———— ГЕОЛОГИЯ ——

УДК 553.491.4+553.41(470.22)

ДВА ТИПА БЛАГОРОДНОМЕТАЛЬНОЙ МИНЕРАЛИЗАЦИИ В КААЛАМСКОМ МАССИВЕ (КАРЕЛИЯ)

© 2016 г. В. И. Иващенко, А. М. Ручьев, А. И. Голубев

Представлено академиком РАН Д.В. Рундквистом 11.04.2014 г. Поступило 11.04.2014 г.

В Кааламском массиве выявлено благороднометальное оруденение сингенетического (Южно-Кааламское) и эпигенетического (Сурисуо) типа. Содержание Σ Pt, Pd, Au 0.9–1.1 г/т. Процесс сингенетического рудогенеза начинался на позднемагматической стадии (около 800°С), последовательно эволюционируя и завершаясь в гидротермально-метасоматическую (<271°С). Эпигенетическое оруденение формировалось при температуре около 500–<230°С в зонах интенсивного проявления сдвиговых деформаций и низкотемпературного метасоматоза на коллизионной стадии (примерно 1.85 млрд лет) свекофеннского тектоно-магматического цикла. Учитывая геологическую позицию Кааламского массива в пределах Раахе-Ладожской металлогенической зоны, характеризующейся широким и интенсивным проявлением сдвиговых дислокаций, эпигенетический тип оруденения представляется более перспективным.

DOI: 10.7868/S0869565216140164

Впервые Кааламский массив - крупнейший (около 80 км²) мафический интрузив Приладожья (рис. 1) – был закартирован финскими геологами [1]. В ходе дальнейших исследований ([2–7] и др.) уточняли и изменяли представления об особенностях его геологического строения, образования формационно-возрастной принадлежности. И В настоящее время Кааламский массив и сопровождающие его небольшие (до первых квадратных километров) сателлиты-отторженцы совместно с множеством (около 100) еще более мелких мафитовых тел, распространенных преимущественно к западу от него, относятся к одноименному раннеорогенному клинопироксенит-габбронорит-диоритовому комплексу с возрастом 1888.3 ± 5.2 млн лет [6, 7]. Массив прорывает осадочные и вулканогенные породы ладожской и сортавальской серий протерозоя, метаморфизованные в условиях амфиболитовой фации. Его эндоконтакты, обычно содержащие ксенолиты вмещающих пород, местами огнейсованы и претерпели наложение поздних деформаций сдвигового характера. По геофизическим данным подошва массива располагается на глубинах от 2.5 км в западной его части до 5 км в восточной.

В строении Кааламского массива участвуют три интрузивные фазы: ультрамафиты (оливиновые клинопироксениты—плагиопироксениты) и ме-

Институт геологии

Карельского научного центра

Российской Академии наук, Петрозаводск

E-mail: ivashche@krc.karelia.ru

ланократовые габбро; габбронориты, габбро, меланодиориты; диориты, кварцевые диориты и тоналиты ([2, 6, 7] и др.). По петрохимическим особенностям ультрамафиты и часть мафитов Кааламского массива отвечают толеитовой серии, но значительно уступают по содержаниям Cu, Ni, относящимся к этой же серии перидотитам и пироксенитам одновозрастных с ним никеленосных массивов Финляндии [7].

В связи с Кааламским магматическим комплексом известно несколько мелких рудопроявлений, максимальные содержания Ni в которых до 0.13% (Сурисуо), Cu 1%, Co 0.16% (Кеккоселька). Проведенными нами исследованиями в Кааламском массиве и его сателлитах-отторженцах впервые выявлены и изучены прецизионными аналитическими методами (электронный микроскоп "VE-GA II LSH" с микроанализатором "INCA Enerdgy 350", ICP MS) проявления благороднометальной минерализации, относящиеся к сингенетическому (Южно-Кааламское) и эпигенетическому (Сурисуо) типам (рис. 1).

