УДК 551.7.1:552.31.2:550.93

ДАЙКИ ДОЛЕРИТОВ 2404 МЛН ЛЕТ НА КАРЕЛЬСКОМ КРАТОНЕ – ФРАГМЕНТ ПАЛЕОПРОТЕРОЗОЙСКОЙ КРУПНОЙ МАГМАТИЧЕСКОЙ ПРОВИНЦИИ

© 2017 г. А. В. Степанова^{1,*}, Е. Б. Сальникова², член-корреспондент РАН А. В. Самсонов³, Ю. О. Ларионова³, С. В. Егорова¹, В. М. Саватенков²

Поступило 01.03.2016 г.

Представлены новые данные о возрасте и составе даек долеритов Карельского кратона Фенноскандинавского щита. По результатам U–Pb-датирования бадделеита установлен новый возрастной эпизод формирования базитов на Карельском кратоне 2404 ± 5 млн лет. Сопоставление состава изученных долеритов с одновозрастными дайками других архейских кратонов мира показывает их существенное сходство и позволяет предполагать формирование в составе единой крупной магматической провинции. Полученные данные подтверждают имеющиеся к настоящему времени модели суперконтинентальных реконструкций на период 2400 млн лет.

DOI: 10.7868/S0869565217020232

Начало раннего протерозоя (2.50-2.05 млрд лет) продолжительный период в истории Земли. в течение которого происходила кардинальная перестройка эндогенных и экзогенных процессов, а широко проявленный плюмовый магматизм приводил к переработке и фрагментации крупных континентальных блоков, сформированных к концу архея. Всплеск магматической активности в начале палеопротерозоя в период 2.5-2.45 млрд лет, фиксируемый формированием вулканитов. мафических даек и расслоенных интрузий в пределах многих кратонов, сменился эпохой "эндогенного покоя", когда в интервале 2.4-2.2 млрд лет. как полагает ряд исследователей. резко снизилась эндогенная активность на Земле ([1] и ссылки здесь). Вместе с тем работы последних лет показали, что выделение периода эндогенного "затишья" во многом следствие недостаточной изученности раннедокембрийских комплексов.

Начало периода "покоя", 2400 ± 25 млн лет, которое еще недавно рассматривали как локально проявленный заключительный этап эволюции более раннего (2.45 млрд лет) суперплюма [2, 3],

петрографии, минералогии и геохимии Российской Академии наук, Москва согласно новым данным, может представлять самостоятельный эпизод основного внутриплитного магматизма с большим объемом и разнообразием составов пород, которые фиксируются на разных архейских кратонах [4-7]. Этот эпизод известен и на Карельском кратоне, в западной части которого, по данным финских исследователей, установлены долеритовые дайки с возрастом 2407 ± 35 млн лет (Sm–Nd-минеральная изохрона) [3]. Большая величина погрешности определения этого возраста и ряда других датировок, полученных ранее Sm-Nd-методом по породообразующим минералам и классическим U-Pb-методом по циркону, не позволила с уверенностью говорить о временной обособленности отдельных эпизодов основного магматизма в раннем палеопротерозое, что является причиной объединения этих эпизодов в Карельском кратоне и Кольско-Мурманском блоке в одно пролонгированное событие [3, 8]. Применение U–Pb-изотопного датирования мафических даек методом ID-TIMS по единичным зернам и микронавескам бадделеита позволило кардинально изменить существующую ситуацию.

Исследования проводили в районе Войница– Костомукша в западной Карелии, где закартировано несколько роев мафических даек (рис. 1). Часть из них была датирована ранее: рой СВ простирания, сложенный дайками оливиновых габброноритов 2450 \pm 12 млн лет, дайки Fe-долеритов с возрастом 2310 \pm 6 млн лет, формирующие рой СЗ простирания и рой ССЗ, сложенный дайками долеритов (толеитов MORB-типа) с возрастом 2126 \pm 5 млн лет [9]. В нашей работе мы об-

¹ Институт геологии Карельского научного центра Российской Академии наук, Петрозаводск

² Институт геологии и геохронологии докембрия Российской Академии наук, Санкт-Петербург

