quality between the two or the distribu-
tion of individual preferences for different breed-
ing sites. The interval between the placement of
nestboxes and the start of a study may also result
in biased sampling. For instance, if nestboxes are
initially erected just a few weeks before the start
of the breeding season of resident species, non-
territorial first-year birds may be attracted to
study sites that do not provide opportunities for
winter roosting in natural cavities.

While there are many benefits of the intensive
study of model species, there is an obvious danger
of basing our general understanding of birds on
such a small number of cavity-nesting species that
share a similar ecology and are mostly located in
just one region of the world (Europe). To date,
while there are many studies of a variety of hole-
nesters in North America they have not dominat-
ed the literature to the same extent as have the
European studies (e.g. see also Chamberlain et al.
2009). There are whole regions of the world in
which nestboxes have never been used, although
studies have recently been published on avian
nestbox exploiters in Australia (Griffith et al. 2008),
Argentina (Massoni et al. 2006, Cockle & Bodradi
2009, Llambias & Fernandez 2009), Chile (Moreno
et al. 2005, 2007) and China (Wang et al. 2008) (but
see for instance older studies in Tryjanowski et al.
2006 and Evans et al. 2009 for New Zealand or
Eguchi 1980 for Japan). It should also be pointed
out that nestboxes in some countries are widely
distributed throughout the countryside by
forestry administrations or environmental organi-
zations (e.g. Poland, Spain). For instance, thou-
sands of nestboxes of a specific design have been
erected for >50 years in many Polish and Spanish
forests, constituting an unavoidable part of the
environment for hole-nesters that does not
depend on researchers and that may have
induced significant selective pressures on popula-
tions.

There exist biases in the material used (e.g.
nestbox design), the choice of the model species,
and the environment (e.g. European woodland)
in which research is conducted. The extent to
which all this is really a problem is difficult to
evaluate since few studies have compared biolog-
ical aspects of birds which breed in nestboxes
and those which breed in natural or excavated
cavities at the same location (but see e.g. East &
Perrins 1988, Johnson & Kermott 1994, Miller 2002,
Llambias & Ferndndez 2009 and references
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therein). However, this issue can be evaluated
indirectly by examining whether the characteris-
tics of artificial nestboxes and their occupants
differ from those of natural or excavated nest-
holes (e.g. Dhondt 2007), and if there are differ-
ences, whether these would affect the likelihood
of supporting or rejecting a particular hypothesis.

The ecological significance of variation in nest-
box characteristics

Several studies indicate that the characteristics
of each nestbox influence the physical environ-
ment (e.g. ambient temperature, humidity, light
reflectance) or biotic environment (e.g. presence
and biology of other organisms, parent-offspring
interactions) within the nest-chamber, and there-
fore the development or survival of the eggs or
nestlings, or the survival or physical condition of
adults using nestboxes for reproduction or roost-
ing (Lohrl 1973, van Balen 1984, Slagsvold &
Amundsen 1992, Mazgajski 2007a, Dhondt et al.
2010). The internal size of the nest cavity may also
influence clutch size, depending on the size
ranges of the nest-chamber or species involved
(e.g. Karlsson & Nilsson 1977, Moeed & Dawson
1979, Lohrl 1980, van Balen 1984, Gustafsson &
Nilsson 1985, Slagsvold & Amundsen 1992). In
Great Tits Parus major, for instance, an experiment
in which nestboxes were replaced with a differ-
ent-sized box shortly after the onset of egg laying
found that size differences in subsequently-pro-
duced clutches may be as large as the variation in
clutch size observed across distinct forest types
(e.g. > 2 eggs, Lohrl 1973, 1980, Sanz 1998). In Pied
Flycatchers Ficedula hypoleuca, this may not be
related to an adjustment of clutch size to cavity
size per se, but could for example result from
females laying larger clutches selecting larger cav-
ities for breeding or spending more time to find a
large nest cavity (Slagsvold 1987).

Several other variables seem intuitively likely
to affect whether a nestbox is occupied, and if so,
the success of each breeding attempt. For exam-
ple, erecting boxes of varying dimensions at the
same location has shown that different individu-
als or species use cavities with different character-
istics. The size and position (e.g. height, orienta-
tion) of the entrance hole appears to determine
which individual or species will occupy nestboxes
and how their life-history traits will be expressed
in the presence of other organisms (e.g. Kluyver
1951, Nilsson 1984, Barba & Gil-Delgado 1990,
Dhondt & Adriaensen 1999, Zingg et al. 2010). For
example, large individuals or species cannot enter

small entrance holes or nestbox chambers simply
because of physical constraints. Furthermore,
smaller individuals or species may prefer to breed
in nestboxes with small entrance holes, particular-
ly those located high in trees, to reduce risks relat-
ed to predation or competition (L6hrl 1970, 1977,
Slagsvold 1975, Nilsson 1984, Newton 1994, Sorace
& Carere 1996).

