
SUBMITTED TO IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 1

A Survey of Desktop Grid Scheduling
Evgeny Ivashko, Ilya Chernov, and Natalia Nikitina

F

Abstract—The paper surveys the state of the art of task scheduling in
Desktop Grid computing systems. We describe the general architecture
of a Desktop Grid system and the computing model adopted by the
BOINC middleware. We summarize research papers to bring together
and examine the optimization criteria and methods proposed by re-
searchers so far for improving Desktop Grid task scheduling (assigning
tasks to computing nodes by a server). In addition, we review related
papers, which address non-regular architectures, like hierarchical and
peer-to-peer Desktop Grids, as well as Desktop Grids designed for
solving interdependent tasks. Finally, we formulate and briefly describe
several open problems in the field of Desktop Grid task scheduling.

Index Terms—C.1.4.d Scheduling and task partitioning, D.4.1.e
Scheduling

1 INTRODUCTION

Desktop Grid (DG) is a promising high-throughput com-
puting paradigm. It is a form of a distributed computing
system that uses idle time of non-dedicated geographically
distributed computing nodes connected over a low-speed
network. This idea is believed to have been first described
by Litzkow et al. in 1987 [1]. Later on, in 1999, Sarmenta and
Hirano introduced the term “volunteer computing” (VC) [2]
to describe the possibility of almost unlimited scaling the
computational resources constituting DG by means of VC
power. In 2001, Foster et al. [3] made a clear distinction
between Computational Grids, Enterprise DGs, and VC;
here we follow this distinction.

As a practical tool, DG traces its history back to 1996,
when the first large VC project GIMPS [4] was launched,
followed by another large project distributed.net [5] and
the introduction of SETI@home [6] in 1997. Later, in 1999,
SETI@home and Folding@home [7] were launched as the
first public VC scientific projects. Due to the success of these
and many other projects (such as ClimatePrediction.net,
Rosetta@home, Docking@home, Einstein@Home, the IBM
World Community Grid etc., to name a few), DGs have
received growing interest and attraction. In 2002 the group
that developed SETI@home started the BOINC (Berkeley
Open Infrastructure for Network Computing) project to
develop a general-purpose open-source VC middleware [8].

The current growing potential of DGs is connected
with growing performance of desktop and laptop comput-
ers, their increasing number, faster network connections,

Manuscript received XX.XX.XXXX.
The authors are with the Institute of Applied Mathematical Research, Karelian
Research Center, Russian Academy of Sciences, Petrozavodsk, Russia. Ilya
Chernov is the corresponding author (e-mail: chernov@krc.karelia.ru).
Digital Object Identifier XXXXXXXXXX.

cheaper internet traffic, higher availability of wireless net-
works, etc.

To date, there are many middleware systems for Desktop
Grid computing. Even restricting oneself with centralized
systems of the “master-worker” paradigm, one names more
than ten platforms (BOINC [8], the original SETI@home [6],
XtremWeb [9], Cosm [10], X-Com [11], Entropia [12], Bayani-
han [2], Javelin [13], HTCondor [14], Grid MP [15], Al-
chemi [16] etc.). Decentralized, peer-to-peer and other vari-
ations make this list even longer. However, the BOINC plat-
form has been developed with the purpose of simplifying
and unifying creation and operation of DG projects both at
the enterprise or the Internet level. For the moment, BOINC
has succeeded in becoming a de-facto standard and the most
widely used middleware for DGs and VC.

This is the reason we survey task scheduling in DGs that
inherit the key design features presented in BOINC:

• centralized architecture;
• master-worker computing paradigm;
• PULL work assignment mode.

Today DGs constitute an important part of high-
performance computing landscape along with Computa-
tional Grid systems, computing clusters, and supercomput-
ers. However, as opposed to these tools, the DG computing
paradigm is not so thoroughly studied. The experience of
the multitude of successful BOINC projects [17] has uncov-
ered new concerns and problems unique to DGs.

Task scheduling plays a crucial role in DG-based high-
throughput computing. It can drastically affect the perfor-
mance of a DG system. In comparison with Computational
Grids and computing clusters, task scheduling in DGs is
more complicated because of such factors as hardware and
software heterogeneity, lack of trust, uncertainty on avail-
ability and reliability of computing nodes, etc.

A wide range of algorithms and heuristics has been
proposed in the literature to address task scheduling chal-
lenges in DGs. Additional information is gathered and used:
availability periods, reliability ratings, and so on. The aim of
this work is to review research papers devoted to optimizing
performance of DGs by scheduling. We bring together and
examine the optimization criteria and methods proposed by
researchers so far. Alongside the conventional DGs, special
cases of them are considered in the literature: hierarchical,
peer-to-peer, etc. We also briefly review some related papers,
which address these non-regular architectures.

There are several surveys in the domain of DGs (in-
cluding the task scheduling problem) that have been



SUBMITTED TO IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 2

presented by now. They review task scheduling tax-
onomies [18], heuristic methods [19], and knowledge-based
algorithms [20], [21], popular middleware systems and the
factors influencing their performance [22]. We discuss these
works in more detail in Section 3.3.

In contrast to these surveys, our research is

• concentrated on task scheduling optimization criteria
and methods;

• comprehensive, as it covers the great majority of
research papers in the domain of DG task scheduling;

• up-to-date, as it covers papers up to 2017.

This work provides a survey of DG task scheduling
research. We consider global scheduling policies describing
the rules of assignment of tasks to computing nodes by a
server. We have studied 127 research papers dated from 1999
to 2017 and related to DG task scheduling.

The rest of the paper is organized as follows. Section 2
highlights specifics of the DG concept and BOINC as the
most commonly used middleware for DGs. Section 3 gives
an analysis of BOINC task scheduling research papers.
We describe our research objects, overview the problems,
optimization criteria, methods, and results achieved by re-
searchers.

2 DESKTOP GRID AND BOINC
2.1 Desktop Grid and the BOINC platform

DG is a form of distributed high-throughput computing
system that uses idle time of non-dedicated geographically
distributed computing nodes connected over a low-speed
network (by “low-speed” we mean slow compared to su-
percomputer interconnect).

DGs are of special interest because of their advantages,
including the following:

• ease of deployment and support,
• low cost,
• high scalability (linear for suitable problems),
• significant potential peak performance (106 factor of

a common PC),
• ease of software development,
• possibility to use legacy software.

But there are also several features that scale down the
class of problems efficiently solved by DGs and pose imple-
mentation challenges. They are:

• slow connection;
• limited computational capacity of separate nodes;
• heterogeneity of software, hardware, or both;
• lack of availability information;
• low reliability of computing nodes;
• lack of trust to computing nodes.

These features are the source of internal uncertainties
present in DG systems. The uncertainties decrease the sys-
tem performance, the completion time of tasks or batches,
availability and reliability of nodes, etc. This leads to sig-
nificant decrease in effective computing performance (the
number of unique tasks solved in a time unit) compared
with the peak performance, sometimes by tens of times.

Computational clusters and Computational Grids have
dedicated computing nodes, while DGs do not; this affects
nodes’ availability, reliability, and trust. DGs usually have a
large number of computing nodes, much larger than Com-
putational clusters or Computational Grids (for the latter
we count the constituting high-performance computing sys-
tems as computing nodes and do not address their internal
structure). This leads to high heterogeneity. Using idle time
of different computing devices of diverse performance, with
various hardware, operational systems, software libraries,
etc., increases heterogeneity even more. Also, the set of
computing nodes is changing in time. A DG can have one or
two scheduling levels: the latter happens when a computing
node shares its resources among several DG applications.
Most of these characteristics also separate DGs from cloud
computing systems (see, e.g., [23]). However, DGs can be
joined with computing clusters [24], Grid systems [25], or
cloud computing systems [26] to establish more complex
and powerful computational platform.

All these characteristics illustrate high scheduling com-
plexity of DGs in comparison with two other conventional
computational paradigms, computational clusters and Com-
putational Grids.

Scheduling-related scientific works consider different
(not mutually exclusive) types of a DG:

• VC system: computing nodes are personal comput-
ers of volunteers connected over the Internet. The
scheduler faces heterogeneity, low network speed
connection, unreliability, etc.

• Enterprise DG: computing nodes are workstations of
an organization connected over a local area network.
There is an option to assign tasks to specific comput-
ing nodes to improve scheduling characteristics.

• hierarchical DG: there is an hierarchy of servers;
each subordinate server requests batches of tasks
from its master for its own computing nodes. The
scheduler should be aware of the hierarchy and take
into account the tasks redistribution.

• peer-to-peer system: computing nodes can commu-
nicate with each other. The scheduler should be
aware of the communication graph (including in-
formation on the connection speed); tasks can be
redistributed by computing nodes aiming to decrease
the server load or increase the data transfer speed.

• solving dependent tasks: tasks interdependencies
are described as a directed acyclic graph (DAG), and
a task cannot be solved until all antecedent tasks it
depends on are solved. Dependence severely com-
plicates scheduling. Note that a set of independent
tasks of the same origin is often called bag of tasks
(BoT).