Южно-Кааламское проявление расположено в юго-западном эндоконтакте массива Кааламо. Благороднометальная минерализация (сперрилит, самородное Au и др.), ассоциирующая с сульфидами Cu, Ni и висмутотеллуридами (табл. 1; рис. 2a, г), установлена в крупнозернистых амфиболизированных пироксенитах. Сульфиды образуют сидеронитовую вкрапленность (0.05–1.0 мм), мелкие гнезда (до 5 мм) и микропрожилки. Остальные рудные минералы, включая благороднометальные, распределены неравномерно, а

Рис. 1. Схема геологического строения Кааламского массива (по Государственной геологической карте РФ м-ба 1: 200 000, 2005 г., изд. 2, Карельская серия: P-35-XXIV, P-36-IX, Сортавала, с изменениями и дополнениями). I – граниты, лейкограниты, пегматоидные граниты (Маткаселькский комплекс, около 1.8 млрд лет); 2 – амфиболовые, биотит-амфиболовые диориты, кварцевые диориты (Яккимский комплекс, около 1.85 млрд лет); 3-5 – Кааламский клинопироксенит-габбронорит-диоритовый комплекс (около 1.89 млрд лет); 3 – амфибол-биотитовые диориты, тоналиты, 4 – габбронориты, габбро, меланодиориты, 5 – оливиновые клинопироксениты, плагиоклинопироксениты, меланократовые габбронориты, габбро; 6 – кварц-биотитовые сланцы, углеродсодержащие кварц-биоитовые сланцы, кварцито-песчаники, аркозовые песчаники, кварциты, гнейсосланцы с гранатом, андалузитом (нерасчлененная ладожская серия); 7 – сланцы слюдистые, филлитовидные, графитсодержащие, прослои песчаников, амфиболовых сланцев, амфиболитов, линзы мраморов, пироксеновых скарноидов (нерасчлененная сортавальская серия); 8 – тектонические нарушения; 9 – проявления благороднометальной минерализации: a – сингенетический тип (Южно-Кааламское), δ – эпигенетический тип (Сурисуо).

размер их выделений не превышает 0.2-0.3 мм при доминирующем 5–10 мкм. Состав самородного Au сильно изменчив (рис. 3). Присутствуют также электрум и кюстелит, отмечающиеся преимущественно в местах развития ковеллина и гётита. Высокопробное Au изредка встречается в сростках с висмутотеллуридами Pd. Содержание Σ Au, Pt, Pd 0.5 1.1 г/т (табл. 2).

По результатам минераграфических и микрозондовых исследований рудная минерализация на данном проявлении представлена тремя последовательно выделявшимися ассоциациями: 1) кобальтин, пентландит, паркерит, халькопирит, сперрилит, висмутотеллуриды Pd, высокопробное Аи самородное; 2) висмутотеллуриды, кочкарит, клаусталит, галенит, сфалерит, электрум, кюстелит; 3) ковеллин, самородные висмут, медь, гётит, барит. Температура формирования первой ассоциации по кобальтиновому термометру [9] и фазовым диаграммам Pd-Te, Pd-Bi [10] 780-500°С, второй – по фазовым диаграммам Ві-Те [10] и электрум-сфалеритовому термометру [11] 560-390°С, третьей – по температуре плавления самородного Bi – <271°C.

Проявление Сурисуо размещено в пределах одноименного сателлита-отторженца Кааламского массива, в узле пересечения тектонических нарушений северо-западного и северо-восточного направлений (рис. 1), выделяемых по геолого-геофизическим данным. Однотипная в минералогическом аспекте, но варьирующаяся по интенсивности развития, благороднометальная минерализация отмечена на проявлении Сурисуо преимущественно в зоне (мощность около 2 м) максимального проявления деформации, амфиболизации и более низкотемпературных изменений (хлорит, биотит, пренит, карбонат, кварц) метапироксенитов.

Морфологические особенности тектонических дислокаций в метапироксенитах данного проявления указывают на сдвиговую природу деформаций. Новым методом структурно-парагенетического анализа ([12] и др.) выявлено 27 и идентифицировано 17 "наложенных" друг на друга сдвиговых парагенезисов субплоскостных структурных элементов горных пород. Судя по пространственной ориентировке плоскостей главного сдвигания, парагенезисы формировались в сдвиговых зонах субмеридионального, се-