A given nestbox type may be preferred in one
environment and yet disfavoured in another. For
instance, local meteorological effects may influ-
ence the preferences for certain nest-cavities
with birds avoiding those with holes oriented in
the direction of prevailing wind or rain (e.g.
Goodenough et al. 2008). Orientation of nests has
been found to influence site selection of natural
cavities and artificial cavities in Tree Swallows
Tachycineta bicolor (Rendell & Robertson 1994,
Ardia et al. 2006), probably because internal nest
temperatures differ as a function of orientation
(Ardia et al. 2006). Orientation of occupied nest-
boxes may also be influenced by the location of
conspecifics (Mennill & Ratcliffe 2004). According
to Kluijver (1951), cavity preferences may differ
between males and females and vary seasonally.
Birds may only avoid nestboxes with larger holes
in areas with high perceived predation risk (e.g.
Sorace & Carere 1996). The cleaning practices of
nestboxes may also affect the choice of nestboxes.
(Mazgajski 2007a). For example, Pied Flycatchers
may gain time benefits in nest building if the old
nest is not removed (Orell et al. 1993, Mappes et
al. 1994), House Wrens Troglodytes aedon may pre-
fer nestboxes containing old nests because they
provide evidence of previous success at that loca-
tion (Johnson 1996, Pacejka & Thompson 1996), or
Great Tits may avoid nestboxes containing old
nests with many fleas (Rytkénen et al. 1998). Thus,
the choice and location of nestbox type may inter-
act with other environmental factors, such as the
availability and properties of natural cavities, and
significantly influence the outcome of ecological
field investigations.

To examine whether scientists working with
secondary hole-nesting passerines have acknowl-
edged the significance of variation in nestbox
design, we assessed whether nestbox characteris-
tics have been documented in the ‘methods’ sec-
tions of publications or incorporated into statisti-
cal analyses of long-term databases. We also dis-
cuss how variation in nestbox characteristics can
affect or confound conclusions from nestbox stud-
ies and propose several recommendations to
improve future research.
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METHODS

Three papers published over 15 years ago dis-
cussed the potential artefacts associated with the
use of nestboxes, but also emphasised that many
scientists simply did not report what they did
with their nestboxes (Meller 1989, 1992, Koenig et
al. 1992). Field ornithologists were urged to: 1)
improve the design of their nestboxes so that they
mimic more closely the characteristics of natural
or excavated holes and 2) describe the characteris-
tics of their boxes and the procedures used for
maintaining boxes to allow for the exact replica-
tion of protocols across studies (see also Kelly
2006). To assess whether subsequent investiga-
tions followed these recommendations, we exam-
ined the methods section of publications involv-
ing the most commonly investigated hole-nesting
birds. We divided the papers into two groups:
those published before the recommendations of
Koenig et al. (1992) and Meller (1992) (“older”
publications), and those published from 1992
onwards (“more recent” publications). Based on
the recommendations of Mgller (1989), we pre-
dicted that descriptions of nestbox characteristics
would be more frequent among articles published
from 1992 onwards. We located relevant publica-
tions by using the common or scientific (current or
older) names of secondary hole-nesting passer-
ines as key words in the leading electronic data-
bases (ISI Web of Science, Biblio-Vie, BiblioSHS)
and also searching the extensive collection of
reprints possessed by P Isenmann (CEFE-
Montpellier). We searched the reference section of
each of these publications to identify other rele-
vant publications that we had not previously
encountered because they were not electronically
indexed. We are aware that publications are often
not independent units, but we have chosen this
entity because it does give the probability that a
new reader misses the relevant information in the
first paper they read. We surveyed a total of 696
publications from 108 different journals, of which
594 (85%) involved a single species. These publica-
tions concerned 12 frequently investigated sec-
ondary hole-nesting species, most of which were
Eurasian tits (Paridae) or old world flycatchers
(Muscicapidae) (Fig. 1).

RESULTS AND DISCUSSION

Our review produced four main results,
leading to the overall conclusion that nestbox

characteristics are variable and often unreported
in the scientific literature and that the significance
of these characteristics is often either ignored or
underappreciated.