³ Институт геологии рудных месторождений,

^{*} E-mail: stepanov@krc.karelia.ru

Рис. 1. Схема геологического строения района Войница–Костомукша (на основе геологической карты Балтийского щита м. 1:2000000 с использованием данных А.С. Еина и авторских). Протерозой: 1 - дайки толеитов MORB-типа, 2126 ± 5 млн лет; 2 - дайки Fe–Ti-толеитов, 2310 млн лет; 3 - дайки долеритов, 2404 ± 5 млн лет, нерасчлененные; 4 - дайки габброноритов, 2450 ± 12 млн лет. Архей: 5 - граниты, пегматиты, ~2.75 млрд лет; 6 - диорит-гранодиоритовые (санукитоидные) массивы; 7 - породы Костомукшского зеленокаменного пояса; 8 - метагранулиты, гнейсы Вокнаволокского блока; 9 - ранние ТТГ-гнейсы, ~2.8 млрд лет; 10 - точки опробования; 11 место отбора геохронологической пробы.

суждаем результаты исследований даек субширотного простирания, закартированных на этой территории, но не формирующих отчетливо выраженного роя (рис. 1).

Детально была изучена одна из даек простирания 275°, в 7 км к северу от г. Костомукша (рис. 1, Са-250). Тело мощностью 50 м, прослеженное по простиранию на 600 м. вскрыто двумя карьерами на блочный камень. Вмещающие породы представлены неоархейскими микроклиновыми гранитами. В обнажающемся фрагменте северного контакта дайки развиты гибридные породы (смесь порфировидных диоритов и мелких (<5 см) фрагментов аподолеритовых(?) амфиболитов). которые сменяются зоной развития порфировидных гранофировых гранитов мощностью около 1 м и лишь затем среднезернистыми массивными микроклиновыми гранитами. Мощность зоны развития гибридных пород не более 1.5 м. Дайка имеет простое внутреннее строение. Породы эндоконтакта сложены тонкозернистыми клинопироксен-плагиоклазовыми порфиритами, а центральная часть тела - массивными мелкосреднезернистыми долеритами, среди которых установлены единичные маломощные (<5 см) линзовидные обособления габбро-пегматитов. Главные минералы долеритов – авгит, основной плагиоклаз. Характерная особенность пород наличие в них фаялита.

U-Рb-датирование дайки было выполнено по бадделеиту, выделенному с использованием "водной" методики [10] из образца среднезернистых долеритов, отобранного в центральной части тела. Всего из пробы массой ~1.5 кг было выделено >150 зерен бадделеита в 40-70 мкм. U-Pbизотопные исследования выполнены в Институте геологии и геохронологии докембрия РАН по методике в [9]. Выделенный из пробы долеритов Са-250-1 бадделеит представлен пластинчатыми, игольчатыми, псевдопризматическими прозрачными, редко полупрозрачными кристаллами темно-коричневого и светло-коричневого цветов с однородным внутренним строением. U-Pb-изотопные исследования были выполнены для 6 микронавесок (8-20 наиболее прозрачных кристаллов) бадделеита различного облика размером <30, 30-40, 40-50 мкм (табл. 1). Изученный бадделеит характеризуется незначительной возрастной дискордантностью (0.8 - 3%)ИЛИ конкордантен (табл. 1, № 6). Точки изотопного состава бадделеита аппроксимируются дискордией (рис. 2), верхнее пересечение которой с конкордией соответствует возрасту 2403 ± 5 (СКВО = 1.5, нижнее пересечение 468 ± 200 млн лет). Значение конкордантного возраста 8 темно-коричневых игольчатых кристаллов бадделеита 2404 \pm 5 млн лет (СКВО = 0.3, вероятность = 0.58) совпадает с величиной возраста, определяемого верхним пересечением дискордии.