2.2 BOINC architecture and native scheduling
There are a number of middleware systems for DG comput-
ing. However, the open source BOINC platform [8] is nowa-
days considered as a de facto standard among them. BOINC
has been a framework for many independent VC projects
since the early 2000s. After the launch of SETI@home, many
other VC projects have gained popularity. They fall into four
types:



SUBMITTED TO IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 3

• a stand-alone project dedicated to a single sci-
entific problem (Asteroids@home, ClimatePredic-
tion.net, Einstein@Home, SAT@home etc.);

• a project involving several different applications on
the same problem (LHC@home, GPUGrid.net etc.);

• an umbrella project: several different problems
united by, e.g., their general subject (the IBM’s World
Community Grid etc.), or the national affiliation
(CAS@home of China, Ibercivis of Spain etc.);

• a private project that serves the needs of a local
scientific group.

In total, about 60 BOINC projects are active and publicly
available today, comprising more than 1.5 million comput-
ing nodes [17].

BOINC uses the client-server architecture. The client part
is able to employ idle resources of a computer (of various
hardware and software) for computations within BOINC
projects, with minimal action from the computer’s owner.

The server part consists of several subsystems respon-
sible for tasks generation, distribution, results reception,
assimilation, etc.

The computing model employed in BOINC implies that
each computational task can exist in multiple replicas. Each
is computed separately and their results are compared.
Technically, a result may be identified as valid or not. Firstly,
the validation process verifies that all files associated with
the result have been present to the server and have the
right format. Secondly, in case of replication, the result is
identified as valid if it coincides with a majority of received
results; other ones are identified as not valid.

Note that a valid result may be wrong from the point of
view of the solved scientific problem. Verification may be
automated or be complex and manual. Table 2 in Section 3
illustrates that some authors distinguish valid and correct
results [27]–[32], while some do not [33]–[37].

The quorum concept is used to define the minimal num-
ber of successful results to obtain for one computational
task. The BOINC settings allow creating and distributing
more task replicas dynamically as needed. An individual
deadline is set for each task instance to limit its completion
time. If the server does not get a result before the deadline,
the task instance is considered lost.

In Figure 1 we exemplify the lifetime cycle of a com-
putational task in BOINC. In this example, the quorum is
set equal to three. Initially, three instances of a task are
created and sent to the clients. As soon as the second of
them is finished with an error, the server creates one more
instance (otherwise the quorum of three would never be
reached). Meanwhile, the third instance gets lost and misses
its deadline. The server gives up on that instance and creates
the fifth one. It is successfully computed, together with the
first one and the fourth one, so the quorum is reached. The
computational task gets validated and assimilated.

The replication mechanism as a form of redundant com-
puting can serve a number of purposes, first of all, the
reliability, by increasing the chance to obtain the correct
answer in time even if some nodes switch off without
having finished the task. This helps, in its turn, to improve
efficiency, provided that nodes are unreliable in general, by
decreasing average time of waiting for an answer.

Reduction of the deadline violation risk is even more im-
portant when solving interdependent tasks. Replication and
voting are important in VC as a counter-sabotage defense
measure. The reputational quorum is a method of voting
with higher-ranked nodes’ votes valued more: this approach
entails both replication and reputation techniques at once.

The built-in BOINC scheduling mechanism consists of
the server scheduling part needed to assign tasks to com-
puting nodes according to the global scheduling policies,
and the local scheduling part needed to manage the task
execution on the nodes so as to meet deadlines, to fairly
share the client resources among several BOINC projects,
and so on.

In addition, the mechanisms of locality scheduling and
homogeneous redundancy can be employed. The locality
scheduling is aimed at minimizing the amount of data
transferred to clients. The tasks that require large input files
are being preferentially dispatched to the hosts that already
have them. The homogeneous redundancy mechanism was
implemented to deal with numerical discrepancies that arise
in computational results due to different client characteris-
tics. The clients are clustered according to their OS and CPU
architecture, and all replicas of a given task are dispatched
only to clients within the same class.

Today, the BOINC scheduling model has a rich basis that
has been developed for more than 10 years. To name a few
of the implemented features [38], it includes:

• a mechanism of adaptive replication to minimize
replication overheads using highly reliable hosts;

• fair resource allocation mechanism among multiple
job submitters in a single BOINC project;

• a mechanism of runtime estimation based on histor-
ical statistics either per host or per app version;

• a mechanism to set multiple pre-defined classes of
jobs varying by their size, so that the scheduler will
send jobs of appropriate size to a host depending on
its capabilities;

• a score-based scheduling framework, which incorpo-
rates multiple goals and criteria.

Existing mechanisms provide flexible and powerful techni-
cal tools to adjust BOINC project performance on top of the
default scheduler. Nevertheless, the overall impact of these
mechanisms on the system performance of a BOINC project
might have been studied better. Effective computational
performance can be increased by sophisticated task schedul-
ing algorithms that do not only integrate existing techni-
cal capabilities but also employ apriori-known additional
information about the computing network structure, the
computing nodes characteristics, the subject area specifics,
etc. Their further implementation can be based either on the
existing mechanisms such as the ones listed afore, or on the
low-level altering of the server software, or integration of
special additional programs.

One type of such additional information is job runtime
estimation. Having node availability information and job
runtime estimation, one can develop more effective sched-
ulers. For example, the paper [39] describes an approach
to scheduling a large number of jobs with heterogeneous
requirements to grid resources, which include VC resources.
The system is based on apriori runtime estimation using



SUBMITTED TO IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 4

Computational task

created

sent

deadline
missed

validated

assimilated

created

created

sent

success

Instance 1

created

sent

error

Instance 2 Instance 3

created

sent

success

Instance 4

created

sent

success

Instance 5

T
im

e

Figure 1. Example of the lifetime of a computational task in BOINC.

machine learning with random forests. Papers [40] and [41]
propose a novel solution for scheduling parameter sweep
jobs. It is based on runtime prediction used for mapping
jobs onto available resources in order to reduce the number
of jobs prematurely interrupted due to insufficient resource
availability. Predictions are made by GIPSy (Grid Infor-
mation Prediction System). In the paper [42] a dynamic
replication approach is proposed to reduce the time needed
to complete a batch of tasks. A mathematical model and
a strategy of dynamic replication at the tail stage are de-
veloped. The model is based on job runtime estimation. DG
emulators and simulators also can be used to estimate either
jobs or batch of tasks runtime. BOINC platform itself has
advanced capabilities on jobs runtime estimation [38].

There are several papers devoted to local (client-side)
scheduling optimization. For example, Atlas et al. [43] use
multi-criteria optimization. Based on the proposed algo-
rithm, volunteer preferences are not necessarily completely
satisfied, but the performance is better compared to the
native BOINC algorithms, as it is shown by emulation
on EmBOINC. Anglano and Canonico [44] also consider
scheduling multiple BoTs at once, so a Bag should be chosen
along with the usual scheduling tasks of this Bag. No infor-
mation about tasks or nodes is used. The WQR-FT algorithm
(WorkQueue with Replication Fault Tolerant [45], obtained
from the WQR [46] algorithm by adding checkpointing and
replication) is used for scheduling, while five heuristics for
choosing a BoT are compared by simulation.

Testing scheduling algorithms on real DGs is quite dif-
ficult and costly. Therefore simulation or emulation tech-
niques are often used. The former means running a model
of the computational system; the latter means using a real
server with simulated clients. A number of papers are
devoted to these aspects.

Anderson [47] proposes a BOINC client emulator that al-
lows trialing different scheduling strategies in various usage
scenarios, namely with varying hardware characteristics,
client availability patterns, errors in job runtime estimation,

etc. The BOINC scheduling policies employed back then are
described and evaluated according to several performance
metrics. The results show which scheduling strategies are
the most efficient in different conditions. Beaumont et al. [48]
consider simulation of various computing systems focus-
ing on the SimGrid simulator. A part of chapter [20] by
Estrada and Taufer is devoted to reviewing and description
of SimBA, SimBOINC, and EmBOINC software. Estrada et
al. describe DG emulation by EmBOINC in detail in [49]
and [50], also paying attention to simulation tools. Taufer
et al. [34] describe the BOINC simulator SimBA. Alonso-
Monsalve et al. [51] propose a complete simulator that
takes into account the whole BOINC infrastructure: projects,
servers, network, redundant computing, scheduling, and
volunteer nodes. The simulator allows analyzing a wide
range of characteristics: the throughput of each project, the
number of jobs executed by the clients, the total credit
granted, and the average occupation of the BOINC servers.

Now we analyse the research papers devoted to various
aspects of global task scheduling in BOINC-based DGs.

3 SCHEDULING PAPERS REVIEW

3.1 Sources overview

In order to compose a systematic and comprehensive sur-
vey, we selected scholarly papers in the following way.
Firstly, the search using the following keywords was per-
formed using the Scopus database:

• DG task/job/resource scheduling,
• volunteer computing task/job/resource scheduling,
• grid computing task/job/resource scheduling,
• BOINC task/job/resource scheduling.

These papers composed the major part of the list. Secondly,
after searching the Web of Science and the Google Scholar
databases by the same keywords, we expanded the list
with several more papers. Thirdly, the tables of contents



SUBMITTED TO IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 5

of the leading world journals covering the subject of DG
computing were searched by the same keywords.