1. Detailed descriptions of nestbox properties are
often lacking in recent publications

Around 40% of the older publications (<1992)
on passerine secondary hole-nesting birds that we
assessed did not provide information on nestbox
characteristics and did not reference a former
publication providing this information (Fig. 1).
This value is even higher (70%) for the verified
studies published since 1992. Even when descrip-
tions were provided, they were usually incom-
plete. For instance, of 94 instances where one nest-
box characteristic was mentioned, 58% gave only
a broad description of the material used (wood,
wood-concrete, concrete), and only 25% gave the
diameter of the entrance hole. The tree species
used to construct wooden nestboxes or the thick-
ness of the nestbox wall were rarely mentioned
(e.g. Michelsons 1958, Delmée et al. 1972, Finch
1989 for exceptions), even though both may influ-
ence the thermal or chemical environment of the
nest cavity, and thus directly or indirectly affect
the physiology of eggs, nestlings or adults (e.g.
Kibler 1969, Mertens 1977, 1980, van Balen 1984,
Korpimaki 1985, Dawson et al. 2005, Garcia-Navas
et al. 2008, Nilsson et al. 2008, Ardia et al. 2009).
For instance, there is empirical evidence that
invertebrate communities and microorganisms
are both affected by their host tree species or its
natural compounds, or chemical compounds
applied to the wood from which the box was con-
structed, such as preservatives (e.g. Janzen 1978,
Balandrin et al. 1985, Chapuisat et al. 2007,
Sipponen et al. 2009, Blondel et al. 2010), and that
invertebrate communities in the nest may influ-
ence avian life-history traits (e.g. Sengupta 1981,
Heeb et al. 2000, Mennerat et al. 2009). Some
authors supplied dimensions without specifying
whether these refer to the size of the whole box
(exterior) or just the nestbox chamber (interior).
The biological importance of light incidence
inside nestboxes has been ignored for many years,
and therefore, rarely, or not reported. For
instance, in nestboxes used in several studies in
Spain (e.g. Moreno et al. 2006, 2008) the removable
frontal lid does not cover the whole front but
leaves a slit of 1-1.5 cm which allows luminous
conditions within nestboxes. Light conditions
within the nestbox chamber may influence the
expression of signals possessed by the eggs or
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nestlings addressed to parents or social mates (e.g.
Holveck et al. 2010). Since natural or excavated
tree holes used by secondary hole-nesting birds
can be described using at least 10 different param-
eters (Kibler 1969, van Balen et al. 1982, East &
Perrins 1988, Carlson et al. 1998, Remm et al. 2006),
perhaps these same parameters could be defined
and standardized, then used to describe artificial
nestboxes in widely understood details, as archi-
tects do when designing buildings.

2. Nestboxes often represent only a small fraction
of the properties of natural holes

The nestboxes erected in most study sites are
usually identical in shape and dimensions.
Although the nestboxes were probably made to a
consistent design in order to minimize potential
confounding variables and maximize sample sizes
(e.g. Drilling & Thompson 1988, McCleery et al.
1996, Llambias & Fernandez 2009), the scientific
rationale for using a particular type of nestbox, for
mounting and positioning them in a particular
way, or for protecting them from predators is
often not provided. This is a particular problem
when nestboxes possess physical properties that
significantly differ from those of tree cavities (e.g.
Nilsson 1975, Karlsson & Nilsson 1977, Moeed &
Dawson 1979, Alatalo et al. 1988, Mgller 1989, 1992,
Purcell et al. 1997) and nestbox characteristics
selected to initiate a long-term study significantly
influence the results of ecological investigations
(e.g. McCleery et al. 1996, Garcia-Navas et al. 2008).

It should be noted though that the continuity of
nestbox characteristics and placements in some
study sites can lead to in-depth research where
confounding (changeable) factors are controlled
(e.g. nestbox orientation, Goodenough et al. 2008).

3. Different research teams often do not use the
same nestbox designs and research protocols
Different research groups studying hole-nest-
ing birds in different locations rarely use the same
type or size of nestbox, even when studying the
same species (see Appendix 1). There may be sev-
eral economic or scientific reasons for such varia-
tion in nestbox design. The material used to con-
struct nestboxes in each location may depend on
local availability or price (Moeed & Dawson 1979),
or on decisions taken by forestry administrations
or environmental organisations without consult-
ing researchers regarding the massive distribution
of a certain type of nestbox (e.g. Spain), or may
have been proven to be optimal by local ornitho-
logical organisations (e.g. Baucells et al. 2003).
Consequently, if nestboxes are designed with par-
ticular characteristics because of local environ-
mental conditions, such as the use of thick-walled
boxes in areas with more extreme weather condi-
tions, then nestboxes should be more variable in
species with a larger distributional range.
Although we did find large-scale variation in nest-
box characteristics among research teams study-
ing the same species, there was little scientific jus-
tification for this, as this variation was not intend-
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ed to better understand biological consequences
of ‘nestbox-environment’ interactions at broad
spatiotemporal scales. Replicates in nestbox
design across study sites are currently often segre-
gated instead of properly interspersed. Further-
more, nestbox characteristics may also differ with-
in local populations, as some nestboxes are re-
placed after several years or different boxes may
be erected as new breeding plots are established.
However, it has to be noted that nestbox design or
placement may be constrained by the need to
avoid human predation or destruction of nests in
certain countries. For instance, in Spain nestboxes
are erected at >3 m above the ground to avoid cit-
izens collecting nests or eggs (but see e. g. nestbox
research in orange monocultures in eastern Spain,
Monr6s et al. 1999), in other areas people collect
nestboxes to adorn houses and gardens, and in
Kenya people search nestboxes to collect honey.