	Размерная			Изотопные отношения						Воз	раст, млн	лет
Номер п/п	фракция (мкм) и характе- ристика бадделеита	U/Pb*	Pb _c /Pb _t	$^{206}Pb/^{204}Pb$	²⁰⁷ Pb/ ²⁰⁶ Pb ^a	²⁰⁸ Pb/ ²⁰⁶ Pb ^b	²⁰⁷ Pb/ ²³⁵ U	²⁰⁶ Pb/ ²³⁸ U	Rho	²⁰⁷ Pb/ ²³⁵ U	²⁰⁶ Pb/ ²³⁸ U	²⁰⁷ Pb/ ²⁰⁶ Pb
1	30—40, 20 зер.,	2.2	0.02	375	0.1540 ± 4	0.0397 ± 2	9.1488 ± 366	0.4308 ± 17	0.93	2366 ± 10	2309 ± 9	2391 ± 4
2	корич., пластин. 30—40, 18 зер., темно-корич., игольч.	2.2	0.01	1196	0.1550 ± 2	0.0249 ± 1	9.2760 ± 278	0.4341 ± 8	0.72	2283±5	2324±4	2402 ± 3
3	40—50, 15 зер., корич., пластин.	2.3	0.01	1044	0.1543 ± 2	0.0310 ± 1	9.2897 ± 464	0.4366 ± 21	0.93	2367 ± 12	2335 ± 12	2394 ± 3
4	40—50, 15 зер., свкорич., пластин.	2.2	0.01	1078	0.1547 ± 1	0.0294 ± 1	9.3731 ± 187	0.4395 ± 8	0.90	2375 ± 5	2349 ± 4	2398 ± 2
5	40—50, 10 зер., корич., пластин.	2.3	0.01	661	0.1549 ± 2	0.0276 ± 1	9.5353 ± 476	0.4465 ± 18	0.96	2391 ± 11	2380 ± 10	2401 ± 2
6	<30, 8 зер., темно-корич., игольч.	2.1	0.01	238	0.1550 ± 5	0.0328 ± 5	9.6716 ± 541	0.4525 ± 19	0.79	2404 ± 13	2406 ± 12	2402 ± 6

Таблица 1. Результаты U-Рb-изотопных исследований бадделеита (проба Ca-250-1)

Примечание. * – навеску бадделеита не определяли; Pb_c – обычный Pb; Pb_t – общий Pb; ^a – измеренные изотопные отношения; ⁶ – изотопные отношения, скорректированные на бланк и обычный Pb; *Rho* – коэффициент корреляции ошибок ²⁰⁷Pb/²³⁵U и ²⁰⁶Pb/²³⁸U. Величины ошибок (2 σ) соответствуют последним значащим цифрам. Для изотопного анализа были использованы наиболее прозрачные, однородные кристаллы бадделеита, подвергнутого многоступенчатому удалению поверхностных загрязнений в спирте, ацетоне, 1 *M* HNO₃, 1 *M* HCl. При этом после каждой ступени зерна промывали особо чистой водой. Химическое разложение бадделеита выполняли по модифицированной методике T.E. Кроу [11] в тефлоновых микрокапсулах, помещенных в резервуар для разложения системы Parr, при этом ²³⁵U–²⁰²Pb-трассер добавляли непосредствено перед разложением. Изотопные анализы выполнены на масс-спектрометре TRITON TI при помощи счетчика ионов. Точность определения U/Pb 0.5%. Холостое загрязнение не превышало 1–2 пг Pb и 0.2 пг U. Обработку экспериментальных данных проводили при помощи программ PbDAT [12] и ISOPLOT [13]. При расчете возрастов использованы общепринятые значения констант распада U [14]. Поправки на обычный Pb введены в соответствии с модельными величинами [15]. Все ошибки приведены на уровне 2 σ .

Полученная оценка возраста 2404 ± 5 млн лет соответствует возрасту кристаллизации бадделеита.

Датированные долериты – это базиты нормального ряда щелочности. Низкие содержания MgO, Cr, Ni в них указывают, что исходные расплавы претерпели высокие степени фракционной кристаллизации. Соответственно фиксируемые в долеритах невысокие содержания Ti, Zr, Y, Nb, которые несовместимы при дифференциации расплавов основного состава, предполагают изначально низкие концентрации этих элементов в исходном расплаве. Недифференцированный характер распределения ТРЗЭ ([Gd/Yb], 1.1–1.2]) в долеритах предполагает отсутствие граната в мантийном источнике и формирование первичных расплавов на небольшой глубине в поле стабильности шпинелевых перидотитов. Ряд геохимических особенностей долеритов, включая обогащение крупноионными литофильными элементами и ЛРЗЭ ([La/Sm]_n 1.7–1.9) и деплетированность Nb (Nb/Nb* = [Nb_{PM}/(Th_{PM} · La_{PM})^{1/2}] 0.32–0.35) (табл. 2; рис. 3), вероятно, связан с коровой контаминацией, существенная роль которой подтверждается и отрицательными значениями $\varepsilon_{Nd}(2400) - 0.02... - 0.4$.