The found articles were brought together in a spread-
sheet. The general subject of each paper was manually
extracted based on the abstract and brief examination of the
text. As the survey concentrates on a specific DG type, 63
out of 127 papers were filtered out at this stage. Finally, the
reference lists of the selected papers were manually scanned
to add the most significant sources to the spreadsheet.

The survey comprises research works dated from 1999
to 2017. In Figure 2 we present the distribution of selected
papers over the time periods. By non-scheduling issues we
mean counter-sabotage measures, availability prediction,
presenting software (e.g., simulators and emulators), etc.

Figure 2. Timeline of papers on task scheduling and related problems.

The surveyed works were published as regular papers
in 31 different journals, contributions in 29 conference pro-
ceedings, one book chapter, one scientific report and one
technical report. The distribution of papers over publication
sources is presented in Figure 3.

3.2 Optimization criteria and methods

The problem of scheduling is shown to be hard [19], [52]–
[54] even if all information is available. However, in realistic
DG setting it is even harder. Firstly, the set of tasks is seldom
available in advance and their complexities are unknown.
Secondly, the set of computing nodes changes in time: the
nodes can become unavailable, temporarily or forever; they
can be unreliable; new nodes with unknown properties can
join the DG at any time in case of VC.

One needs a numerical rating to compare scheduling
schemes. The choice is not obvious, for there are multiple
numerical characteristics of scheduling policies, sometimes
in conflict with each other. For example, efficiency often
contradicts reliability. Here is a list of the most popular
optimization parameters applied in task scheduling.

• Throughput as the number of tasks completed or valid
results obtained per a time unit [28], [31]–[37], [43],
[55], [56].

• Makespan as the time interval to complete a set of
computational tasks [27], [53], [57]–[70].

• Turnaround time of a computational task as the time
from its creation to obtaining its result. [44], [70], [71].

• Reliability as the probability of the server to receive a
correct result, a valid result, or any result once a task
instance has been sent out [27]–[32], [43], [55], [59],
[66], [67], [72].

• Availability as the ratio of results returned to the
server to the total number of tasks sent out to the
node [30], [43], [55], [59], [66], [67], [72].

• Load of the computational server or computational
nodes [47], [73]–[75].

• Overhead due to replication or failures [29], [32], [47],
[56], [58], [59], [63], [64], [75]–[78].

• Cost of an answer, including energy consumption [32],
[79]–[83].

Beside the listed common parameters, more special ones
are often considered. Among them are the sabotage toler-
ance, important mostly for VC; optimal processing of depen-
dent tasks; serving several simultaneous projects; prediction
of nodes availability; optimal handling of diverse nodes [32],
[66], [75], [84]–[87].

The main contribution of most researchers is to propose
and validate a special method to optimize a criterion or a set
of criteria. Different in details, all the optimization methods
can be divided into the following types:

• Grouping or clustering of the nodes according to certain
properties (e.g., reliability, capacity, availability) is
often useful for efficient scheduling by itself or com-
bined with other techniques. The group concept is
used for voting, and the tasks are often being sched-
uled to certain groups to be then locally distributed
within the group. Used in [28], [31], [36], [37], [53],
[55], [59]–[61], [71], [74], [76], [88].

• Reputation of the nodes or their groups is estimated
by the history of the work and can reflect either
reliability or availability. This can be defined as the
probability to present an answer before the deadline
or to present the correct answer, or not to act ma-
liciously, etc. Trust techniques are also reputation-
based: blacklisting, recommendation, and other ap-
proaches help to improve scheduling efficiency and
quality of obtained results. Used in [28], [30], [33],
[34], [36], [37], [58], [77], [85].

• Replication is scheduling the instances of the same
task to two or more nodes. It is expected to increase
reliability by exposing saboteurs, revealing failing
nodes, checking the answers, etc. Also, it is able to
improve performance by fewer deadline violations,
lower answer awaiting time, etc. A quorum is a fixed
number of identical answers to be accepted as the
truth. Voting is the selection of the correct answer
by the majority of the voters, possibly of a group.
Replication is used in [28], [30], [32], [36], [37], [42],
[60], [72], [76], [89].

• Some heuristics, often based on the greedy scheme,
are proposed and tested by simulation (running a
model of DG) or emulation (running a DG with real
server and simulated clients). Simulation is used
more often: among the papers listed in Table 2, only
two [20], [34] use emulation. Using heuristic algo-



SUBMITTED TO IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 6

Figure 3. Publication sources of the surveyed papers (1999–2017).

rithms and simulation is necessary because schedul-
ing problems are often NP-hard [19], [52], [90].

• Some authors explore scheduling models analyti-
cally. In Table 1, there is a summary of mathematical
methods employed in the surveyed papers.

Definitions of optimization criteria and applied methods
are the basis for the development of a specific scheduling
algorithm. In the next subsections, we observe the papers
considering optimization criteria related to the computa-
tional performance of DGs and the methods used to develop
scheduling algorithms.

Paper Mathematical
method

Chernov and Nikitina, 2015 [32]
Yasuda et al., 2015 [31]

Miyakoshi et al., 2014 [30]
Rumiantsev, 2014 [60]

Bouguerra et al., 2011 [63]
Canon et al., 2011a [29]

Watanabe et al., 2011 [28]
Heien et al., 2009 [72]
Byun et al., 2007 [67]

Gao and Malewicz, 2007 [27]
Sonnek et al., 2007 [37]

Choi et al., 2004 [70]

Probabilistic
analysis

Canon et al., 2014 [91]

Discrete
optimization

Canon et al., 2011b [64]
Al-Azzoni and Down, 2010 [71]

Fujimoto and Hagihara, 2006 [69]
Sonnek et al., 2006 [36]

Kondo and Casanova, 2004 [68] Continuous
analysis

Mazalov et al., 2015 [73]
Game theoryMazalov et al., 2014 [74]

Nikitina et al., 2018 [92]
Byun et al., 2007 [67] Markov chains

Bouguerra et al., 2011 [63] Markov decision
process

Smaoui and Garbey, 2013 [62] Monte Carlo
functions

Table 1
Mathematical methods employed in papers on DG scheduling.

3.3 Survey papers
Several research papers survey existing literature on task
scheduling from different points of view, including a num-

ber of attempts on taxonomy and classification.
The paper of Choi et al. [18] provides several taxonomies

of DGs. In particular, there is a scheduler’s perspective
taxonomy. Scheduling is considered from the points of view
of the application (task dependency, data- or computing
intensity, divisibility, etc.), the resource (dedication, trust,
failure, heterogeneity), and the scheduler. The latter in-
cludes organization (centralized, hierarchical, or distributed
scheduling), push or pull mode, scheduling and group-
ing policies, static, dynamic, or adaptive scheduling, fault
tolerance, load balancing, and optimization criteria. Being
relatively outdated (published in 2007), it does not take into
account all optimization criteria used in newer papers. Al-
though many existing projects are described and classified,
the review lacks a description of practical techniques.

The review of Xhafa and Abraham [19] considers Com-
putational Grids: they highlight scheduling complexities
(like resources/jobs, heterogeneity, dynamic structure, and
so on), define different types of schedulers, divide the
scheduling procedure into several steps, define several types
of scheduling in Grids. Considered scheduling methods in-
clude those dealing with interdependent tasks, centralized,
hierarchical, and distributed, static and dynamic, individ-
ual and batch, adaptive, and data-oriented. The models of
task scheduling are described from the points of view of
information availability, optimization criteria, etc. The main
results of the paper are the computational models for Grid
scheduling and the analysis of several scheduling heuris-
tics and meta-heuristics. Using heuristics is motivated by
the fact that the considered problems are computationally
hard. Though the paper is devoted to Computational Grids,
it contributes a lot to scheduling types classification and
scheduling methods development.

The chapter by Estrada and Taufer [20] reviews schedul-
ing algorithms for DGs and the challenges they face. They
are classified into three groups: naive that ignore the work
history; knowledge-based that use information about the
nodes, including accumulated statistics; and adaptive that
change their parameters on the fly. Several algorithms from
each group are discussed in detail, including an original
adaptive genetic algorithm similar to the one from [56] (see
the next section). Also, the simulators SimBA, SimBOINC,



SUBMITTED TO IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 7

and EmBOINC are reviewed and description in detail.
Durrani and Shamsi [21] review the following VC prob-

lems: measurement of resource availability; determination
of availability patterns; improved control of the resources
using these patterns. Some naive and knowledge-based al-
gorithms are described together with node grouping meth-
ods, security threats in VC, and safety measures.

In the survey [22] Khan et al. consider and compare
popular modern middleware systems for DG: BOINC,
XtremWeb, OurGrid, and HTCondor; they discuss the fac-
tors that influence the DG performance (from the client and
the server sides) and review papers devoted to them.

3.4 Scheduling research papers

Here we present an overview of research papers related to
scheduling in DGs. The optimization criteria and methods
(see § 3.2) used in the papers are summarized in Table 2.

Kondo et al. [75] compare, using a simulator, several
scheduling policies for multi-project DG.

Availability of the nodes, if known or predictable, is of-
ten used to improve DG performance. Kondo and Casanova
[68] propose a greedy-type scheduling algorithm and prove
that it is optimal (with the minimal makespan) provided
that availability intervals of DG nodes are known; they also
test the algorithm on traces of a BOINC project.