There are several potential consequences of
research teams failing to use the same nestbox
design. For example, different nestbox types
necessitate the use of different devices for captur-
ing birds. A box opened through the roof (e.g.
Wageningen box, van Balen 1984) probably will
require a different trapping device than a box
opened through a front door (Schwegler type, see
www.schwegler-natur.de, Blondel 1985) (Gosler
2004, M. Lambrechts pers. obs.). The use of dis-
tinct types of boxes may also influence the time
devoted to measuring or manipulating certain
traits such as nest characteristics. There may be
biological consequences of the different capture or
monitoring techniques required for each type of
box, since some may be more stressful to the cap-
tured birds than others. Furthermore, avian per-
sonalities or other phenotypic traits may differ
between studies because certain types of nestbox
may influence whether they attract relatively
“shy” or “bold” individuals (see Garamszegi et al.
2009). In addition, the activity of researchers, such
as the frequency of box-monitoring, parent cap-
ture and release behaviour (i.e. relative to chick
age, and using mist nets or box traps), may all
affect the level of desertion or the rate at which
parents feed their chicks (and hence growth rates
and offspring condition). Direct researcher effects
may be limited in populations in which adults are
more resistant to disturbance, as a result of condi-
tioning (where individuals become habituated to
nestbox design-related research methods over
their lifetimes), or even potentially, and perhaps
more interestingly, by selection over generations
(e.g. Meller 2010).

Wooden nestboxes have to be treated more
frequently with chemicals than those built from
concrete or a mix of wood and concrete (e.g.
Schwegler boxes), and may also have to be
replaced more frequently. In long-term studies,
replacement boxes should be erected in the same
exact location as the previous box or else there
may be a change in their local environment, for
instance changing the risk of predation (e.g.
Sonerud 1989, Sorace et al. 2004) or exposure to
weather conditions (e.g. Goodenough et al. 2008).
However, keeping the box environment un-
changed may not be possible in commercial
forests due to frequent habitat alterations by forest
practices (see below).

Some unwanted variation in experimental
design complicating data interpretation could be
avoided using consistent nestbox characteristics
across study populations or periods (e.g. “exact”
replication of nestbox design, Hurlbert 1984,
Hairston 1989, Kelly 2006). For instance, if differ-
ent study sites containing identical nestboxes, dif-
fer significantly in average clutch size, as is the
case in Blue Tits (e.g. Isenmann 1987), it is unlike-
ly that the smaller clutch sizes were physically
constrained by the size of the nest-cup (e.g.
Slagsvold 1989), assuming that geographic varia-
tion in clutch size does not result from spatial vari-
ation in monitoring protocols. However, the same
nestbox set up does not allow us to exclude the
hypothesis that the size of the nest cup, physical-
ly limited by the size of the nestbox chamber,
limits the production of clutches larger than those
observed in the nestboxes used. Perhaps a
design replicating more than one nestbox type,
and standardising monitoring protocols, across
study populations or periods could better test
some hypotheses dealing with causal relation-
ships between nestbox design and life-history
traits.

4. Variation in nestbox characteristics is often
ignored in statistical analyses

Nestbox properties may act as confounding
factors that should be considered as covariates in
statistical analyses of variation in individual or
population characteristics. However, most previ-
ous comparative studies of phenotypic traits in
secondary avian hole-nesters have not included
nestbox design as a factor in statistical analyses
(e.g. Jarvinen 1989, Sanz 1998, 2003, Encabo et al.
2002, Both et al. 2004). This was apparently
because variation in nestbox characteristics was
assumed to constitute random noise or because
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information on nestbox design was unavailable.
For instance, the nestboxes used since the 1950s to
study tits in Wytham Wood, Oxford, were altered
in the 1970s to make them more resistant to dam-
age from Great Spotted Woodpeckers Dendrocopos
major and to significantly reduce the impact of
weasels Mustela nivalis entering nestboxes (Perrins
1979). These changes in how nestboxes were con-
structed (e.g. first from wood then a mixture of
wood and concrete) and positioned (initially
attached directly on the trunks, later removed
from the trunks and suspended from branches)
resulted in a rapid temporal shift in life-history
traits in Great Tits both at the individual and pop-
ulation level (McCleery et al. 1996, Julliard et al.
1997), a finding apparently ignored in more recent
analyses of the long-term database from Oxford.
The biological consequences of variation in nest-
box design or position could be investigated if
future publications would provide details on nest-
box characteristics. The non-exhaustive list of
designs and positions of nestboxes presented in
Table 3 could thus be exploited in future compar-
ative analyses to test for the relative importance of
nestbox design and other environmental factors
(e.g. population density or composition, presence
of other organisms) in the expression of individual
life-history traits. Perhaps variation in nestbox
characteristics (e.g. nest-chamber size) across most
study sites used are often too narrow to become
significant confounding factors in many compara-
tive analyses that combine data from different
research teams. However, this does not exclude
the possibility that variation in nestbox design
may become a significant confounding variable
when study systems would better reflect the
observed variation in characteristics of exploited
natural or excavated cavities (see Introduction).

