StudArctic Forum 1 (1): 38-41, 2016

http://saf.petrsu.ru

DOI: 10.15393/j102.art.2016.164

Использование биостимуляторов при выращивании посадочного материала хвойных пород

Егорова Анастасия Васильевна Аспирант 2 год обучения, Федеральное государственное бюджетное учреждение науки Институт леса Карельского научного центра Российской академии наук, Петрозаводск, Россия

Аннотация. Изучено влияние хвойного препарата на рост двухлетних сеянцев сосны обыкновенной, выращиваемых в условиях открытого грунта. Выявлены дозы внесения препарата, при которых наблюдался положительный эффект на накопление сырой массы сеянцев.

Ключевые слова: роста, рациональное природопользование, древесная зелень, хвойный препарат, сосна обыкновенная, сеянец, корневая подкормка.

Application of biostimulants in the cultivation of coniferous stocking material

Egorova Anastasiya Vasilyevna

Forest Research Institute of the Karelian Research Centre of the Russian Academy of

Sciences

Petrozavodsk, Russia

Tel: (8142) 76-95-00, 76-81-60

Fax: (8142) 76-81-60

E-mail: anast.shv@yandex.ru

Abstract. The effect of a conifer-derived product on the growth of 2-year-old Scots pine seedlings in open field conditions was studied. The rates at which the conifer-derived product should be applied to enhance the accumulation of the seedlings' fresh weight were determined.

Keywords: growth stimulants, sustainable nature use, tree foliage, conifer-derived product, Scots pine, seedling, fertilizer placement.

Введение

Одним из путей решения проблемы получения высококачественного посадочного материала является введение в технологию его выращивания современных физиологически активных веществ — стимуляторов роста.

Опыты по применению стимуляторов роста показывают, что эти препараты обеспечивают устойчивость растений к неблагоприятным условиям среды и болезням, повышают грунтовую всхожесть семян, стимулируют образование корневой системы, нарастание репродуктивных органов, биомассы и выход посадочного материала с единицы площади. В экспериментах с внекорневой подкормкой экзогенными ауксинами показано положительное влияние индолилуксусной кислоты и индолилмасляной кислоты на рост и накопление биомассы сеянцев сосны юньнаньской [1; 6507]. Научные разработки последних лет показали, что при выращивании сеянцев и

http://saf.petrsu.ru

саженцев ценных хвойных пород можно успешно использовать стимуляторы роста, такие как циркон, крезацин, эпин-экстра, фумар, СИЛК, агат-25К, альбит, амбиол, гумат, эпин, на различных стадиях их развития, как при предпосевной обработке семян, так и внекорневой обработке сеянцев. В настоящее время в России разрешено к применению несколько десятков соединений различного происхождения (химического, микробного, растительного), являющихся по своей природе синтетическими аналогами фитогормонов. Одной из задач научных исследований в лесном хозяйстве является изучение возможности использования имеющихся регуляторов роста, а также поиск и испытание новых биостимуляторов [2; 135]. Производству необходим доступный стимулятор роста, обладающий широким спектром эффективных концентраций, исключающим возможность отрицательных последствий при неправильном разведении препарата, нетоксичный, дешевый и экологически безопасный [3; 165].

Хвойные растения продуцируют множество веществ, среди которых есть те, которые служат в качестве защитников и стимуляторов роста растений [4; 61]. Выявлено положительное влияние групп биологически активных водорастворимых веществ, экстрагируемых из хвои сосны обыкновенной, на накопление сухой массы 15-дневных проростков сосны [5; 41]. В последнее время большое внимание уделяется получению биологически активных веществ из древесной зелени пихты сибирской, представляющей собой богатый сырьевой источник получения различных препаратов для медицины и сельского хозяйства. Было показано, что экстракт из зелени пихты влияет на морфологические признаки растений подобно ауксину: листья становятся темно-зелеными, увеличивается длина корней и повышается урожайность многих культур [4; 61]. На основе тритерпеновых кислот пихты сибирской получены биопрепараты СИЛК (Новосил), Вэрва, Биосил, положительно влияющие на стимуляцию роста и иммунный потенциал растений. Данные препараты не только повышают урожайность культур, но и позволяют снизить пестицидную нагрузку и получать экологически чистую продукцию.

При существующих способах переработки древесного сырья в целом по России полезно используется около половины биомассы дерева. В последнее время остро поднимается вопрос о комплексном использовании лесных ресурсов как источнике возобновляемого сырья, особенно древесной зелени хвойных пород. В хвое основных лесообразующих пород содержатся сложные углеводы, липиды, терпеновые, пектиновые соединения, азотсодержащие вещества, макро- и микроэлементы, органические вещества различной природы. Древесная зелень хвойных пород является доступным, дешевым растительным сырьем, которое в свежем виде можно перерабатывать в течение всего года, используя содержащиеся в ней биологически активные соединения в различных областях [6; 79]. Исследования химического состава древесной зелени хвойных пород привели к созданию лесохимического производства, выпускающего различные продукты ее переработки, в том числе хвойную хлорофиллокаротиновую пасту, хвойное эфирное масло [7; 34]. Препарат, полученный из древесной зелени хвойных пород на Тихвинском лесохимическом заводе, был рекомендован для выращивания сельскохозяйственных культур. В его состав входят хлорофилло-каротиновая паста, хвойный экстракт и хвойное эфирное масло. Данный препарат стимулирует рост, способствует увеличению урожая грунтовых и парниковых овощей, повышает интенсивность обмена веществ растений, предохраняет от болезней, противодействует насекомым и вредителям, обладает антимикробным действием.