Byun et al. [67] propose a Markov chain scheduler: a
day consists of 48 half-hour intervals and each node can be
idle, busy, or off during each interval, so that the availability
state is a Markov chain. Three schemes (optimistic with no
deadlines, pessimistic with tough deadlines, and a realistic
one as a combination of the two) are considered. Efficiency
of the method is checked experimentally and also proven
analytically under the assumption that availability follows
the hyper-exponential distribution.

Canon et al. [64] schedule tasks onto availability intervals
of identical nodes, known in advance. The uncertainty is
defined as the possible shift of an availability interval.
Beside the analytic estimations including the worst case
scenario, the approach is tested using simulations. In [91],
the authors continue their analytic research of the impact
of uncertainties on scheduling efficiency. They define the
conditions on a scheduling algorithm to reach at least the
same efficiency as predicted. The authors consider the nodes
uniform rather than identical, propose a set of heuristics and
thoroughly analyze them. The algorithms are tested using
simulations on real BOINC projects traces.

Choi et al. [70] address the problem of performance
decay due to scheduled and random shutdowns of DG
nodes. Availabilities of the nodes are monitored: a charac-
teristic related to the reputation and a pulse check is used.
The adaptive replication is applied. The authors give an
analytical estimation of the efficiency under the assumption
of the exponential distribution of availability periods and
the Poisson arrival of new nodes joining the DG.

Casanova et al. [52] study the scheduling problem in a
DG with unreliable (volatile) nodes that can be on, off, or
temporarily unavailable. Bandwidth capacity of the network
is taken into account. The problem is shown to be NP-
complete even with full information on nodes’ availabil-
ity if the bandwidth is finite (but polynomial otherwise).

The mean makespan is estimated under the Markovian
assumption of the availability intervals, heuristic scheduling
algorithms are discussed and tested using a simulator.

Replication is another wide area of study. Canon et al.
[29] consider active saboteurs that are able to return the
same wrong result on purpose. An additional assumption
is the high cardinality of the set of possible answers so that
a random coincidence is unlikely. The optimal replication
is shown to improve both the replication overhead and the
number of wrong results.

Condo et al. [94] consider a special important case when
the number of tasks is less than the number of computers
(which is typical for the final stage of a large project). Three
strategies of task replication with the performance of the
nodes taken into account are experimentally tested: idle
resources need to be used to decrease the makespan.

Sonnek et al. [36], [37] define reliability as the probability
to return the correct answer before the deadline. It is up-
dated using the frequency of proven correct answers. The
correctness of an answer is determined by voting in groups
of nodes. The group size is variable and depends on the
reliability of the group members. A few heuristics for group
formation are tested using simulation.

Thresholds for reliability and availability are used by
Estrada et al. [33] to increase the throughput of valid results.
The method is tested on the EmBOINC emulator.

The paper by Taufer et al. [35] deals with molecular dock-
ing (Docking@home). Using SimBA, the authors show that
adaptive selection of DG nodes can improve the throughput.
Three policies are compared: “first come first served”, fixed
thresholds, and dynamical thresholds.

Watanabe et al. [28], [30] and also Yasuda et al. [31]
propose a sabotage-proof scheduling method for BOINC-
based DGs. The method is adaptive, voting-based, with the
reliability of nodes (called credibility) taken into account.
Node grouping according to their expected credibility is
used in order to reduce the number of tasks not completed
by the deadline. The failures reduce performance due to
replication overhead, mostly. A similar idea is developed
by Klejnowski et al. [77]: the waste of time due to failures
to complete a task before the deadline is reduced by taking
into account the nodes’ reliability and trust increased by the
successful past work.

Essafi et al. [58] develop a scheduling policy to minimize
the difference between the actual total time to complete a
project and the time in case all nodes were always available.
The reputation of the nodes as the mean computing power
is used to choose a node for a task.

Heien et al. [72] describe the PULL model of task
scheduling and aims at the minimal violation of deadlines.
Zero violation is proven for the algorithm if all the nodes
are completely reliable. For the cases of unreliable nodes
and random requests to the server, replication is used to
improve the overall reliability.

Khan et al. [76] group nodes according to their capacity
and the history of their work. The tasks scheduled to unre-
liable groups are replicated.

To schedule tasks in a heterogeneous computing system,
Al-Azzoni and Down [71] group the tasks as well as the
nodes according to their complexity/capacity and solve the
linear optimization problem to find the maximal through-



SUBMITTED TO IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 8

Th
ro

ug
hp

ut
(a

ll
re

su
lt

s)

Th
ro

ug
hp

ut
(v

al
id

re
su

lt
s)

M
ak

es
pa

n

Tu
rn

ar
ou

nd
ti

m
e

Fr
ac

ti
on

of
in

co
rr

ec
tr

es
ul

ts

Fr
ac

ti
on

of
re

tu
rn

ed
re

su
lt

s

O
ve

rh
ea

d
du

e
to

re
pl

ic
at

io
n

O
ve

rh
ea

d
du

e
to

de
ad

lin
es

O
ve

rh
ea

d
du

e
to

fa
ilu

re
s

C
lie

nt
lo

ad

Se
rv

er
lo

ad

Si
m

ul
at

io
n

&
em

ul
at

io
n

G
ro

up
in

g
&

cl
us

te
ri

ng

R
ep

ut
at

io
n

&
tr

us
t

R
ep

lic
at

io
n

&
vo

ti
ng

Criteria Methods
Hwang et al, 2016 [93] 3 3 •

Chernov and Nikitina, 2015 [32] 3 3 •
Mazalov et al., 2015 [73] 3 3
Yasuda et al., 2015 [31] 3 3 • •

Alieksieiev et al., 2014 [57] 3
Canon et al., 2014 [91] 3 3
Essafi et al., 2014 [58] 3 3 •

Gil et al., 2014 [59] 3 3 3 •
Khan et al., 2014 [76] 3 • •

Mazalov et al., 2014 [74] 3 •
Miyakoshi et al., 2014 [30] 3 3 • • •

Rumiantsev, 2014 [60] 3 • •
Ujhelyi et al., 2014 [61] 3 • •
Durrani et al., 2013 [55] 3 3 •

Smaoui and Garbey, 2013 [62] 3 •
Klejnowski et al., 2012 [77] 3 •

Anderson, 2011 [47] 3 3 3 •
Bouguerra et al., 2011 [63] 3 3

Canon et al., 2011a [64] 3 3
Canon et al., 2011b [29] 3 3

Watanabe et al., 2011 [28] 3 3 • • • •
Al-Azzoni and Down, 2010 [71] 3 • •
Celaya and Marchal, 2010 [65] 3

Lee et al., 2010 [66] 3 3 •
Atlas et al., 2009 [43] 3 3 •
Desell et al., 2009 [78] 3
Heien et al., 2009 [72] 3 •

Anglano and Canonico, 2008 [44] 3 •
Estrada et al., 2008 [56] 3 3 •

Byun et al., 2007 [67] 3 3
Gao and Malewicz, 2007 [27] 3 3

Kondo et al., 2007 [75] 3 3 •
Sonnek et al., 2007 [37] 3 • • •
Taufer et al., 2007a [35] 3 •
Taufer et al., 2007b [34] 3 • •
Estrada et al., 2006 [33] 3 • •

Fujimoto and Hagihara, 2006 [69] 3
Sonnek et al., 2006 [36] 3 • • •

Choi et al., 2004 [70] 3 3 •
Kondo and Casanova, 2004 [68] 3

Maheswaran et al., 1999 [53] 3 • •

Table 2
Optimization criteria and methods used for Desktop Grid scheduling.

put with no task accumulation and enough computational
power given to each task group. Additional restriction on
the number of zero components in the solution makes the
method more stable and practically useful. A similar ap-
proach is developed by Ujhelyi [61]: the nodes and the tasks
are grouped by their dynamically evaluated performance
and complexity; the approach is shown to reduce the total
time and the “tail” phase (the time interval when there
remain fewer tasks than nodes).

Maheswaran et al. [53] compare, using simulation,
heuristic dynamical scheduling algorithms: five schedule
tasks individually, three group task and schedule parcels.
Two individual algorithms and one group one are proposed
by the authors. Nodes’ availability and heterogeneity are
taken into account.

Grouping nodes according to their attributes is utilized
by Durrani and Shamsi [55]: weighted sums of some proper-
ties are used to classify the resources. Gil et al. [59] clusterize
the nodes by their availability (a fraction of time the node
has been available) and reliability (probability to complete
a task in time). Then the tasks are scheduled to the best
available group and the best node within it. A heteroge-
neous cluster environment made of desktop computers is
described by Jung et al [88]. Some resources are available all
time, other grant only part of their time. Most attention is
paid to managing Linux and Windows resources.

Rumiantsev [60] uses task replication, grouping, and
penalties for errors to reduce the makespan of a compu-
tational project in a DG. We studied [32] replication that
minimizes the expected cost (consisting of the average time



SUBMITTED TO IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 9

per a task and the penalties for wrong answers).
Bouguerra et al. [63] deal with unavailability by the

optimal scheduling of checkpoints (so that uncompleted
task can be continued on another node). The algorithm is
shown to be minimal wasted time-optimal for any probabil-
ity distribution of the nodes unavailability periods.