CONSTRAINTS ON REPLICATION OF ‘NEST-
BOX DESIGN — ENVIRONMENT INTERAC-
TIONS

There are many environmental factors associ-
ated with nesting cavities that affect the life-histo-
ry or phenotypic traits of adults or offspring
directly or result from an interaction with the
characteristics or position of the nest cavity. For
instance, exposure to wind may be a dominant
factor in coastal sites, whereas in mountainous
terrain or northern regions, variation in altitude
and solar exposure may create major environmen-
tal differences over small distances. Moreover, the

continual growth of trees and forests means that
the environment can change significantly during
long-term investigations at the same study site.
Forest management practices, particularly the
removal of old or dead trees that contain excavat-
ed or natural holes, will have major effects on the
bird species present due to rapid changes in cavi-
ty availability, which may influence other biologi-
cal interactions at intraspecific and interspecific
levels (e.g. Newton 1994, Quine et al. 2007, Webb
et al. 2007, Wesotowski 2007, Camprodon et al.
2008, Cornelius et al. 2008, Blondel et al. 2010).
Habitats shared with humans (e.g. city parks, sub-
urban gardens) during the breeding season may
be more likely to be occupied by individuals not
disturbed by the presence of human activity
(Remacha & Delgado 2009, Meller 2010). The fact
that characteristics of the habitat and densities of
excavators and secondary hole-nesters may be
influenced by anthropogenic activities means that
the characteristics of natural cavities used may not
(always) mirror the situation in areas that are rel-
atively unaffected by humans, where they still
exist. Black-capped Chickadees Poecile atricapillus,
for example, will readily utilize nestboxes in urban
landscapes where natural cavities are scarce, and
even accept fairly unusual nesting substrates (e.g.
hollow fenceposts, Smith 1991). This same species
shows low acceptance of these same nestboxes in
mature forests where ample natural nesting sites
exist (K. Otter, unpublished data). The same is
true for Willow Tits Poecile montanus, which do not
accept nestboxes in northern Finland (i.e. they
excavate new holes in decaying stumps each
year, Orell & Ojanen 1983), but readily use
special nestboxes filled with coarse saw-dust
in southern Sweden (von Bromssen & Jansson
1980). Thus studies of birds nesting in cavities
in anthropogenically modified habitat may
not be an ideal basis for generalisations about
the best design, placement and management of
nestboxes. Thus, there are limits to replicating
studies in different areas and to what can be
and should be included in the description of the
study.

Perhaps the existence of logistic constraints on
exactly replicated research in free-ranging popu-
lations may justify the use of experiments in semi-
natural conditions better controlling for possible
interactions between nestbox characteristics and
the social or physical environment surrounding
the boxes (e.g. Kempenaers & Dhondt 1991, Velky
et al. 2010, but see Lambrechts et al. 1999). The rec-
ommendations presented below are intended to
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be a minimum list, and the main purpose of the
list is to reduce the likelihood that differences
between studies are not an artefact of differences
in the characteristics of the nestboxes used.
Authors are therefore urged to describe all those
aspects of their study sites they consider relevant
in comparison to other sites.

List of recommendations

We urge authors, referees and editors to ensure
that the following information is accessible or pro-
vided in future publications, or at least as an
online supplement:
1. Nestbox dimensions (e.g. Table 3). Include a
minimum amount of information on nestbox
design, including size and position of the entrance
hole, thickness and material of nestbox walls, and
width, breath, and height of the internal chamber;
2. Location of nestboxes. Report the position of
nestboxes (e.g. placed against tree trunks or hang-
ing from a branch attached to a cable or metal
hook), including height, supporting structure
(tree, wall, post), orientation, the average distance
between neighbouring boxes and their density
(number of boxes per ha);
3. Maintenance procedures of nestboxes. Report
whether and when old nests are removed, and
whether nestboxes or nests are treated to remove
parasites or microorganisms (e.g. pesticides,
micro-wave treatments, rot prevention chemi-
cals). Perhaps most importantly, researchers
should report whether nestboxes are cleaned
out before each new nesting season (e.g. to
remove winter nests from secondary hole-nesting
mammals). The use of weather protection devices
should also be mentioned. It should be noted if
boxes are removed from the study sites between
each breeding season. Because old or damaged
boxes are often replaced by new boxes, a study site
can contain nestboxes differing widely in age,
which should be noted.
4. Protection of nestbox occupants. If the nestbox-
es incorporate any anti-predator features, includ-
ing devices to reinforce entrance holes (e.g. metal
plates), or to prevent predators from entering the
nestbox chamber (e.g. pipes to lengthen the
entrance) they should be mentioned.
5. Inspection of nestboxes. Report how frequently
(and for how long) nestboxes are opened to allow
the contents to be inspected, whether they open
at the front, side or the roof, and whether any
nestbox traps are used to capture the occupants.
In addition, it would be useful to know how
long the study has been operating in this way, the

overall level of desertion of reproductive attempts
and the degree of adult and natal philopatry, as
these will all potentially contribute to the strength
of conditioning or selection on the breeding
adults at the site.

