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ON THE EFFICIENCY OF BRIDGE MONTE-CARLO ESTIMATOR

O. V. Lukashenko1, E. V. Morozov2, and M. Pagano3

Abstract: Long-term correlation is a key feature of traffic flows and has a deep impact on network performance.
Indeed, the arrival rate can persist on relatively high values for a considerable amount of time, provoking long
busy periods and possibly bursts of lost packets. The authors focus on Gaussian processes, well-recognized and
flexible traffic models, and consider the probability that the normalized cumulative workload grows at least as the
length T of the considered interval. As T increases, such event becomes rare and ad-hoc techniques should be used
to estimate its probability. To this aim, the authors present a variant of the well-known conditional Monte-Carlo
(MC) method, in which the target probability is expressed as a function of the corresponding bridge process. In
more detail, they derive the analytical expression of the estimator, verify its effectiveness through simulations (for
different sets of parameters), and investigate the effects of the discretization step.
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1 Introduction

Key features of traffic patterns in modern computer net-
works are the high level of statistical multiplexing and,
at the same time, strong correlations over several time-
scales [1]. In this framework Gaussian processes have
emerged as well-recognized and flexible models able to
describe the traffic dynamics of a wide class of net-
works [2, 3]. Indeed, they permit to capture, in a simple
and parsimonious way, the properties of self-similarity
and long-range dependence, which have a deep impact
on network dimensioning and QoS (Quality of Service)
issues [4]. In a nutshell, self-similarity means that the
distribution of the process remains unchanged under
suitable scaling of time and space, while long-range
dependence (also known as Joseph effect) [5] implies
a slow decay of the autocorrelation function.

Network performance are, in general, deeply in-
fluenced by packet losses and many works have been
devoted to the estimation of the overflow probability in
presence of long-range dependent traffic (see, for in-
stance, [3] and references therein). However, not only
the loss rate is relevant, but also the way in which loss-
es are distributed over time. Indeed, bursts of losses
can significantly degrade the QoE (Quality of Experi-
ence) in case of real-time multimedia applications and
also affect the throughput of elastic applications, since
TCP congestion control [6] poorly reacts in presence
of multiple losses during the same congestion window,
which often lead to the expire of timeouts (instead of

the AIMD (Additive Increase Multiplicative Decrease)
behavior that happens when losses are detected via triple
duplicate acknowledgements). Such bursts of losses are
often determined by high-activity periods that last for
relative long intervals of time, a typical consequence of
the above-mentioned Joseph effect.

Moreover, the properties of long-memory and self-
similarity make difficult the theoretical analysis even for
simple queuing systems and, as a consequence, simula-
tion is often the only available tool to investigate network
performance.

Simulation permits to study the performance of com-
plex systems with an arbitrary level of detail, but the
traditional approach, known in the literature as crude
MC, becomes highly inefficient when the event of inter-
est gets rarer and rarer. Indeed, given a required level of
accuracy (typically expressed in terms of relative error),
the length of the simulation is inversely proportional to
the target probability, which can assume (for instance,
in the case of high-quality video flows) values of the
order of 10−9 [7]. Moreover, every estimate may be
related to the simulation of complex networks and so
includes the generation of a huge amount (of the order
of millions or more, depending on the time horizon and
the complexity of the system) of random numbers, with
additional concerns related not only to the length of
the simulation, but also to the goodness of the random
generator itself.

Variance reduction techniques aim at achieving the
desired accuracy with a lower number of samples [8],
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but require some additional information about the be-
havior of the system, typically provided (although in
an asymptotic and eventually approximate form) by the
Large Deviation Theory (LDT) [9]. Among them,
Importance Sampling (IS) is probably the most popular
approach [10] due to its links with LDT1, providing a sol-
id theoretical background for its applicability. However,
under an improper choice of the change of measure
(the optimal choice is known just for simple queuing
systems), the variance may even grow infinitely [11].

In this paper, based on its predecessors [12, 13], the
focus is on an alternative approach, known as Condi-
tional MC, in which the target probability is expressed
as a conditional expectation. Although conditional MC
always leads to variance reduction, it is often impossible,
or at least very difficult, to find a suitable conditioning
quantity. However, in case of Gaussian processes, the
target probability can be easily expressed as a function
of the corresponding bridge process, as originally pro-
posed in [14] under the name of Bridge Monte Carlo
(BMC), for the estimation of the overflow probability.
As mentioned above, in this work, the authors investigate
the applicability of BMC to the tail distribution of the
duration of high activity periods, which indeed become
rare events when the duration of the considered interval
goes to infinity. In comparison with the preliminary
work [12], the experimental results have been widely ex-
tended: indeed, the authors investigated the asymptotic
properties of the estimator, compared its performance
with a basic version of IS, and analyzed the effect of the
discretization step on the estimated probability.