Fujimoto and Hagihara [69] propose an algorithm for
scheduling n tasks onto m computers and prove the effi-
ciency estimation analytically for the case of varying com-
putational power, which is a DG feature. They also propose
a new criterion, TPCC (total processor cycle consumption),
which is directly related to the makespan.

Several papers address genetic algorithms applied to
scheduling in DGs. Genetic algorithms solve optimization
problems by simulating evolving populations of the vari-
ables being optimized. Those individuals who are better
with respect to the utility function produce more descen-
dants than the others. Mutations, i.e., changes of an indi-
vidual, provide search in the neighborhood of a successful
individual. Algorithms may differ in the mechanism of
mutations, the type of reproduction, or the mechanism of
concurrency between individuals.

In [56], Estrada et al. use genetic algorithms to produce
the optimal scheduling policies. Sets of rules are individuals.
Rules are described by a formal grammar and include
inequalities, logical and arithmetical operations, and prede-
fined variables, e.g., the node availability, productivity, etc.
The output of the algorithm is the scheduling policy: a set of
rules to choose a node for a task. A similar approach is used
by Estrada and Taufer [20], where elitism and crossover
operations are applied to individuals: the best ones pass
to the new generation without mutations, and a pair of
individuals join together to produce two descendants.

Qu et al. [95] and Wang et al. [54] propose and develop
look-ahead genetic algorithms for task-to-nodes mapping
that improve both makespan and reliability.

Smaoui and Garbey [62] address the problem of better
scheduling of the tasks that use genetic algorithms in DGs.
The apparent challenges of GA applications are the interde-
pendence and the large size of generations: any fault may
delay evaluation of a generation so that the next generation
needs to wait. The approach ignores late individuals of a
generation restoring its size by the best individuals (the
elitism concept). Also, most promising individuals are eval-
uated on the best nodes available. In [78] a similar question
is investigated by Desell et al. In particular, only individuals
that are promising for improving the population quality are
replicated and/or checked. In [57] a metaheuristic genetic
algorithm is used for scheduling in DG.

In general, Table 2 illustrates the shift from early schedul-
ing models with simple optimization criteria to more com-
plex ones that consider multiple non-trivially interdepen-
dent optimization criteria and address intrinsic DG mecha-
nisms influencing the scheduling. For instance, the through-
put of valid results seems to become less popular since
around 2008 [56], in favor of not only the closely related
makespan parameter, but rather the mechanisms influenc-
ing the throughput: the overhead due to failures, the frac-
tions of incorrect or never returned results, etc. Reasons for
that could be problems with the exact definition of validity
and inclusion of the verification into the scheduling scheme.

Table 3 presents the works that used traces of real
BOINC projects in order to evaluate their scheduling algo-
rithms. One can notice that Table 3 and Table 1 have only
6 papers in common. Therefore, there is an evident lack
of analytically proven optimal scheduling algorithms with
established practical efficiency.

3.5 Non-regular Desktop Grids
As it was mentioned in section 2.1, there are a number
of non-regular DGs, like peer-to-peer or hierarchical ones,
being developed by various research groups. Promising cer-
tain advantages, these non-regular DGs face new scheduling
complexities. In particular, solving a set of interdependent
tasks is a more complicated problem from the point of view
of scheduling. For example, in a bottleneck case of a task
B that depends recursively on almost one half of other
tasks and the other half depends on B, all nodes need
to wait for B to be solved (so it can be replicated many
times with no loss of performance). Another case of linearly
dependent tasks makes their parallel solving impossible.
Usually, the structure of dependencies is apriori known as
a directed acyclic graph (DAG). In some works, it is an
arbitrary DAG, in others, it has a fixed shape. Peer-to-peer
(P2P) grids are able to improve scheduling efficiency using
additional horizontal links; they are especially useful for
solving dependent tasks. Also using multi-level grids can
improve scheduling due to more efficient local control.

In this section we exemplify how the horizontal P2P
links and multiple scheduling levels are used by researchers
to improve the scheduling efficiency. Then we cite several
contributions that focus on scheduling interdependent tasks
in DGs. We do not claim to survey all works in this area but
try to present the most important methods and approaches.

The Volpex (Parallel Execution on Volatile nodes) project
[96], [97] is a Message Passing Interface (MPI) implementa-
tion for DGs. It joins the computing nodes to a virtual cluster
suitable for applications with moderate communication re-
quirements. Being based on MPI, this approach can address
both P2P communication and possible dependence between
the tasks. The implementation takes into account challenges
of DGs: heterogeneity and unreliability.

In [98], Kwan and Muppala analyze a P2P DG. There
is a set of super-seeds that have a permanent high-speed
connection with each other. The super-seeds store infor-
mation on network segments. They also assign tasks to
volunteer workers. A simple mechanism is used: the first
task in a queue is assigned to the most powerful among
vacant workers. The authors study the properties of the
fixed/adaptive threshold gossiping mechanism.

In the same fashion, Rius et al. [99] consider task schedul-
ing in two-level peer-to-peer computational DGs, where
super peers observe subsets of computing nodes. Prior to
final task distribution, the tasks are grouped basing on
local neighborhood information only. Then the intermediate
scheduling decisions are exchanged between super peers to
form the final schedule.

Murata et al. [100] propose a distributed and coopera-
tive load balancing mechanism. It implements horizontal
scheduling; each computing node can exchange its tasks
with the others so as to minimize the execution time by
dynamic load balancing among the computing nodes.



SUBMITTED TO IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 10

Paper Key idea Trace type Trace data
Chernov and Nikitina, 2015 [32] Replication minimizes the average cost

including penalties for errors.
EDG Workload characteristics

Mazalov et al., 2015 [73] Task grouping to reduce the server
load, game-theoretic approach

EDG, VC Workload characteristics

Essafi et al., 2014 [58] Makespan is minimized in presence of
unavailability using availability reputa-
tion of nodes.

VC Availability information,
workload characteristics

Ujhelyi et al., 2014 [61] Grouping the nodes by performance
and the tasks by complexity.

EDG Availability information

Canon et al., 2014 [91] The conditions for a scheduling algo-
rithm to lead to a lower-bound effi-
ciency are defined.

VC Availability information,
workload characteristics

Canon et al., 2011a [64] Tasks are scheduled over availability
intervals of the nodes.

VC Availability information,
workload characteristics

Canon et al., 2011b [29] Group result certification in the pres-
ence of cooperative saboteurs; replica-
tion reveals cheating.

VC Availability information,
workload characteristics

Desell et al., 2009 [78] Verification of a limited subset of im-
portant (promising) results.

VC Application model

Heien et al., 2009 [72] Time before the pull recommended to
nodes to respect deadlines, replication
vs unreliability of the nodes.

VC Availability information

Kondo et al., 2007 [94] Full information, tail computing, the
PUSH model. Task duplication is
shown to be a good heuristics.

EDG Availability information

Table 3
Traces information used in papers on DG scheduling. Trace type: EDG = Enterprise DG; VC = volunteer computing.

Paper Key idea P2P DG Hierarchical
DG

Inter-
dependent

tasks
Celaya and Arronategui, 2013 [101] Two-level scheduling, tree-shaped DG,

each node serves as a computer, a
server, and a router.

3

Hussin et al., 2013 [102] Two queues for the tasks of two kinds
(normal and with special demands).

3 3

Rius et al., 2013 [99] Two-level superpeer scheduling. 3 3
Chmaj et al., 2012 [90] Torrent-like P2P task scheduling and

answer propagation. Binary linear op-
timization. Greedy and genetic heuris-
tics.

3

Cordasco et al., 2012 [103] Dependent tasks with known DAG,
maximizing the average number of
tasks ready for solving.

3

Farkas and Kacsuk, 2012 [104] Hierarchical DGs (a client is a DG it-
self): performance evaluation of five al-
gorithms.

3

Celaya and Marchal, 2010 [65] Tree-shaped network, multiple batches,
flow of tasks/availability is down-
wards/upwards.

3 3

Kwan and Muppala, 2010 [98] Optimizing inter-segment communica-
tions.

3 3

Lee et al., 2010[66] Greedy optimization of the delay time
by task redistribution.

3 3

Qu et al., 2010 [95] Evolution on task-node mapping ac-
cording to resource priorities.

3

Murata et al., 2008 [100] Load balancing, node grouping, de-
centralized task redistribution.

3

Gao and Malewicz, 2004 [105] Rectangular graph of task dependen-
cies, unreliable nodes with a reliable
server, optimal validation.

3

Table 4
Papers on scheduling in non-regular DGs.

In [65], Celaya and Marchal consider the problem of
fair resource sharing among multiple applications in a dis-
tributed computing platform. The platform itself is a P2P
DG with a tree-like structure: the leaves do computing,
while other nodes serve as communicators. The information

about the availability of the nodes goes towards the root,
while the information about the tasks goes in the oppo-
site direction. The “earliest deadline first” local scheduling
policy is being used. A global scheduling policy is the
following. When a branch node receives a request for the



SUBMITTED TO IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 11

allocation of a new application, it calculates the minimum
application stretch (slowdown) in its own sub-tree based on
availability summaries. The application is either scheduled
in the sub-tree or going up the tree to achieve a better
stretch. Once a routing node finds a suitable stretch, the
tasks are distributed among the children nodes. This imple-
ments a trade-off between performance and load-balancing:
small applications remain local, while large ones go up the
tree until they induce an acceptable slowdown.