Сингенетическое	Эпигенетическое						
Минералы Cu, Ni, Co, Fe, Ti							
Халькопирит, ковеллин, кобальтин, герсдор- фит, пентландит, пирротин (Ni, 1%), паркерит, гётит, гётит (Ni 3.2%, Cu 4.4%, Mo 1.8%)	Халькопирит, пирит, пирит (Ni 2%), пирротин, пентландит, макинавит, зигенит, кобальтин, ковеллин, идаит, ильменит, магнетит, гётит, гидрогётит						
Минералы Bi, Te, Se, Pb, Zn							
Цумоит, теллуровисмутит, Se-кочкарит, клау- сталит, галенит, сфалерит (Cd до 2.4%), Bi и Cu самородные	Хедлейит, пильзенит, цумоит (Аg до 2%), теллуровисмутит (Аg до 2%), кочкарит, теллуроневскит, кавазулит, саддалеба- кит, тетрадимит, йекораит, галенит (Se до 5%), клаусталит, сфалерит (Cd до 2.3%), Pb, Sn и Zn самородные						
Минералы Pt, Pd, Au, Ag							
Сперрилит, кейтконит, меренскиит, Pt самородная, майчнерит, Au самородное, электрум, кюстелит, фазы состава $Pd_3(Bi,Te)_2$, $Pd_2(Te,Bi)$, $PdNi_2Te_4$	Майчнерит, котульскит, Ві-котульскит, фрудит, Аи-фрудит, урванцевит, сперрилит, соболевскит, холлингвортит, гексате- стибиопаникелит, Au (Hg до 8%) и Ag самородные, амальгама (AgHg), электрум, сильванит, аргентопентландит, ченгуодаит, акантит, штютцит, волынскит, фаза состава Pd ₂ (Te,Bi)						
Второстепенные и акцессорные минералы							
Титанит, циркон, бадделеит, апатит, барит	Барит (Sr до 3%), титанит, апатит, циркон, шеелит, касситерит, молибденит, церуссит, монацит, бадделеит						
Минералы рудовмещающих пород							
Клино- и орто-пироксены, амфибол, плагио- клаз (№ 50—80), альбит, цоизит, мусковит (фен- гит до 20%), пренит	Амфибол, клинопироксен (реликты), хлорит, биотит, альбит, плагиоклаз (№ 30–80), ортоклаз (Ва до 6.5%), эпидот (V до 1%), цоизит, турмалин, кварц, серицит, мусковит—парагонит— маргарит, пренит, кальцит						

Таблица 1. Минералогия син- и эпигенетического благороднометального оруденения Кааламского массива

Примечание. Благороднометальная минерализация сингенетического типа в пироксенитовых ксенолитах восточной краевой части Кааламского массива содержит также холлингвортит, ирарсит, платарсит [8].

№ пробы	Au	Ag	Pt	Pd	Rh	ΣAu , Pt, Pd	Pd/Pt		
Сингенетический тип									
Ки019	0.094	—	0.17	0.3	—	0.564	1.76		
Ки19а	0.066	_	0.19	0.27	_	0.526	1.42		
Ки0208б	0.37	_	0.39	0.35	_	1.11	0.90		
Среднее	0.177		0.250	0.307		0.733	1.360		
Эпигенетический тип									
Сур	0.02	_	0.059	0.092	_	0.171	1.56		
Cyp-1	0.02	_	0.024	0.051	_	0.077	2.13		
Cyp-3	0.08	_	0.087	0.25	_	0.417	2.87		
1407д	0.048	0.22	0.082	0.082	0.0037	0.216	1.00		
1507e	0.01	0.088	0.019	0.019	0.001	0.049	1.00		
16076	0.18	3.01	0.32	0.36	0.0036	0.86	1.13		
20076	0.016	0.12	0.0066	0.0058	0.0036	0.032	0.88		
Cy-1	0.11	_	0.077	0.17	_	0.357	2.21		
Среднее	0.061	0.860	0.084	0.129	0.003	0.272	1.598		

Таблица 2. Содержание благородных металлов (г/т) в рудопроявлениях Кааламского массива

Примечание. Пробирный анализ (ЦНИГРИ); прочерк – элемент не определяли.

веро-восточного, северо-западного простираний. Эти зоны с учетом доминирующих в Северном Приладожье структурных соотношений, вероятно, отвечают разновозрастным этапам свекофеннского тектоногенеза. Установлен факт функционирования одних и тех же плоскостей анизотропии пород в составе различных парагенезисов. Это свидетельствует о многократной тектонической активизации суб-

Рис. 2. Благороднометальная минерализация Кааламского массива. а, г – сингенетический тип; б, в, д, е – эпигенетический тип. Атр – амфибол, Аu – золото самородное, Cv – ковеллин, Frd – фрудит, Gn – галенит, Gt – гётит, Hpy – халькопирит, Mch – майчнерит, Prn – пренит, Py – пирит, Px – пироксен, Spr – сперрилит, Ttn – титанит, Tcm – цумоит.