Возрастные аналоги изученных долеритов известны на сопредельной территории Финляндии в блоке Тайвалкоски (в 130 км, 320°, от г. Костомукша). Здесь детально изучена дайка долеритов, принадлежащая рою субширотного простирания, возраст которой по результатам Sm—Nd-датирования 2407 \pm 35 млн лет ($\epsilon_{Nd}(2400) = +1.6$) [3]. Геохимические аналоги этих даек установлены и в районе г. Костомукша (рис. 1). Эти базиты при более высоких содержаниях MgO и низких Fe₂O₃ имеют значительно более высокие содержания

Рис. 2. Диаграмма с конкордией для бадделеита, проба Ca-250-1. Номера точек соответствуют порядковым номерам в табл. 1.

ТіО₂ (>2.2 мас. %), P₂O₅, Nb, ЛРЗЭ, более фракционированное распределение ТРЗЭ (табл. 2; рис. 3) и высокие положительные величины ($\varepsilon_{Nd}(2400) =$ = +1.6) [3]. Геохимические и изотопные характеристики двух групп даек возраста 2.4 млрд лет предполагают их контрастные отличия по составу и глубине плавления источника и степени контаминации коровым материалом. Эти данные свидетельствуют о том, что эпизод формирования базитов 2.4 млрд лет был, вероятно, достаточно широко проявлен на Карельском кратоне и включал как минимум два петрогенетических типа долеритов, оценка масштабов и площадного распространения которых потребует дополнительных исследований.

В последние годы в мире появилось много новых данных о палеопротерозойских базитах, сформированных в 2400 \pm 25 млн лет. Сравнение одновозрастных даек в роях Скорье (2375–2410 млн лет, Льюисский комплекс, Шотландия [5]), Рингвассё (2403 \pm 3 млн лет, комплекс Западный Трамсе, Норвегия [2]) и дю Чеф (2408 \pm 3 млн лет, кратон

Рис. 3. Вариации содержаний главных и рассеянных элементов и их отношений в палеопротерозойских базитах Карельского и Канадского кратонов, Шотландии и Норвегии. По [2, 5, 6, 9]. Карельский кратон: *1* – дайки долеритов, 2404 ± 5 млн лет; *2* – дайки долеритов, 2407 ± 35 млн лет и их геохимические аналоги; *3* – основные вулканиты сариолия, 2400–2300 млн лет; *4* – дайки роя дю Чеф, Канадский кратон, 2408 ± 3 млн лет; *5* – дайки роя Скорье, Льюисский комплекс, Шотландия, 2375–2410 млн лет; *6* – дайки Рингвассё, 2403 ± 3 млн лет, комплекс Западный Тромс, Норвегия.

Образец	Ca-249-1	Ca-249-2	Ca-250-1	Ca-250-7	Ca-250- 14/1	Ca-250- 14/2	WD9	K-4-1\01	K-4-2\01
Компонент	1	2	3	4	5	6	7	8	9
SiO ₂	49.30	50.25	50.08	50.23	50.53	50.30	47.08	47.98	48.30
TiO ₂	1.94	1.51	1.54	1.24	1.38	2.28	2.54	2.38	2.44
Al_2O_3	13.35	13.82	14.87	15.24	13.69	11.77	13.47	15.35	14.85
Fe ₂ O ₂	18.39	16.65	15.99	15.12	16.36	21.30	15.27	15.17	15.41
MnO	0.24	0.23	0.20	0.21	0.21	0.23	0.21	0.19	0.20
MgO	3.90	4.30	3.80	4.32	4.92	2.69	6.06	6.55	5.92
CaO	9.31	9.58	9.50	10.00	9.05	7.13	9.04	9.15	9.25
Na ₂ O	2.36	2.38	2.65	2.54	2.40	2.27	2.05	1.71	2.12
K ₂ O	0.71	0.77	0.86	0.68	0.83	1.01	0.86	0.82	0.55
P ₂ O ₂	0.71	0.21	0.21	0.17	0.05	0.30	0.00	0.02	0.55
	0.22	0.21	0.21	0.17	0.15	0.30	0.55	0.30	0.7
	99.72	99 74	99.70	99.75	99.67	99.58	96.98	100.02	100.02
Sc	46.2	42.4	42.3	41.3	42.9	40.5	70.70	35.64	43.25
V	525	384	435	379	403	494		263	244
, Cr	37.5	55.6	79 3	55 3	64.0	6 64		85.9	82.2
Со	54.3	49.0	57.8	46.8	60.0	62.9		56.19	55.01
Ni	62.0	69.8	86.7	71.6	79.1	35.1		97.20	88.30
Cu	244	181	204	153	199	333		53.00	58.02
Rb	17.1	19.3	24.2	16.6	20.9	25.7		29.23	15.59
Sr	174	180	200	196	181	176		210	343
Y	32.4	30.6	28.6	25.4	30.7	54.1	31.0	29.47	38.71
Zr	96.3	104	118	90.2	113	214		85.61	153.30
Nb	6.38	5.79	6.64	4.72	6.80	13.1	14.0	14.66	19.13
Ba	274	269	297	232	321	528		257	127
La	14.0	13.7	15.0	11.3	16.3	28.3	24.3	19.21	27.00
Ce	30.4	29.3	34.4	24.2	34.1	60.5	54.0	37.89	51.86
Pr	3.99	3.82	4.44	3.12	4.75	8.75		5.61	7.31
Nd	17.2	16.5	18.6	13.5	21.2	37.5	29.0	24.07	33.45
Sm	4.99	4.80	4.82	3.95	5.52	9.35	6.44	5.84	8.01
Eu	1.54	1.48	1.46	1.27	1.51	2.52	2.00	1.96	2.81
Gd	5.02	4.75	5.19	3.90	5.92	10.3		6.34	8.43
Tb	0.799	0.756	0.784	0.648	0.954	1.64	1.10	1.03	1.36
Dy	5.79	5.47	4.60	4.56	6.05	10.4		6.31	7.89
Но	1.24	1.16	1.05	0.950	1.15	1.98		1.18	1.56
Er	3.61	3.44	3.38	2.90	3.61	6.15		3.51	4.45
Tm	0.515	0.493	0.496	0.418	0.484	0.832		0.48	0.59
Yb	3.60	3.44	3.37	2.91	3.53	5.97	4.42	3.17	3.92
Lu	0.526	0.490	0.496	0.414	0.502	0.833	0.66	0.45	0.58
Pb	4.70	4.50	5.13	3.72	5.89	10.2		3.03	3.53
Th	3.07	3.03	3.13	2.48	3.11	5.63	1.70	1.98	2.78
U	0.680	0.648	0.756	0.518	0.741	1.34	0.80	0.50	0.72