Hwang et al [93] compare three resource allocation poli-
cies for multi-user and multi-application workloads in a het-
erogeneous computing system for solving loosely coupled
tasks, trading between efficiency and fairness.

The paper of Chmaj et al. [90] describes a peer-to-peer
DG in which all the computing nodes want to receive the
results of all the tasks computation. The authors use a
BitTorrent-like scheme for results sharing, where one of the
nodes acts as a tracker as it provides the information on
results location and distributes the tasks. The objective is
formulated as an integer linear programming optimization
problem where binary variables indicate whether to assign
a task to a node or whether to transfer a result to a node.
The authors assume that all the transfer costs are known, all
the tasks should be assigned, all the nodes should have all
the results, each node should solve at least one task and not
more than a specified limit. The problem is NP-hard. The
authors provide two heuristics: a greedy and a genetic one.

A related yet different approach is applied by Hussin et
al. [102]: the target system consists of a number of resource
sites that are loosely connected by a communication net-
work. Each site has a set of heterogeneous processing nodes
that are fully interconnected and composed of a different
number of cores with homogeneous processing speed. There
is a centralized scheduler to handle tasks from system users
and map them onto processing nodes. Users’ tasks are
considered independent (i.e., no inter-job communication
or dependencies take place), and their time to arrive at a
scheduler is not known in advance. Two parameters used to
evaluate each task are the computational complexity and
the type of task. There are two different types of tasks:
regular and special (with special requirements for reliabil-
ity, network speed, etc.). The task execution time varies
according to the performance of the resource where the
task is being processed. The authors assume that the task
profile is available. Based on the known performance and
estimated availability of the nodes, the authors propose a
special scheduling mechanism, which keeps two separate
queues with a dynamic tasks redistribution.

Farkas and Kacsuk [104] describe the hierarchical DG
MTA SZTAKI where DGs serve as nodes and perform
their own scheduling. The authors consider five different
scheduling algorithms varying from the simple accounting
of a number of clients to more complex accounting of
the active client timeout. The authors use the Hierarchical
DG Simulator to evaluate some metrics like makespan and
deadline violations among three scenarios: non-hierarchical
DG, two-level hierarchical DG with one or two clients.

Celaya and Arronategui [101] were motivated by hierar-
chical DGs to develop a distributed dynamic scheduling al-
gorithm suitable for very big computing networks. The com-
puting network itself is an hierarchy where each node is a

computing and routing node at the same time. The schedul-
ing algorithm includes information on the nodes availability
propagation mechanism. The approach is checked on three
different policies using simulation.

One of the strongest assumptions of the regular DGs
is the tasks independence, i.e., DGs are most suitable for
BoT applications. Processing interdependent tasks is pos-
sible, but this severely constrains the scheduler: switch-off
of unreliable nodes can spoil the performance much more
compared to the BoT case; a wrong result needs to be re-
calculated with all its dependency chain; the “bottlenecks”,
i.e., the tasks that are waited for by many other tasks, can
drastically decrease performance, so that careful schedul-
ing in order to avoid bottlenecks is necessary. Dependence
means that a task can only be executed when all its ancestors
already have been.

Qu et al. [95] consider an arbitrary DAG. The authors
propose an algorithm to optimize both time and reliability
for a workflow application. The algorithm uses a special
evolution and evaluation mechanism: the evolution oper-
ators evolve the task-resource mapping for a scheduling
solution, while the solution’s task order is determined in
the evaluation step using the max-min strategy proposed
by the authors. The authors do not describe the computa-
tional system and tasks characteristics (including DAG) but
compare their algorithm with several others.

In paper [103] Cordasco et al. propose a new cost func-
tion called the AREA to define the number of tasks ready
for execution at a given time moment. The authors try to
find out that schedules having higher AREAs would tend to
have computational benefits – notably, smaller makespans
– when executing DAGs. The experimental results do not
establish such a correlation with any statistical certainty, but
they do suggest that the correlation may exist – at least
for certain families of DAGs and certain patterns of the
worker availability. In the paper it is shown that the AREA
metric for DAG-scheduling enjoys several algorithmically
significant properties. The authors developed conceptual
and algorithmic tools for crafting efficient area-maximizing
schedules for a variety of DAG-types, including monotonic
tree-DAGs, expansive-reductive DAGs, and compositions
of either bipartite cliques or cycles. The authors extend
the model in [106] for multi-threading applications, and
in [107] they present an efficient scheduling heuristic for
maximizing the AREA.

Gao et al. [27] consider a DG of unreliable nodes with
the reliable server solving dependent tasks with a special
DAG of dependencies: it is a square lattice where each task
depends on its right and top neighbor. The problem is to
choose which tasks to check so as to maximize the average
number of the tasks completed before the deadline. The
complexity of the problem is estimated, and the algorithms
for special cases of high and low reliability are proposed.

The paper by Lee et al. [66] is devoted to the robust-
ness (the stability with respect to changes of the DG) of
the scheduling. The tasks are dependent, their DAG of
dependencies is known. Two greedy scheduling policies are
proposed and tested numerically: they re-schedule tasks
to different nodes in order to maximize either the total
allowable delay time or the minimum delay time.

The non-regular DG papers are summarized in Table 4.



SUBMITTED TO IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 12

ACKNOWLEDGEMENTS

This work is supported by the Russian Foundation for Basic
Research [project 16-07-00622].

REFERENCES

[1] M. Litzkow, “Remote Unix — turning idle workstations into cycle
servers,” in Usenix Summer Conference, 1987, pp. 381–384.

[2] L. F. Sarmenta and S. Hirano, “Bayanihan: Building and studying
web-based volunteer computing systems using Java,” Future
Generation Computer Systems, vol. 15, no. 5, pp. 675–686, 1999.

[3] I. Foster, C. Kesselman, and S. Tuecke, “The anatomy of the grid:
Enabling scalable virtual organizations,” The International Journal
of High Performance Computing Applications, vol. 15, no. 3, pp. 200–
222, 2001.

[4] “Great Internet Mersenne Prime Search GIMPS,”
https://www.mersenne.org, accessed 19 Apr 2018.

[5] “distributed.net,” www.distributed.net, accessed 19 Apr 2018.
[6] W. T. Sullivan, D. Werthimer, S. Bowyer, J. Cobb, D. Gedye,

and D. Anderson, “A new major SETI project based on Project
Serendip data and 100,000 personal computers,” in International
Astronomical Union Colloquium, vol. 161. Cambridge University
Press, 1997, pp. 729–734.

[7] “Folding@home,” folding.stanford.edu, accessed 19 Apr 2018.
[8] D. P. Anderson, “BOINC: A system for public-resource com-

puting and storage,” in Grid Computing, 2004. Proceedings. Fifth
IEEE/ACM International Workshop on. IEEE, 2004, pp. 4–10.

[9] G. Fedak, C. Germain, V. Neri, and F. Cappello, “Xtremweb: A
generic global computing system,” in Cluster Computing and the
Grid, 2001. Proceedings. First IEEE/ACM International Symposium
on. IEEE, 2001, pp. 582–587.

[10] M. Merz, K. Muller, and W. Lamersdorf, “Service trading and me-
diation in distributed computing systems,” in Distributed Comput-
ing Systems, 1994., Proceedings of the 14th International Conference
on. IEEE, 1994, pp. 450–457.

[11] M. Filamofitsky, “The system X-Com for metacomputing sup-
port: architecture and technology,” Vychislitel’nye Metody i Pro-
grammirovanie, vol. 5, no. 2, pp. 1–9, 2004, in Russian.

[12] A. Chien, B. Calder, S. Elbert, and K. Bhatia, “Entropia: archi-
tecture and performance of an enterprise desktop grid system,”
Journal of Parallel and Distributed Computing, vol. 63, no. 5, pp.
597–610, 2003.

[13] B. O. Christiansen, P. Cappello, M. F. Ionescu, M. O. Neary, K. E.
Schauser, and D. Wu, “Javelin: Internet-based parallel computing
using Java,” Concurrency: Practice and Experience, vol. 9, no. 11,
pp. 1139–1160, 1997.

[14] M. J. Litzkow, M. Livny, and M. W. Mutka, “Condor — a hunter
of idle workstations,” in Distributed Computing Systems, 1988, 8th
International Conference on. IEEE, 1988, pp. 104–111.

[15] “Univa Grid Engine,” www.univa.com/products, accessed 19
Apr 2018.

[16] A. Luther, R. Buyya, R. Ranjan, and S. Venugopal, “Alchemi: A
.net-based grid computing framework and its integration into
global grids,” arXiv preprint cs/0402017, 2004.

[17] “BOINCstats,” https://boincstats.com, accessed 19 Apr 2018.
[18] S. Choi, H. S. Kim, E. J. Byun, M. S. Baik, S. S. Kim, C. Y. Park, and

C. S. Hwang, “Characterizing and classifying desktop grid,” in
Cluster Computing and the Grid, 2007. CCGRID 2007. Seventh IEEE
International Symposium on. IEEE, 2007, pp. 743–748.