Целью исследования было испытание этого препарата в качестве стимулятора роста при выращивания посадочного материала хвойных пород в лесных питомниках.

Материалы и методы

Объектом исследования стали двухлетние сеянцы сосны обыкновенной (*Pinus sylvestris* L.), выращиваемые в условиях открытого грунта в тепличном комплексе «Вилга». На опытных участках, площадью по 0,6 м² каждый, в почву вносили дозы хвойного препарата: 17 л/га⁻¹; 50; 167; 500; 1668 л/га⁻¹ и 0 (контроль). Подкормку проводили в июне в сухую погоду. Далее сеянцы выращивали в производственных условиях по стандартной технологии. В конце вегетационного сезона сеянцы выкапывали, промывали водой и взвешивали.

Результаты и обсуждения

Выявлено положительное влияние хвойного препарата на накопление массы сеянцев. Положительный эффект отмечался при использовании следующих доз внесения: 17 л/га ⁻¹; 50 и 167 л/га ⁻¹. Максимальный положительный эффект наблюдался при дозе внесения препарата 167 л/га ⁻¹, при которой средняя масса сеянца превышала контроль на 157%. При дозе внесения 500 и 1668 л/га ⁻¹ отмечалось ингибирование роста сеянцев по сравнению с контролем. Эксперимент показал эффективность использования хвойного препарата при выращивании посадочного материала.

Выводы

Результаты испытания хвойного препарата производства Тихвинского завода позволяют рекомендовать его в качестве стимулятора при выращивании сеянцев сосны обыкновенной с открытой корневой системой в лесных питомниках.

Список литературы:

- 1. Xu, Y.; Zhang, Y.; Li, Y.; Li, G.; Liu D.; Zhao, M.; Cai, N. Growth Promotion of Yunnan Pine Early Seedlings in Response to Foliar Application of IAA and IBA. International Journal of Molecular Sciences, 13, 2012.
- 2. Устинова Т.С. Биологические стимуляторы роста, применяемые в лесных питомниках // Лесной комплекс: состояние и перспективы развития: ІХ Междунар. научно-техн. конф., 1-30 ноября. 2009 г., Брянск: БГИТА, 2009.
- 3. Шакиров Ф. Р. Применение крезацина при выращивании сеянцев сосны обыкновенной (Pinus Sylvestris L.) в условиях Башкирского Предуралья: Автореф. дис. к.б.н.: 03.00.05. Уфа: Башкирский госуд. аграрный ун-т, 2002.
- 4. Карманова Л.И., Кучин А.В., Королева А.А., Хуршкайнен Т.В., Кучин В.А. Экстракция водным раствором оснований как основа новой технологии получения фунгицидов и стимуляторов роста растений // Химия и компьютерное моделирование. Бутлеровские сообщения, 2002, 7.
- 5. Егорова А.В. Влияние хвойного экстракта на проращивание семян сосны обыкновенной. В сборнике: Ресурсосберегающие технологии, материалы и конструкции / М. И. Зайцева, Г. Н. Колесников, Ю. В. Никонова. Петрозаводск: Изд-во ПетрГУ, 2014.
- 6. Васильев С.Н., Рощин В.И., Ягодин В.И. Экстрактивные вещества древесной зелени Pinus sylvestris L. // Растит. ресурсы. 1995, 31(2).
- 7. Ушанова В.М. Комплексная переработка древесной зелени и коры пихты сибирской с получением продуктов, обладающих биологической активностью: Автореф. дис. докт. биол. наук: 05.21.03. Красноярск: Сиб. госуд. технол. ун-т, 2012.

http://saf.petrsu.ru

References:

- 1. Xu, Y.; Zhang, Y.; Li, Y.; Li, G.; Liu D.; Zhao, M.; Cai, N. Growth Promotion of Yunnan Pine Early Seedlings in Response to Foliar Application of IAA and IBA. International Journal of Molecular Sciences, 13, 2012.
- 2. Ustinova TS Biological growth stimulants used in forest nurseries // The Forest Sector: Current State and Development Prospects: 9th Intern. Scientific and Technical Conf., November 1-30. 2009, Bryansk: BGITA 2009.
- 3. Shakirov FR Application of crezacine in the cultivation of Scots pine (Pinus Sylvestris L.) seedlings in the Bashkir sub-Urals: Summary of Cand. Biol. Sci. (PhD) Thesis: 03.00.05. Ufa: Bashkir State Agrarian University, 2002.
- 4. Karmanova LI, Kuchin AV, Korolev AA, Hurshkainen TV, Kuchin VA Base extraction by aqueous solution as the basis for a new technology of producing fungicides and plant growth stimulants // Chemistry and Computational Simulation. Butlerov Communications, 2002, 7.
- 5. Egorova AV Influence of pine extract on seed germination of Scots pine. In: Resource-saving technologies, Materials and Structures / MI Zaitseva, GN Kolesnikov, V. Nikonov. Petrozavodsk: Petrozavodsk State University Publishers, 2014.
- 6. Vasilyev SN, Roshchin VI, Yagodyn VI The extractive substances in the wood green mass of Pinus sylvestris L. // Plant resources. 1995, 31 (2).
- 7. Ushanova VM Integrated processing of Siberian fir foliage and bark to yield products with biological activity: Summary of Dr Biol. Sci. (DSc) Thesis: 05.21.03. Krasnoyarsk: Siberian State Technological University, 2012.

© 2016. Егорова А. В.