плоскостных структурных элементов метабазитов, способствовавшей химическим и минеральным преобразованиям.

Метасоматически измененные пироксениты имеют повышенное содержание Си (0.2-0.5%), Ni (0.01-0.1%), Co (до 0.05%) и ΣAu, Pt, Pd (0.1-0.9 г/т), табл. 2. В них в ассоциации с халькопиритом. пирротином. другими сульфилами. сульфоарсенидами и висмутотеллуридами отмечены минералы Pt, Pd, самородное Au (рис. 26, в, д, е; табл. 1). Минералы-концентраторы Аи – также соболевскит, фрудит (Аи до 6%). Состав Аи самородного от высокопробного (930) до электрума (450), рис. 3. Благороднометальные минералы представлены одиночными микровключениями (размер до 50-60 мкм) в халькопирите (рис. 2б), алюмосиликатах (рис. 2д) и многочисленными микроразмерными (1-5 мкм) выделениями в амфиболе, хлорите, прените (рис. 2в, е) местами в ассоциации с гётитом, баритом.

Специфика рудогенеза в условиях полифазных сдвиговых деформаций и инфильтрационного флюидного массопереноса (полихронность рудоотложения; наличие экзотических рудных ассоциаций, обусловленных "напечатыванием" поздних минеральных парагенезисов на ранние и др.) затрудняет выяснение последовательности минералообразования на проявлении Сурисуо. Ряд минералов (халькопирит, пентландит, сперрилит, холлингвортит) могут быть унаследованными от более раннего этапа рудогенеза — сингенетического.

Температурные условия кристаллизации рудной минерализации на проявлении Сурисуо по кобальтиновому термометру [9] 470–420°С, фазовым диаграммам Bi–Te [10] 560–300°С, распаду пентландитового твердового раствора с обособлением аргентопентландита <455°С [13], хлоритовому термометру [14] 250–380°С, электрум-сфалеритовому термометру 350–450°С, по устойчивости пренита 340–370°С [15] и температурам плавления самородных Pb 327°С, Zn 419°С, Sn 232°С.

Таким образом, согласно данным геотермометрии процесс формирования сингенетического благороднометального оруденения в Кааламском массиве начинался на позднемагматической стадии (около 800°C) его становления, последовательно

Рис. 3. Состав Аи самородного в благороднометальных проявлениях Кааламского массива. *1* – сингенетический тип, *2* – эпигенетический тип.

эволюционируя и завершаясь в гидротермальнометасоматическую при <271°С. Это свидетельствует о вероятной существенной флюидонасыщенности остаточного рудоносного расплава. Косвенный признак этого — наличие в околорудных ореолах такситовых и пегматоидных фаций пироксенитов и меланократовых габбро.

Эпигенетическое оруденение формировалось в более низкотемпературных условиях - около 500-<230°С в зонах интенсивного проявления сдвиговых деформаций и низкотемпературного метасоматоза, что способствовало образованию широкого спектра рудных минералов (табл. 1) с разнообразным сложным изоморфизмом. Особенно характерно это для минералов систем Ві-Te-Se-Pb, Pd-Bi-Te. Висмутотеллуриды представлены всеми минеральными видами ряда Ві-Те и теллуроневскитом, кочкаритом, минералами тетрадимит-кавацулитовой серии (табл. 1). Висмутотеллуриды Pd от аналогичных минералов сингенетического оруденения отличаются большим видовым разнообразием и особенностями изоморфизма (рис. 4).

Фугитивность S на стадии кристаллизации самородного Au для сравниваемых типов оруденения, рассчитанная по [11], была различной – $\lg f S_2 = (-3.06)-(-5.34)$ для сингетического оруденения и $\lg f S_2 = (-4.81)-(-9.13)$ для эпигенети-

Рис. 4. Состав минералов системы Pd-Bi-Te благороднометального оруденения Кааламского массива. *1*, 2 – майчнерит, PdBiTe; 3, 4 – котульскит, Pd(TeBi); 5, 6 – кейтконит, Pd₃Te; 7 – гексатестибиопаникелит, (Ni_{0,75}Pd_{0,25})(Te_{0,75}Sb_{0,25}); 8 – мончеит, (Pt,Pd)(Te,Bi)₂; 9 – фрудит, PdBi₂; *10* – соболевскит, PdBi; *11* – урванцевит (Pd(BiPb)₂). Залитый черным значок – сингенетический тип оруденения, незалитый – эпигенетический.