Таблица 2. Содержания петрогенных окислов (вес. %), редких элементов (мкг/г) и изотопный состав неодима в долеритах

Образец	Ca-249-1	Ca-249-2	Ca-250-1	Ca-250-7	Ca-250- 14/1	Ca-250- 14/2	WD9	K-4-1\01	K-4-2\01
Компонент	1	2	3	4	5	6	7	8	9
$(La/Sm)_n$	1.8	1.8	1.9	1.8	1.8	1.9	2.4	2.1	2.1
$(Gd/Yb)_n$	1.1	1.1	1.2	1.1	1.4	1.4		1.6	1.7
Nb/Nb*	0.35	0.33	0.35	0.32	0.35	0.37	0.79	0.86	0.80
¹⁴⁷ Sm/ ¹⁴⁴ Nd			0.1400	0.1389					
¹⁴³ Nd/ ¹⁴⁴ Nd			0.511731	0.511720					

Таблица 2. Окончание

Примечание. 1, 2 – мелкозернистый долерит, западный карьер (обн. Са-249 на рис. 1), 3–6 – восточный карьер (обн. Са-249 на рис. 1); 3, 5 – центральная часть дайки; 4 – породы зоны закалки, южный контакт; 6 – габбро-пегматит; 7 – дайка долеритов возраста 2407 ± 35 млн лет, блок Тайвалкоски, Финляндия (по данным [3]) и ее аналоги (8, 9) в районе г. Костомукша (обн. К-4 на рис. 1).

Сьюпериор, Канада [6]) показывает значительное сходство их составов (рис. 3). Поскольку состав базитов — производная степени плавления источника, степени фракционной кристаллизации и коровой контаминации первичных расплавов, можно предполагать, что эти условия были близки для базитов в 2400 ± 25 млн лет в разных фрагментах архейской коры северного полушария. Это, в свою очередь, позволяет предполагать, что разобщенные ныне блоки архейской коры в пе-

Рис. 4. Реконструкция положения роев мафических даек в пределах палеопротерозойского суперконтинента. По [7] с упрощениями и дополнениями.

риод 2400 млн лет были объединены в составе единого континентального блока (суперкратона?). Полученные нами данные не противоречат предложенной С.А. Писаревским модели взаимного расположения континентальных блоков в период 2400 млн лет (рис. 4), которая включает также кратоны Илгарн и Зимбабве, где установлены базиты аналогичного возраста ([7] и ссылки в ней). Вместе с тем эта модель требует уточнения и привлечения дополнительных палеомагнитных данных, в том числе и для изученных нами базитов на Карельском кратоне.