The rest of the paper is organized as follows. In
Section 2, the authors formally define the problem ad-
dressed in this work and recall the few available asymp-
totic results. Then, Section 3 addresses the general
issues related to rare event simulation, including the
basic definitions about simulation efficiency and a short
description of (single-twist) IS, the most widely used
variance reduction technique that will be considered
later for performance comparison. The use of the bridge
process is investigated in Section 4, while its perfor-
mance is analyzed in Section 5, taking into account
the effect of different parameters (such as the length
of the activity period, the conditioning point, and the
discretization step). Finally, Section 6 ends the paper
with some final remarks.

2 High Activity Periods
for Gaussian Processes

In traffic modeling, Gaussian processes have emerged
as a flexible and powerful tool, able to take into account

the long memory properties of real traffic, while keeping
a relatively simple and elegant description.

In this work, a centered Gaussian process with sta-
tionary increments {Xt, t ∈ R+} is considered. Let us
denote by vt := VarXt the variance of Xt; then, the
covariance function has the following expression:

•s,t =
1

2

(
vt + vs − v|t−s|

)
.

It is interesting to estimate the following probability:

π(T ) := P (∀t ∈ T : Xt > t) (1)

where T = (0, T ] ⊆ R+. Such probability is closely
related to the duration of busy periods and plays an im-
portant role in the study of QoS indexes since it takes into
account bursts of losses (for more details, see [15, 16]).

It is worth mentioning that the present approach
only requires that vt is an increasing function. Such
condition is quite general and holds, for instance, for
the following processes, well-known in the literature and
widely-used in traffic modeling:

(1) fractional Brownian Motion (FBM), one of the
most studied self-similar long-range dependent
Gaussian processes, originally proposed in the traf-
fic modeling framework by Norros [2]. It has been
shown in [17] that FBM arises as the scaled limit
process when the cumulative workload is a superpo-
sition of on-off sources with mutually independent
heavy-tailed on and/or off periods. In this case,

vt = t
2H , H ∈ (0, 1) ,

and in the teletraffic framework, usually, H
∈ (1/2, 1), corresponding to processes with long-
range dependence;

(2) sum of independent FBMs:

vt =
∑

i

t2Hi .

The use of this model is also motivated by the fun-
damental result in [17] in case of heterogeneous
on-off sources; and

(3) integrated Ornstein–Uhlenbeck process (IOU):

vt = t+ e
−t − 1

is the Gaussian counterpart of the well-known
Anick–Mitra–Sondi fluid model [18], and its rel-
evance in the framework of teletraffic is also dis-
cussed in [19].

1On one side, several proofs in LDT are based on IS arguments and, on the other side, efficient changes of measure are often related to
sample-path LDT results
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Note that the analytical expression of the target
probability is not known in explicit form for a gener-
al Gaussian input (including the considered examples).
Indeed, there are only a few asymptotic results available,
based on LDT. For instance, in the case of FBM input,

lim
T→∞

1

T 2−2H
logP (∀t ∈ (0, T ] : Xt > t)

= lim
n→∞

1

n
logP

(
∀t ∈ (0, 1] : Xt√

n
> t

)

= − inf
f∈B

˜(f) := −ν (2)

where

B := {f ∈ R : f(r) > r, ∀r ∈ (0, 1]} ;

˜ denotes the rate function; and R is the reproducing
kernel Hilbert space (RKHS) associated with the distri-
bution of FBM (for more details, see [20]). Moreover, it
is known [15] that the constant ν ∈ [1/2, c2H/2], where

cH :=

[
H (2H − 1) (2− 2H)

× B
(
H − 1

2
, 2− 2H

)]−1/2

and B is the Beta function. Note that the upper bound
for this constant is close to 1/2 in case when H > 1/2
(Fig. 1). A further characterization of the most likely
path in the set B has been found in [21], and since
an explicit expression for ν is not available, numer-
ical methods to calculate ν have been proposed. The
above-mentioned asymptotic result has been generalized
in [22] to the case of Gaussian processes with regularly
varying at infinity variance, which includes the sum of
independent FBMs and IOU as well.