[19] F. Xhafa and A. Abraham, “Computational models and heuristic
methods for grid scheduling problems,” Future Generation Com-
puter Systems, vol. 26, no. 4, pp. 608–621, apr 2010.

[20] T. Estrada and M. Taufer, “Challenges in designing scheduling
policies in volunteer computing,” in Desktop Grid Computing,
C. Cérin and G. Fedak, Eds. CRC Press, 2012, pp. 167–190.

[21] N. Durrani and J. Shamsi, “Volunteer computing: requirements,
challenges, and solutions,” Journal of Network and Computer Appli-
cations, vol. 39, pp. 369–380, mar 2014.

[22] M. Khan, T. Mahmood, and S. Hyder, “Scheduling in desktop
grid systems: Theoretical evaluation of policies and frameworks,”
International Journal of Advanced Computer Science and Applications,
vol. 8, no. 1, pp. 119–127, 2017.

[23] D. Kondo, B. Javadi, P. Malecot, F. Cappello, and D. P. Anderson,
“Cost-benefit analysis of cloud computing versus desktop grids,”
in Parallel & Distributed Processing, 2009. IPDPS 2009. IEEE Inter-
national Symposium on. IEEE, 2009, pp. 1–12.

[24] A. Afanasiev, I. Bychkov, M. Manzyuk, M. Posypkin, A. Semenov,
and O. Zaikin, “Technology for integrating idle computing clus-
ter resources into volunteer computing projects,” in Computer
Science and Engineering, The 5-th International Workshop on, 2015,
pp. 109–114.

[25] J. Kovács, A. C. Marosi, Á. Visegrádi, Z. Farkas, P. Kacsuk,
and R. Lovas, “Boosting gLite with cloud augmented volunteer
computing,” Future Generation Computer Systems, vol. 43, pp. 12–
23, 2015.

[26] D. Montes, J. A. Añel, T. F. Pena, P. Uhe, and D. C. Wallom,
“Enabling BOINC in infrastructure as a service cloud system,”
Geoscientific Model Development, vol. 10, no. 2, p. 811, 2017.

[27] L. Gao and G. Malewicz, “Toward maximizing the quality of
results of dependent tasks computed unreliably,” Theory of Com-
puting Systems, vol. 41, no. 4, pp. 731–752, 2007.

[28] K. Watanabe, M. Fukushi, and M. Kameyama, “Adaptive group-
based job scheduling for high performance and reliable volunteer
computing,” Journal of Information Processing, vol. 19, pp. 39–51,
2011.

[29] L.-C. Canon, E. Jeannot, and J. Weissman, “A scheduling and
certification algorithm for defeating collusion in desktop grids,”
in Distributed Computing Systems, 2011 31st International Conference
on. IEEE, jun 2011, pp. 343–352.

[30] Y. Miyakoshi, S. Yasuda, K. Watanabe, M. Fukushi, and
Y. Nogami, “Dynamic job scheduling method based on expected
probability of completion of voting in volunteer computing,”
IEICE TRANSACTIONS on Information and Systems, vol. 98, no. 12,
pp. 2132–2140, 2015.

[31] S. Yasuda, Y. Nogami, and M. Fukushi, “A dynamic job schedul-
ing method for reliable and high-performance volunteer com-
puting,” in Information Science and Security (ICISS), 2015 2nd
International Conference on. IEEE, 2015, pp. 1–4.

[32] I. Chernov and N. Nikitina, “Virtual screening in a desktop
grid: Replication and the optimal quorum,” in Parallel Computing
Technologies, International Conference on, V. Malyshkin, Ed., vol.
9251. Springer, 2015, pp. 258–267.

[33] T. Estrada, D. Flores, M. Taufer, P. Teller, A. Kerstens, and
D. Anderson, “The effectiveness of threshold-based scheduling
policies in BOINC projects,” in e-Science and Grid Computing, 2006.
e-Science’06. Second IEEE International Conference on. IEEE, 2006,
pp. 88–88.

[34] M. Taufer, A. Kerstens, T. Estrada, D. Flores, and P. Teller,
“SimBA: A discrete event simulator for performance prediction
of volunteer computing projects.” in Principles of Advanced and
Distributed Simulation, 21st International Workshop on, vol. 7, 2007,
pp. 189–197.

[35] M. Taufer, A. Kerstens, T. Estrada, D. Flores, R. Zamudio, P. Teller,
R. Armen, and C. L. Brooks III, “Moving volunteer computing to-
wards knowledge-constructed, dynamically-adaptive modeling
and scheduling,” in Parallel and Distributed Processing Symposium,
2007. IPDPS 2007. IEEE International. IEEE, 2007, pp. 1–8.

[36] J. Sonnek, M. Nathan, A. Chandra, and J. Weissman, “Reputation-
based scheduling on unreliable distributed infrastructures,” in
Distributed Computing Systems, 2006. ICDCS 2006. 26th IEEE Inter-
national Conference on. IEEE, 2006, pp. 30–30.

[37] J. Sonnek, A. Chandra, and J. Weissman, “Adaptive reputation-
based scheduling on unreliable distributed infrastructures,” IEEE
Transactions on Parallel and Distributed Systems, vol. 18, no. 11, pp.
1551–1564, nov 2007.

[38] https://boinc.berkeley.edu/trac/wiki/, accessed 19 Apr 2018.
[39] A. L. Bazinet and M. P. Cummings, “Computing the tree of life:

Leveraging the power of desktop and service grids,” in 2011
IEEE International Symposium on Parallel and Distributed Processing
Workshops and Phd Forum, May 2011, pp. 1896–1902.

[40] P. Hellinckx, S. Verboven, F. Arickx, and J. Broeckhove, “Predict-
ing parameter sweep jobs: From simulation to grid implementa-
tion,” in 2009 International Conference on Complex, Intelligent and
Software Intensive Systems, March 2009, pp. 402–408.

[41] ——, “Runtime prediction in desktop grid scheduling,” Parallel
Programming and Applications in Grid, P2P and Network-based Sys-
tems, vol. 1, pp. 204–231, 01 2009.

[42] Y. Kolokoltsev, E. Ivashko, and C. Gershenson, “Improving “tail”
computations in a BOINC-based desktop grid,” Open Engineering,
vol. 7, no. 1, pp. 371–378, 2017.

[43] J. Atlas, T. Estrada, K. Decker, and M. Taufer, “Balancing scientist
needs and volunteer preferences in volunteer computing using



SUBMITTED TO IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 13

constraint optimization,” Computational Science–ICCS 2009, pp.
143–152, 2009.

[44] C. Anglano and M. Canonico, “Scheduling algorithms for multi-
ple bag-of-task applications on desktop grids: A knowledge-free
approach,” in Parallel and Distributed Processing, 2008. IPDPS 2008.
IEEE International Symposium on. IEEE, 2008, pp. 1–8.

[45] C. A. and. M. Canonico, “Fault-tolerant scheduling for bag-of-
tasks grid applications,” in European Grid Conference, ser. Lecture
Notes in Computer Science, vol. 2790, 2005, pp. 630–639.

[46] D. da Silva, W. Cirne, and F. Brasileiro, “Trading cycles for infor-
mation: Using replication to schedule bag-of-tasks applications
on computational grids,” in Proceedings of EuroPar 2003 Parallel
Processing, ser. Lecture Notes in Computer Science, vol. 2790,
2003, pp. 169–180.

[47] D. Anderson, “Emulating volunteer computing scheduling poli-
cies,” in Parallel and Distributed Processing Workshops and Phd
Forum (IPDPSW), 2011 IEEE International Symposium on. IEEE,
2011, pp. 1839–1846.

[48] O. Beaumont, L. Bobelin, H. Casanova, P.-N. Clauss, B. Donas-
solo, L. Eyraud-Dubois, S. Genaud, S. Hunold, A. Legrand,
M. Quinson, and others, “Towards Scalable, Accurate, and Usable
Simulations of Distributed Applications and Systems,” Institut
National de Recherche en Informatique et en Automatique, Re-
search Report RR-7761, 2011.

[49] T. Estrada, M. Taufer, and D. Anderson, “Performance Predic-
tion and Analysis of BOINC Projects: An Empirical Study with
EmBOINC,” Journal of Grid Computing, vol. 7, no. 4, pp. 537–554,
Aug. 2009, 00017.

[50] T. Estrada, M. Taufer, K. Reed, and D. Anderson, “EmBOINC: An
emulator for performance analysis of BOINC projects,” in Parallel
& Distributed Processing, 2009. IPDPS 2009. IEEE International
Symposium on. IEEE, 2009, pp. 1–8.

[51] S. Alonso-Monsalve, F. Garcı́a-Carballeira, and A. Calderón,
“ComBos: A complete simulator of Volunteer Computing and
Desktop Grids,” Simulation Modelling Practice and Theory, vol. 77,
pp. 197–211, 2017.

[52] H. Casanova, F. Dufossé, Y. Robert, and F. Vivien, “Scheduling
parallel iterative applications on volatile resources,” in 2011 IEEE
International Parallel & Distributed Processing Symposium. IEEE,
may 2011, pp. 1012–1023.