Таким образом, результаты датирования палеопротерозойских мафических даек свидетельствуют о том, что событие 2404 ± 5 млн лет на Карельском кратоне — самостоятельное проявление основного магматизма в палеопротерозое и отделено от предшествовавших ему сумийских (2450 ± 12 млн лет [9]) базитов длительным интервалом времени.

Несмотря на то что к настоящему времени на Карельском кратоне датирована только низкомагнезиальная компонента события 2404 ± 5 млн лет, нельзя отрицать потенциальную возможность существования магнезиальных базитов такого возраста. Предпосылки к этому — установленные на Фенноскандинавском щите коматииты сариолия и высокомагнезиальные габбронориты роя Рингвассё (2403 ± 3 млн лет [2]).

Имеющиеся к настоящему времени данные позволяют предполагать существование крупной магматической провинции с возрастом ~2400 млн лет, фрагменты которой установлены на Карельском кратоне, в кратоне Сьюпериор, Льюисском комплексе, кратонах Зимбабве и Илгарн. Вместе с тем очевидно, что данные для нескольких объектов в одном детально изученном районе не дают оснований для оценки события в целом. Поэтому для понимания условий формирования расплавов, корректной оценки объема и тектонической позиции базитов возраста 2404 ± 5 млн лет на Касобходимы дополнительные 7. *Pisarevsky S.A., De Waele B., Jones S., Söderlund U.,* силлов и их латирование 7. *Pisarevsky S.A., De Waele B., Jones S., Söderlund U., Ernst R.E.* // Precambr. Res. 2015. V. 259. P. 222–231.

- 8. *Bayanova T., Ludden J., Mitrofanov F.P.* // Geol. Soc. London. Spec. Publ. 2009. V. 323. № 1. P. 165–198.
 - Stepanova A.V., Salnikova E.B., Samsonov A. V., Egorova S.V., Larionova Y.O., Stepanov V.S. // Precambr. Res. 2015. V. 259. P. 43–57.
 - 10. *Söderlund U., Johansson L.* // Geochem., Geophys., Geosyst. 2002. V. 3. № 2. P. 1–7.
 - Krogh T.E. // Geochim. et Cosmochim. Acta. 1973. V. 37. № 3. P. 485–494.
 - 12. *Ludwig K.R.* PbDat for MS-DOS. Vers. 1.21 // U.S. Geol. Surv. Open File Rept 88-542. 1991. 35 p.
 - 13. Ludwig K.R. ISOPLOT/Ex. Vers. 2.06. A Geochronological Toolkit for Microsoft Excel // Berkeley Geochronol. Center Spec. Publ. 1999. № 1a. 49 p.
 - 14. *Steiger R.H., Jäger E.* // Earth and Planet. Sci. Lett. 1977. V. 36. № 3. P. 359–362.
 - 15. *Stacey J.S., Kramers J.D.* // Earth and Planet. Sci. Lett. 1975. V. 26. № 2. P. 207–221.

рельском кратоне необходимы дополнительные исследования даек и силлов и их датирование прецизионными методами.

Работа выполнена при поддержке РФФИ, проекты 14–05–00432 и 15–05–09288.

СПИСОК ЛИТЕРАТУРЫ

- 1. *Eriksson P.G., Condie K.C.* // Gondwana Res. Intern. Assoc. Gondwana Res. 2014. V. 25. № 1. P. 30–47.
- 2. *Kullerud K., Skjerlie K.P., Corfu F., de la Rosa J.D.* // Precambr. Res. 2006. V. 150. № 3/4. P. 183–200.
- 3. *Vuollo J., Huhma H.* Precambrian Geology of Finland Key to the Evolution of the Fennoscandian Shield. L.: Elsevier, 2005. V. 14. P. 195–236.
- Davies J.H.F.L., Heaman L.M. // Precambr. Res. 2014. V. 249. P. 180–198.
- Hughes H.S.R., McDonald I., Goodenough K.M., Ciborowski T.J.R., Kerr A.C., Davies J.H.F.L., Selby D. // Precambr. Res. 2014. V. 250. P. 97–126.
- Ciborowski T.J.R., Kerr A.C., Mcdonald I., Ernst R.E., Hughes H.S.R., Minifie M.J. // Precambr. Res. 2014. V. 250. P. 151–166.