Due to the lack of exact analytical results, simulation
is the only available tool for estimating the target prob-
ability (1). On the other hand, when T → ∞, the event

Figure 1 Upper bound for ν

{∀t ∈ T : Xt > t} becomes rare and, hence, standard
MC requires an unacceptable large number of generated
sample paths. Indeed, the key contribution of this work
is the application of a variant of the conditional MC
method for variance reduction.

3 Preliminaries on Rare Event
Simulation

Let X be a random process. Consider estimating the
probability

π(T ) := P (X ∈ AT ) = EI (X ∈ AT )

for some Borel set AT of the paths of the process X
where I denotes the indicator function and T is the
so-called parameter of rarity: πT → 0 as T → ∞. To
estimateπT by standard MC simulation, one should gen-
erate N replications X(1), . . . , X(N) of the process X .
In the following, there will be considered the estimators
of the form

π̃N (T ) =
1

N

N∑

n=1

FT

(
X(n)

)
(3)

for a measurable function FT . If FT (X) = I(X ∈ AT ),
one has the crude MC estimator. The relative error (RE)
of the estimate π̃N (T ) is defined as

RE(π̃(T )) :=

√
Var[π̃N (T )]

E[π̃N (T )]
,

and for the crude estimate, it behaves as

RE(π̃(T )) ∼ 1√
π(T )N

as π(T )→ 0 .

Therefore, the RE of the standard MC estimation is
unbounded when the event becomes rare. That is why
for the rare event simulation, it is crucially important to
define modified estimators in order to reduce variance
(and, as a result, RE).

Let us consider the number of sample paths required
to obtain some given maximal RE:

NT = inf {N ∈ N : RE (π̃(T )) ≤ REmax}

and let us introduce the concept of relative efficiency

RT :=
logE

[
FT (X)

2
]

logE [FT (X)]
.

An estimate (3) is said to be asymptotically opti-
mal [23, 24] with respect to the parameter T if

lim sup
T→∞

1

T
logNT = 0 ,
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i. e., if the corresponding RE increases slower than any
exponential function. The latter condition is equiva-
lent to

lim
T→∞

RT = 2 .

Remark that the limit above is always less or equal 2 since
E[FT (X)

2] ≥ (E[FT (X)])2. The proof of asymptotic
optimality usually relies on LDT, namely, on Varadhan’s
lemma [23].

Let us briefly describe the method of simulation
by conditioning, known in the literature as conditional
MC [8]. Denote

Z = I (X ∈ AT )

and assume that one has an auxiliary random variable
(r.v.) Y correlated with Z such that E[Z|Y ] is available
in explicit form. Let Y (1), . . . , Y (N) be the sample of Y ;
then, the corresponding unbiased estimator of E[Z|Y ] is
defined as

π̂N (T ) :=
1

N

N∑

n=1

E

[
Z|Y (n)

]
.

Note that the variance of this estimator is always less
than the variance of the standard MC one since

VarZ = E [Var[Z|Y ]] + Var [E[Z|Y ]] . (4)

Another popular method for variance reduction is
IS. The basic idea of IS is the change of the probability
measure, so that the target rare event becomes more
likely to occur [10]:

π(T ) = EI(X ∈ AT ) =

∫
I (x ∈ AT ) dP(x)

=

∫
I(x ∈ AT )

dP(x)

d“P(x)
d“P(x) = “E [I(X ∈ AT )L(X)]

where L := dP(x)/d“P(x) is the likelihood ratio and “E
means expectation associated with the probability mea-
sure “P. Hence, the IS estimator is defined as

π̂ISN (T ) :=
1

N

N∑

n=1

I
(
X(n) ∈ AT

)
L
(
X(n)

)

where (X(1), . . . , X(N)) are independent and
identically-distributed replications generated according
to “P.

It is well known that the optimal change of measure
(zero-variance) requires the knowledge of the proba-
bility of interest and, therefore, cannot be practically
adopted.

A class of IS estimators (known in the literature
as single-twist estimators) can be constructed by shift-
ing the process X with a deterministic path ηt (“P is

the law of {Xt + ηt}) in order to make the rare event
more likely to occur. In the finite-dimensional case,
when X is a centered Gaussian random vector with
nondegenerate covariance matrix •, it is easy to show
(see, for example, [25]) that the likelihood ratio is giv-
en by

L(x) = exp

{
−η′•−1x+ 1

2
η′•−1η

}
.