6. Study-site characteristics. Report abiotic and
biotic factors at local study sites which could con-
ceivably affect ‘nestbox-environment’ interac-
tions. Report the frequency of artificial holes rela-
tive to the frequency of natural or excavated holes,
or if this is impossible (e.g. for holes >10 m high or
in forest with difficult topography or dense
understory) provide at least data about the domi-
nant tree species, age of tree stands, and the pro-
portion of nestboxes occupied. The availability of
similar or different nestboxes in the general geo-
graphic area should also be given if possible, as
people other than researchers erect nestboxes in
many countries. To assess the representativeness
of the biological samples taken from the nestbox-
es, a reference survey to assess properties of natu-
ral holes could be carried out in each nestbox plot.
Research is needed through which information
on the phenotypic traits of interest is obtained
from breeders in natural or excavated holes and
these traits are compared with that of birds breed-
ing in nestboxes. It should also be noted whether
there are any particular habitat management prac-
tices (e.g. selective logging of trees) or patterns of
habitat use (common or occasional recreational
areas during the breeding season), which could
affect the birds’ biology.

PERSPECTIVES

Future research projects dealing with biologi-
cal consequences of variation in one or more nest-
box characteristics could either focus on prefer-
ences of birds for particular nestboxes or on the
biological consequences of the choice of particular
types of boxes. For instance, insectivorous birds
which are capable of laying many eggs may prefer
to breed in large nestboxes if hole size provides
reliable information about tree trunk diameter
and canopy size, which could influence the avail-
ability of defoliating insects required to rear the
chicks. Birds may reduce their clutch size in small
nestboxes in order to adjust the number of eggs
laid to the size of the nest cup, thereby improving
incubation behaviour, reducing sibling competi-
tion for limiting space within the nestbox-cham-
ber or reducing problems related to hyperthermia
in hot environments (e.g. van Balen 1984). Testing
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these competing hypotheses about nestbox choice
or adjustment of life-history traits after a nestbox
has been accepted will require different types of
experimental design, which have been conducted
or proposed in former investigations (e.g. Lohrl
1973, 1980, Garcia-Navas et al. 2008). Studies look-
ing at preferences could erect two or more nestbox
types close together, such as on the same tree (e.g.
Bortolotti 1994) , to better control for variation in
environmental factors other than nestbox design.
Quantifying parental or territory characteristics at
the same time may test whether preferences for
particular nestboxes (e.g. of a given orientation)
are adjusted to particular phenotypic characteris-
tics of the parents or the territory (e.g. dominant
wind direction). Studies looking at the conse-
quences of occupying a particular nestbox type
while controlling for biases due to nestbox prefer-
ences could allow birds to settle on a territory then
change nestbox types. These field studies should
ideally avoid experimentally induced biases
caused by nest desertion as much as possible.
Research protocols should also be adjusted to the
life-histories of the biological models involved,
which may require preliminary investigations
before adequate experimental protocols can be
performed. For instance, the consequences of dif-
ferences in nestbox design for roosting can only be
studied in populations where roosting in nestbox-
es has been confirmed (e.g. Dhondt et al. 2010).

Nestbox characteristics (>10), parental pheno-
types (age, behaviour, physiology, morphology,
genetics), habitat charactertistics (e.g. presence of
other organisms, local climate, light conditions,
type of habitat, social factors, resources, popula-
tion density and composition) and fitness compo-
nents (e.g. laydate, clutch size, egg characteristics,
egg hatching success, brood size, fledging success,
offspring phenotypes) may interact in a complex
manner, so there are ample opportunities for
development of research projects in different
parts of the world aimed to better understand
these complex relationships. What follows is a
short list of topics that could be developed in
future research or education projects.

1. The biological consequences of existing varia-
tion in nestbox design

Different research teams use replicates in nest-
box design that are currently often segregated, so
that biological consequences of existing spatial
variation in nestbox design cannot always be
properly investigated. Existing spatial variation in
nestbox design could be redistributed across study

sites so that design replicates become properly
interspersed. For instance, the effect of differences
in nestbox material commonly used (wood versus
a woodconcrete mix) could be investigated in
local study plots following the experimental
designs proposed above (e.g. Garcia-Navas et al.
2008).