ДОКЛАДЫ АКАДЕМИИ НАУК том 468 № 2 2016

ческого. Эпигенетическое оруденение отличается также присутствием ряда минералов (шеелит, молибденит, касситерит) — типоморфных в качестве аккцессорных для гранитоидов. Это в совокупности с геолого-структурными, минералогическими, физико-химическими данными свидетельствует о вероятном влиянии на рудогенез процессов этапа свекофеннского гранитообразования, соответственно предопределяя значимое различие возраста рудных образований (1.85 млрд лет) и вмещающих их метапироксенитов (1.89 млрд лет).

Ртутистое Au – продукт эпигенетической минерализации (табл. 2) – служит еще одним вещественным доказательством различия источников рудообразующих флюидов для син- и эпигенетического оруденения в Кааламском массиве. Ртутистое Au может рассматриваться и как признак глубинного (астеносферного, мантийного) источника рудного вещества.

Результаты проведенных исследований свидетельствуют о том, что выявленные в Кааламском массиве и его сателлите проявления благороднометальной минерализации формировались в различных условиях. Южно-Кааламскому проявлению больше присущи особенности рудных объектов, сингенетических формированию магматитов, Сурисуо – отчетливо выраженные черты эпигенетических образований.

Выявление в породах Кааламского комплекса эпигенетического типа благороднометальной минерализации с учетом тектонических и метасоматических факторов контроля ее локализации открывает новые поисковые перспективы на площади распространения пород комплекса. Здесь, в зонах сдвиговых дислокаций и флюидного массопереноса, аналогичных изученным, благороднометальный рудогенез мог, вероятно, осуществляться не только в границах интрузивных тел, но и за их пределами. Пример подобных свекофеннских образований — недавно выявленные благороднометально-медно-никелевые рудопроявления (Климовский рудный узел и др.) в беломоридах. Работа выполнена при поддержке программы Президиума РАН № 27 (П.п. 1.1.86).

СПИСОК ЛИТЕРАТУРЫ

- 1. *Hakman V*. Sortavalan seudun kivilaajikartta. Geologisen toimikunnan julkaisema. Helsinki, 1929.
- 2. *Саранчина Г.М.* // Изв. Карело-Фин. науч.-исслед. базы АН СССР. 1948. № 2. С. 32–42.
- Свириденко Л.П., Семенов А.С., Никольская Л.Д. В кн.: Интрузивные базит-ультрабазитовые комплексы докембрия Карелии. Л.: Наука, 1976. С. 127–140.
- 4. *Рундквист Д.В., Попов В.Е.* В кн.: Анализ рудоносности перспективных площадей Балтийского щита. Л.: Недра, 1986. С. 7–36.
- 5. Светов А.П., Свириденко Л.П., Иващенко В.И. Вулкано-плутонизм свекокарелид Балтийского щита. Петрозаводск: КарНЦ АН СССР, 1990. 320 с.
- Богачев В.А., Иваников В.В., Козырева И.В. и др. // Вестн. СПбГУ. Сер. 7. Геология и география. 1999. В. 3 (№ 21). С. 23–33.
- 7. Иващенко В.И., Голубев А.И. Золото и платина Карелии: формационно-генетические типы оруденения и перспективы. Петрозаводск: КарНЦ РАН, 2011. 368 с.
- Лавров О.Б. Золото Фенноскандинавского щита. Материалы междунар. конф. Петрозаводск: КарНЦ РАН, 2013. С. 112–116.
- 9. *Klemm D.D.* // Neues Jahrb. Mineral. Abh. 1965. № 103. P. 205–255.
- 10. Лякишев Н.П., Банных О.А., Рохлин Н.Р. и др. Диаграммы состояния двойных металлических систем. М.: Машиностроение, 2001. Т. 3. Кн. 1. 872 с.
- 11. *Shikazono N.* // Econ. Geol. 1985. V. 80. № 5. P. 1415–1424.
- Ручьев А.М. Геология и полезные ископаемые Карелии. Петрозаводск: КарНЦ РАН, 2012. В. 15. С. 115–124.
- 13. Воган Д., Крейг Дж. Химия сульфидных минералов. М.: Мир, 1981. 575 с.
- 14. *Caritat P., Hutcheon L., Walshe J.L.* // Clays and Clay Minerals. 1993. V. 41. № 2. P. 219–239.
- 15. *Nitsch K.* // Contribs Mineral. and Petrol. 1971. V. 30. P. 240–260.