4 Bridge Monte-Carlo Estimator

The BMC is a special case of the conditional MC
method, particularly suitable for the estimation of the
rare event probabilities in a queueing system with Gaus-
sian input.

Originally proposed by some of the authors
in [14, 26, 27], BMC is based on the idea of expressing
the overflow probability as the expectation of a function
of the Bridge Y := {Yt} of the Gaussian input pro-
cess X, i. e., the process obtained by conditioning X
to reach a certain level at some prefixed (deterministic)
time instant τ :

Yt = Xt − ψtXτ

where ψt is expressed via the covariance function as

ψt :=
•t,τ
•τ,τ

.

Since the variance of the input is an increasing function
of t in all models considered, it is easy to see that ψt > 0
for all t ∈ T . Moreover, note that for any t ∈ T, Yt is
independent of Xτ since

E [XτYt] = •τ,t −
•t,τ
•τ,τ

•τ,τ = 0

and (Xτ , Yt) has bivariate normal distribution.
The target probability can be expressed in the fol-

lowing form:

π(T ) = P (∀t ∈ T : Xt > t)

= P

(
∀ t ∈ T : Xτ >

t− Yt
ψt

)

= P

(
Xτ ≥ sup

t∈T

t− Yt
ψt

)
= P

(
Xτ ≥ Y

)

where

Y := sup
t∈T

t− Yt
ψt

.

Observe that random variable Y is independent
ofXτ . For the sake of simplicity, let us prove this property
in the case T = {1, . . . , T} which is enough for simula-
tion needs. Indeed, the random vector (Xτ , Y1, . . . , YT )
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has multivariate normal distribution and, moreover, as it
was shown above,Xτ is independent of Yi, i = 1, . . . , T ;
hence,Xτ is independent of the vector (Y1 , . . . , YT ) (due
to the properties of the multivariate normal distribution,
see [28] for more details) and, as a consequence, of any
function of its components.

Having in mind thatXt =d
√
•t, tN(0, 1), the con-

sidered probability can be rewritten as follows:

π(T ) = P
(
Xτ ≥ Y

)
=

∫

R

P(Xτ ≥ u)P
(
Y ∈ du

)

= E

[
�

(
Y√
•τ, τ

)]

where independence between Y and Xτ is used and �
denotes the tail distribution of standard normal variable,
that is,

�(x) =
1√
2π

∞∫

x

e−y
2/2dy .

Hence, given a sample {Y (n), n = 1, . . . , N} of Y ,
the estimator of π(T ) is defined as follows:

π̂BMC
N :=

1

N

N∑

n=1

�

(
Y
(n)

√
•τ,τ

)
.

Note that

�

(
Y√
•τ, τ

)
= E

[
I(Xτ > Y )|Y

]
;

therefore, the BMC approach is actually a special
case of the conditional MC method. By (4), VarZ
≥ Var[E[Z|Y ]]; so, one can expect that the BMC esti-
mator implies variance reduction (with regard to crude
MC simulation) in the estimation of the target probabil-
ity π(T ).

5 Simulation Results
In this section, through simulation results, the accuracy
of the BMC estimator and the dependence of its perfor-
mance on different parameters will be pointed out. For
sake of brevity, only the results for FBM input consid-
ering N = 10000 replications (unless otherwise stated)
will be presented.

Figure 2 shows the dependence of the target prob-
ability on the interval duration T in case of H = 0.8,
a typical value of the Hurst parameter for traffic data.
The probability π(T ) exhibits an exponential decay in
agreement with the known LDT asymptotic results (see
formula (2)). To better understand the practical appli-
cability of such limits, in Fig. 3, the ratio between BMC
estimates and (2) is reported for different values of T .

In order to verify the goodness of the present estima-
tor, the dependence of the RE on the parameters T has
been considered. Figure 4 highlights that the RE grows
slowly and for probabilities of the order of 10−11, it is
still less than 18%, as can be easily verified by comparing
the values in Figs. 2 and 4.