2. The biological consequences of nestbox size in
heterogeneous environments

Previous field investigations focusing on the
life-history consequences of nest-chamber size
have usually only compared two nestbox size
classes (e.g. Lohrl 1977, van Balen 1984, Slagsvold
& Amundsen 1992, but see e.g. Moeed & Dawson
1979, Korpimaki 1985) often without taking envi-
ronmental or social factors into account. If bigger
nestbox chambers would result in larger broods,
then smaller nest-chambers which cause birds to
produce smaller clutches may improve fledging
success because of a reduction in brood size, espe-
cially in poor habitat or younger forest patches. If
larger boxes would always be preferred regardless
of the richness of the habitat, the hypothesis that
large nestboxes can become severe ecological or
evolutionary traps in poor habitats can be experi-
mentally tested, both at the individual (Schlaepfer
et al. 2002, Robertson & Hutto 2006) and popula-
tion level (Schlaepfer et al. 2002, Mand et al. 2009).
These investigations require simultaneous
studies of the proximate mechanisms involved in
nestbox choice (e.g. genetic, environmental or his-
torical basis) and the fitness consequences of the
choice of a particular nestbox type in different
environmental conditions (e.g. many versus few
food resources).

3. The biological consequences of the nestbox
chemical environment

The biological consequences of variation in the
types of wood used for the construction of nest-
boxes have to our knowledge not been experi-
mentally investigated. In North America, Western
Red Cedar Thuja plicata is often advocated for
nestboxes on hobbyist websites. This wood is
commonly used to line trunks and wardrobes due
to the aromatics it omits deterring moths,
and it likely has an effect on insect colonization
of nestboxes as well. The different types of
wood (e.g. oak versus pine versus exotic) and the
chemical compounds they contain may influence
the species assemblage of invertebrates and
microorganisms that colonize nestboxes, and
thereby potentially interact with the avian
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occupants. These effects may be intensified in
older nestboxes that are not cleaned by
researchers or are rarely opened for monitoring.

4. Nestbox design, perceived microclimate and
biological consequences

Several nestbox characteristics, such as wall
thickness, or the material (e.g. Garcia-Navas et al.
2008) or colours used for the construction of
nestboxes, may influence the nature and stability
of the nest microclimate and therefore the func-
tioning and interactions amongst organisms occu-
pying these cavities. The nestbox characteristics
which are more likely to insulate parents, eggs
and offspring against these environmental fluctu-
ations will likely differ across latitudes or alti-
tudes, which could be investigated with both
observational and experimental approaches, also
within the framework of climate change. If the
presence of old nests favours roosting conditions
in winter (Pinowski et al. 2006), then nestbox
maintenance procedures may influence climate-
bird interactions at the time of nestbox occupation
(e.g. Garcia-Navas et al. 2008 for arguments in the
methods).

5. Effects of different combinations of nestbox
characteristics

An experimental design using different nest-
box characteristics as treatments should ideally
alter box characteristics in such a way that
the ‘optimal’ nestbox shape for given individ-
uals, territories, populations or habitats can be
identified with high precision. This approach
calls for field experiments combining different
nestbox properties to better reflect variation in
natural or excavated holes exploited. It would
require a large increase in the number of nest-
box types to be erected within or across study
plots. As an example, a design combining three
classes in wall thickness, cavity depth and
cavity width (small, intermediate, and large
values), varying independently of each other
among nestboxes, would require 27 different
nestbox types. In addition, each type should be
sufficiently replicated either within or across
study populations for the quantification of
intra-nestbox type (random) variation. These
boxes should ideally be erected “randomly” in a
local plot following the designs A1-A3 described
in Hurlbert (1984) or experimental designs
proposed above. Such an experiment would
provide unique opportunities for the study of
phenotypic plasticity in life-history traits, with

nest-cavity characteristics perhaps to be consid-
ered as physical constraints imposed on the plas-
ticity of nest building-dependent life-history
traits. Such a project has been conducted before
(Korpimaéki 1985).

6. Nestbox design and nest building

Secondary hole-nesters accepting cavities
initially created by other species often have more
complex nests than do primary hole-nesters. If
nests from secondary hole-nesters are adjusted
in response to shortcomings in nest-cavity charac-
teristics, the consequences of interactions be-
tween nest structure or composition and nestbox
characteristics could also be investigated. For
instance, bigger nests may be built in artificial
nestboxes with a thinner or colder nestbox wall
(e.g.- Nager & van Noordwijk 1992), perhaps to
provide more efficient protection against meteor-
ological fluctuations in colder environments
(Pinowski et al. 2006). Larger nests appear to
be sexually selected in birds in general (e.g.
Soler et al. 1998), and small hole chambers may
prevent the full expression of this phenotypic
trait. Larger nests built in larger/deeper nestboxes
(cf. Mazgajski & Rykowska 2008) may also contain
and develop larger populations of ectoparasites
(e.g. Tripet & Richner 1997) or other invertebrates.
All this suggests that causal relationships between
nestbox characteristics, nest characteristics and
avian characteristics may be complex, deserving
further study:.

