АННОТАЦИЯ РАБОЧЕЙ ПРОГРАММЫ ДИСЦИПЛИНЫ СЛУЧАЙНЫЕ ГРАФЫ

Направление подготовки: 01.06.01 «Математика и механика» Профиль: Дискретная математика и математическая кибернетика Квалификация: Исследователь. Преподаватель-исследователь

1. Перечень планируемых результатов обучения по дисциплине, соотнесенных с планируемыми результатами освоения основной образовательной программы (ООП) аспирантуры

Компетенции обучающегося, формируемые в результате освоения дисциплины:

Код компе- тенции. Этап формирова- ния компетенции	Формулировка компетенции	Планируемые результаты обучения (индикаторы достижения компетенции)
УК1 основной	Способность к критическому анализу и оценке современных научных достижений, генерированию новых идей при решении исследовательских и практических задач, в том числе в междисциплинарных областях	Знать: классические виды случайных графов, текущее состояние современных научных достижений, фундаментальные основы теории случайных графов Уметь: генерировать новые идеи при решении исследовательских и практических задач, в том числе в междисциплинарных областях. Владеть: способностью к анализу и оценке современных научных достижений.
УК3 основной	Готовность участвовать в работе российских и между-народных исследова-тельских коллективов по решению научных и научно-образовательных задач	Знать: общее состояние современных научных достижений Уметь: вести научно-исследовательскую деятельность Владеть: организационными, коммуникативными навыками, позволяющими осуществлять работу в исследовательских коллективах

УК4	Готовность	Знать:		
основной	использовать	текущее состояние современных научных		
Conobiion	современные	достижений.		
	методы и	Уметь:		
	технологии научной	принимать мотивированное решение		
	коммуникации на	Владеть:		
	государственном и	навыками принятия решений и способностью нести		
	иностранном языках	ответственность за принятые решения		
ОПК1	Способность	Знать:		
основной	самостоятельно	текущее состояние современных научных		
	осуществлять	достижений в теории случайных графов.		
	научно-	Уметь:		
	исследовательскую	использовать современные методы теории		
	деятельность в	случайных графов.		
	соответствующей	Владеть:		
	профессиональной	навыками и основными методами теории		
	области с	случайных графов.		
	использованием			
	современных методов			
	исследования и			
	информационно-			
	коммуникационных			
	технологий			
	TOMIONOTHI			
ОПК2	Готовность к	Знать:		
основной	преподавательской	историю развития теории случайных графов,		
	деятельности по	классические методы и текущее состояние		
	основным	современных научных достижений в области		
	образовательным	моделирования сложных сетей коммуникаций		
	программам	Уметь:		
	высшего	применять полученные теоретические знания в		
	образования	преподавательской деятельности.		
		Владеть:		
		способностью к критическому анализу учебных		
		программ по вероятностным методам дискретной		
ПК1	Понимения важи и	математики		
	Понимание роли и места дискретной	Знать: методы дискретной математики, теории графов, и		
основной	математики и	теории вероятностей, применяемые при		
	математической	моделировании сложных сетей коммуникаций.		
	кибернетики в	моделировании сложных сетей коммуникации. Уметь:		
	математике в целом,	оценивать методы дискретной математики, теории		
	их связи с другими	графов, теории вероятностей и с точки зрения		
	разделами	возможности и целесообразности их применения		
	математики и	при моделировании сложных сетей.		
	другими областями	Владеть:		
	науки	навыками использования методов дискретной		
	_	математики и математической кибернетики при		
		моделировании сетей.		

ПК4	Способность	
Основной	применять	Знать:
	алгебраические,	текущее положение современных научных
	логические,	достижений в дискретной математике и
	комбинаторные,	математической кибернетике, классическую и
	вероятностные и	современную методологию теории случайных
	алгоритмические	графов.
	методы анализа	Уметь:
	графов, автоматов,	применять комбинаторные, теоретико-графовые и
	формальных языков,	теоретико-вероятностные методы для моделирования
	символьных	сложных объектов.
	последовательносте	Владеть:
	й	навыками использования методов дискретной
		математики и математической кибернетики при
		моделировании сложных объектов

4. Объем дисциплины и виды учебной работы

4.1. Объем дисциплины

Общая трудоемкость дисциплины составляет 2 зачетных единицы, 72 часа.

Вид учебной работы	Объем часов / зачетных единиц
Обязательная аудиторная учебная нагрузка (всего)	32
в том числе:	
лекции	16
семинары	-
практические занятия	16
Самостоятельная работа аспиранта (всего)	36
Вид контроля по дисциплине	зачет, 4

5. Содержание дисциплины

Тема №1. Понятие случайный граф, классические случайные графы, примеры.

Случайный объект как обобщение понятия случайной величины. Случайный граф – частный случай случайного объекта. Вероятностный подход к решению перечислительных задач. Классические случайные графы. Случайные деревья, леса, отображения.

Тема №2. Обобщенная схема размещения, ветвящиеся процессы.

Классическая схема размещения частиц по ячейкам. Обобщенная схема. Условные случайные леса. Ветвящиеся процессы. Процессы Гальтона-Ватсона. Вероятность вырождения. Классификация ветвящихся процессов. Примеры применения.

Тема №3. Случайные графы Эрдеша-Реньи.

Графы Эрдеша-Реньи и их свойства. Границы объемов компонент связности. Классификация графов Эрдеша-Реньи (докритические, критические и надкритические). Связь графов Эрдеша-Реньи и ветвящихся процессов. Оценка возможностей использования графов Эрдеша-Реньи при моделировании сложных сетей.

Тема №4. Малый мир.

Основные свойства современных сложных сетей коммуникаций (безмасштабность, малый мир, случайные распределения степеней с тяжелым хвостом). Графы предпочтительного присоединения и их свойства. Конфигурационные графы. Алгоритм построения графа. Динамика случайных графов. Локальная древовидность. Связь с ветвящимися процессами. Гигантская компонента.

Тема №5. Применения конфигурационных графов.

Использование конфигурационных графов для моделирования сложных сетей коммуникаций, в частности, систем мобильной связи и сети Интернет. Оценка устойчивости сетей к случайным и целенаправленным разрушающим воздействиям. Моделирование лесных пожаров и банковских систем. Современные сети с изменяющимися и случайными распределениями случайных величин, равных степеням вершин.

Разработчик:

Павлов Юрий Леонидович, г.н.с., д.ф.-м.н., профессор