The goodness of the present method is also con-
firmed by the table, where BMC is compared to single
twist (with a constant linear drift chosen by minimizing
the variance of the estimator) IS in terms of RE: for all

Figure 2 Dependence of π on parameter T

Figure 3 Comparison with LDT asymptotic results

Figure 4 Dependence of the RE on T
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On the efficiency of Bridge Monte-Carlo estimator

Relative errors for BMC and IS

T BMC IS
200 0.0691 0.1483
400 0.0779 0.1850
600 0.0941 0.1755
800 0.0894 0.1772

1000 0.1039 0.2275
1200 0.1044 0.2084
1400 0.1101 0.1980
1600 0.1104 0.2462
1800 0.1150 0.2182
2000 0.1177 0.2696

the considered values of T , BMC reduces the RE by
a factor around 2.

To better understand the asymptotic properties of
the estimator (at least heuristically), in Figs. 5 and 6, the
behavior of NT and RT is shown: the required number
of sample paths (for a fixed value of the RE) grows very
slowly (at least in logarithmic scale) and the relative
efficiency is above 1.9 for T > 20 000 (and gets closer
to 2 for higher values of T ).

In all previous simulation sets, the conditioning
point τ in the BMC algorithm has been assumed equal

Figure 5 Dependence of NT on T for REmax = 0.1

Figure 6 Dependence of RT on T for N = 10000

Figure 7 Dependence of RE on τ for T = 3000

Figure 8 Effect of the discretization step h

to the duration of the interval. The correctness of such
choice is confirmed for T = 3000 by Fig. 7 in which
an absolute minimum of the RE can be identified in
a neighborhood of T .

Finally, in Fig. 8, the effect of the discretization
step (simulations always involve finite-size vectors and
not continuous-time processes!) on the estimated prob-
ability is highlighted. In more detail, T = 100 with
discretisation step h (in the previous simulations, h = 1)
has been considered. This means that each FBM sam-
ple path consists of T/h points: apart some oscillations
of the estimated value (the confidence intervals should
also be taken into account!), as expected, the target
probability decreases when sampling is more dense.

6 Concluding Remarks

In this paper, the estimation of the busy period dura-
tion in Gaussian queues was considered with focus on
the upper tail of the distribution. To address the issues
related to the simulation of such rare events, the authors
considered a special case of conditional MC estimator
based on bridge processes. In more detail, the BMC
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approach exploits the Gaussian nature of the input pro-
cess (independence is equivalent to uncorrelatedness)
and relies on the properties of bridges to write down the
target probability as the conditional one.

To study the properties of the proposed estimator,
several simulation experiments have been carried out fo-
cusing on FBM sample paths, although the methods are
applicable to any Gaussian process with increasing vari-
ance. In the experimental analysis, different values of
the relevant parameters (duration of the interval, choice
of the conditioning point, and discretization step) have
been considered and the asymptotic properties of the
estimator (in terms of relative efficiency and duration
of the simulation for a given precision of the estimates)
have been investigated. Finally, it is worth mentioning
that the relative error is halved with respect to single twist
IS, highlighting the efficiency of BMC over well-known
rare event simulation techniques.
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ОБ ЭФФЕКТИВНОСТИ ОЦЕНКИ МОНТЕ КАРЛО

НА ОСНОВЕ ГАУССОВСКОГО МОСТА∗

О. В. Лукашенко1,2, Е. В. Морозов1,2, М. Пагано3

1Институт прикладных математических исследований Карельского научного центра Российской акаде-
мии наук
2Петрозаводский государственный университет
3Университет г. Пиза, Италия

Аннотация: Наличие долговременной зависимости в современных сетях передачи данных приводит к тому,
что объем передаваемого трафика может быть большим на протяжении значительного периода времени.
Это, в свою очередь, влечет перегрузку систем на протяжении длительного периода времени. В данной
работе рассматривается задача оценки вероятности занятости системы обслуживания с гауссовским
входным потоком в течение некоторого заданного периода T . При больших значениях T интересующее
нас событие является редким, и для оценки его вероятности с приемлемой точностью необходимо
использовать специальные методы понижения дисперсии оценки. В статье рассмотрен частный случай
условного метода Монте Карло, который заключается в том, что искомая вероятность может быть
выражена как математическое ожидание некоторой функции от так называемого гауссовского моста.
Исследована эффективность предложенной процедуры, а также влияние шага дискретизации на свойство
получаемой оценки.

Ключевые слова: гауссовские процессы; условный метод Монте Карло; процесс моста; редкие события;
уменьшение дисперсии
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