7. Research protocols, avian selection and condi-
tioning

Different research teams do not always use the
same procedures for catching birds or monitoring
nestbox contents. What are the effects of research-
group dependent behaviours on bird populations
breeding or roosting in artificial nestboxes? Do dif-
ferent regimes of catching and monitoring result
in different levels of brood desertion or condition?
If adults are caught in a nestbox while feeding
chicks, are they more cautious when entering the
nest in the future, relative to birds caught in a
mist-net outside the box? Perhaps these research-
group effects may lead to consistent differences in
fitness components across study sites or research
groups. Avian conditioning to researcher effects
over the lifetime of an individual, or selection over
time, with adults that better cope with researcher
disturbance having higher reproductive success
and passing on these personalities to their off-
spring, could also be investigated.
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8. Increased standardization and communication

With the development of the internet and the
global real-time availability of information across
all researchers, much more attention should be
paid to the construction of standardized protocols
over large geographic areas (e.g., http:/golondri-
nas.cornell.edu). Project-specific websites and list-
serves can help in all aspects of broadly based col-
laborations, from standardization of nestbox plans
and construction to the design and execution of
experiments to objectively evaluate changes to
those designs.
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STRESZCZENIE

[Modele skrzynek legowych uzywanych do
badan dziuplakéw wtérnych: ich wplyw na uzy-
skiwane wyniki oraz niespéjnosci metodyczne]

Szerokie wykorzystywanie sztucznych miejsc
gniazdowych, jakimi sa skrzynki legowe w bada-
niach dziuplakéw, szczegdlnie drobnych gatun-
kéw wréblowych, doprowadzito do znacznego
zwiekszenia naszej wiedzy o ich ekologii, fizjo-
logii i zachowaniu. Skrzynki legowe ulatwiaja
kontrole legéw, eksperymentalne zabiegi, ktérym
poddawane sa jaja lub piskleta oraz chwytanie,
identyfikowanie i eksperymenty na ptakach
dorostych. Z drugiej strony tak czeste wyko-
rzystywanie sztucznych miejsc legowych prowa-
dzi do powstania jak do tej pory pomijanego, ale
potencjalnie istotnie wplywajacego na uzyski-
wane wyniki, efektu samych skrzynek — ich
wymiaréw, wysoko$ci umieszczenia, sposobu
konstrukgji, otwierania czy konserwagji.

W pracy podsumowano, w jakim zakresie
publikacje naukowe dotyczace dziuplakéw wtodr-
nych dokumentuja charakterystyke skrzynek
legowych wykorzystywanych do badah (wymia-
ry, kolor, material, z ktérego sa wykonane itd.). Do
analizy publikacje podzielono na te opublikowane

przed i po roku 1992, poniewaz w tym roku
ukazaly sie drukiem dwie prace zalecajace m. in.
dokltadne opisywanie stosowanych skrzynek
legowych. Nalezalo zatem przyjaé, ze w now-
szych pracach (po 1992) wlasciwosci skrzynek
(wymiary, material, z ktérego sa wykonane itd.)
powinny by¢ opisywane dokladniej. Jednakze
analiza rozdziatéw opisujacych metody w tacznie
696 publikacjach wykazata, ze w pracach publi-
kowanych po 1992 informacje dotyczace wyko-
rzystywanych w badaniach skrzynek sg jeszcze
bardziej fragmentaryczne (Fig. 1).

W pracy zwrécono uwagge, ze skrzynki legowe
sa najczesciej ujednolicone, a ich charakterystyka
odzwierciedla tylko cze$¢ cech dziupli natural-
nych. Nalezy pamietaé, ze w przypadku dziupli
naturalnych, zmienno$¢, szczegélnie wymiaréw
wewnetrznych, czy wysokosci, na ktérej sa
umieszczone, jest bardzo duza zaréwno pomie-
dzy poszczegblnymi gatunkami dziuplakéw, jak
i w obrebie tego samego gatunku (Tab. 1). Procz
tego analiza cech skrzynek legowych uzywanych
przez rézne zespoly badaczy wykazata, ze nawet
przy prowadzeniu badan na tym samym gatunku,
stosowane skrzynki i metody moga bardzo sie
rézni¢. Duza wartoscia pracy jest zestawienie
charakterystyk skrzynek legowych stosowanych
do badan najpospolitszych dziuplakéw, przede
wszystkim w Europie (Apendyks 1).

W pracy podano liste typowych cech, charak-
teryzujacych uzywane w badaniach skrzynki
legowe, ktére powinny by¢ zamieszczane w pub-
likacjach. W pracy wyjasniono koniecznosc¢
prezentowania takich informacji, podajac przy-
klady, jak charakterystyka skrzynek legowych
wptywa na dziuplaki. Na zakohczenie przedsta-
wiono kilka generalnych zagadnieh zwigzanych
ze zmiennoScia wykorzystywanych do tej pory
skrzynek legowych, ktére nalezatoby poddac
badaniom.
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