[53] M. Maheswaran, S. Ali, H. Siegel, D. Hensgen, and R. Freund,
“Dynamic mapping of a class of independent tasks onto hetero-
geneous computing systems,” Journal of Parallel and Distributed
Computing, vol. 59, no. 2, pp. 107–131, 1999.

[54] X. Wang, C. Yeo, R. Buyya, and J. Su, “Optimizing the makespan
and reliability for workflow applications with reputation and a
look-ahead genetic algorithm,” Future Generation Computer Sys-
tems, vol. 27, no. 8, pp. 1124–1134, oct 2011.

[55] N. Durrani, J. Shamsi, and S. Fatima, “Towards efficient resource
grouping in heterogeneity-aware volunteer computing,” Sindh
University Research Journal, pp. 1–11, 2013.

[56] T. Estrada, O. Fuentes, and M. Taufer, “A distributed evolution-
ary method to design scheduling policies for volunteer comput-
ing,” ACM SIGMETRICS Performance Evaluation Review, vol. 36,
no. 3, pp. 40–49, 2008.

[57] M. Alieksieiev, O. Maiboroda, A. Onysko, and O. Alekseev, “Re-
peating tasks scheduling in desktop grid systems,” in Microwave
& Telecommunication Technology (CriMiCo), 2014 24th International
Crimean Conference. IEEE, 2014, pp. 342–343, in Russian.

[58] A. Essafi, D. Trystram, and Z. Zaidi, “An efficient algorithm
for scheduling jobs in volunteer computing platforms,” in 2014
IEEE 28th International Parallel & Distributed Processing Symposium
Workshops. IEEE, may 2014, pp. 68–76.

[59] J.-M. Gil, S. Kim, and J. Lee, “Task scheduling scheme based
on resource clustering in desktop grids,” International Journal of
Communication Systems, vol. 27, no. 6, pp. 918–930, jun 2014.

[60] A. Rumiantsev, “Optimizing the execution time of a desktop grid
project,” Program Systems: Theory and Applications, vol. 5, pp. 175–
182, 2014, in Russian.

[61] M. Ujhelyi, P. Lacko, and A. Paulovic, “Task scheduling in
distributed volunteer computing systems,” in Intelligent Systems
and Informatics (SISY), 2014 IEEE 12th International Symposium on.
IEEE, 2014, pp. 111–114.

[62] M. Smaoui and M. Garbey, “Improving volunteer computing
scheduling for evolutionary algorithms,” Future Generation Com-
puter Systems, vol. 29, no. 1, pp. 1–14, jan 2013.

[63] M. S. Bouguerra, D. Kondo, and D. Trystram, “On the scheduling
of checkpoints in desktop grids,” in Cluster, Cloud and Grid Com-
puting (CCGrid), 2011 11th IEEE/ACM International Symposium on,
2011, pp. 305–313.

[64] L.-C. Canon, A. Essafi, G. Mounié, and D. Trystram, “A bi-
objective scheduling algorithm for desktop grids with uncer-
tain resource availabilities,” in Euro-Par 2011 Parallel Processing.
Springer, 2011, pp. 238–249.

[65] J. Celaya and L. Marchal, “A fair decentralized scheduler for bag-
of-tasks applications on desktop grids,” in Cluster, Cloud and Grid
Computing, 10th IEEE/ACM International Conference on. IEEE,
2010, pp. 538–541.

[66] Y. Lee, A. Zomaya, and H. Siegel, “Robust task scheduling for
volunteer computing systems,” Journal of Supercomputing, vol. 53,
no. 1, pp. 163–181, jul 2010.

[67] E. Byun, S. Choi, M. Baik, J. Gil, C. Park, and C. Hwang, “MJSA:
Markov job scheduler based on availability in desktop grid
computing environment,” Future Generation Computer Systems,
vol. 23, pp. 616–622, 2007.

[68] D. Kondo and H. Casanova, “Computing the optimal makespan
for jobs with identical and independent tasks scheduled on
volatile hosts,” Dept. of Computer Science and Engineering,
University of California, San Diego, Technical Report CS2004-
0796, 2004.

[69] N. Fujimoto and K. Hagihara, “A 2-approximation algorithm for
scheduling independent tasks onto a uniform parallel machine
and its extension to a computational grid,” in Cluster Computing,
2006 IEEE International Conference on. IEEE, 2006, pp. 1–7.

[70] S. Choi, M. Baik, C. Hwang, J. Gil, and H. Yu, “Volunteer avail-
ability based fault tolerant scheduling mechanism in desktop
grid computing environment,” in Network Computing and Ap-
plications, 2004.(NCA 2004). Proceedings. Third IEEE International
Symposium on. IEEE, 2004, pp. 366–371.

[71] I. Al-Azzoni and D. Down, “Dynamic scheduling for heteroge-
neous desktop grids,” Journal of Parallel and Distributed Comput-
ing, vol. 70, no. 12, pp. 1231–1240, dec 2010.

[72] E. Heien, D. Anderson, and K. Hagihara, “Computing low la-
tency batches with unreliable workers in volunteer computing
environments,” Journal of Grid Computing, vol. 7, no. 4, pp. 501–
518, dec 2009.

[73] V. Mazalov, N. Nikitina, and E. Ivashko, “Task scheduling in a
desktop grid to minimize the server load,” in Parallel Computing
Technologies, International Conference on, V. Malyshkin, Ed., vol.
9251. Springer, 2015, pp. 273–278.

[74] ——, “Hierarchical two-level game model for tasks scheduling in
a desktop grid,” in Ultra Modern Telecommunications and Control
Systems and Workshops (ICUMT), 2014 6th International Congress
on. IEEE, 2014, pp. 541–545.

[75] D. Kondo, D. Anderson, and J. M. VII, “Performance evaluation
of scheduling policies for volunteer computing,” in e-Science and
Grid Computing, Third IEEE International Conference on. IEEE,
2007, pp. 221–227.

[76] M. Khan, S. Hyder, G. Ahmed, S. Begum, and M. Aamir, “A
group based replication mechanism to reduce the wastage of
processing cycles in volunteer computing,” Wireless Personal Com-
munications, vol. 76, no. 3, pp. 591–601, jun 2014.

[77] L. Klejnowski, Y. Bernard, C. Muller-Schloer, and J. Hahner,
“Using trust to reduce wasteful computation in open desktop
grid systems,” in Privacy, Security and Trust (PST), 2012 Tenth
Annual International Conference on. IEEE, 2012, pp. 250–255.

[78] T. Desell, M. Magdon-Ismail, B. Szymanski, C. Varela, H. New-
berg, and N. Cole, “Robust asynchronous optimization for vol-
unteer computing grids,” in e-Science, Fifth IEEE International
Conference on. IEEE, dec 2009, pp. 263–270.

[79] A.-C. Orgerie, L. Lefévre, and J.-P. Gelas, “Save watts in your
grid: Green strategies for energy-aware framework in large scale
distributed systems,” in Parallel and Distributed Systems, 14th IEEE
International Conference on. IEEE, 2008, pp. 171–178.

[80] C. Li and L. Li, “Utility-based scheduling for grid computing
under constraints of energy budget and deadline,” Computer
Standards & Interfaces, vol. 31, pp. 1131–1142, 2009.

[81] L. Ponciano and F. Brasileiro, “On the impact of energy-
saving strategies in opportunistic grids,” in Grid Computing, 11th
IEEE/ACM International Conference on, 2010, pp. 282–289.

[82] S. Nesmachnow, B. Dorronsoro, J. Pecero, and P. Bouvry,
“Energy-aware scheduling on multicore heterogeneous grid com-



SUBMITTED TO IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 14

puting systems,” Journal of Grid Computing, vol. 11, pp. 653–680,
2013.

[83] A. Tchernykh, J. Pecero, A. Barrondo, and E. Schaeffer, “Adaptive
energy efficient scheduling in peer-to-peer desktop grids,” Future
Generation Computer Systems, vol. 36, pp. 209–220, 2014.

[84] S. Kianpisheh, M. Kargahi, and N. M. Charkari, “Resource avail-
ability prediction in distributed systems: An approach for model-
ing non-stationary transition probabilities,” IEEE Transactions on
Parallel and Distributed Systems, vol. 28, no. 8, pp. 2357–2372, 2018.

[85] Y. Shang and L. Shang, “Trust model for reliable node allocation
based on daily computer usage behavior,” Concurrency Computa-
tion, vol. 30, no. 6, 2018.

[86] M. Khan and T. Mahmood, “Using predictive analytics for pre-
dicting host availability in desktop grids,” International Journal of
Grid and Distributed Computing, vol. 10, no. 1, pp. 245–254, 2017.

[87] S. Rubab, M. Hassan, A. Mahmood, and S. Shah, “Proactive job
scheduling and migration using artificial neural networks for
volunteer grid,” in Computer Science and Engineering (COMPSE-
2016), 1st EAI International Conference on, 2017.

[88] D. Jung, H. Jeong, J. Kim, D. Lee, and M. Kim, “The resource
running time manager for integrated environment,” Cluster Com-
puting, pp. 1–10, 2017.

[89] E. Ivashko, “Mathematical model of a ”tail” computation in a
desktop grid,” in CEUR Workshop Proceedings, vol. 1940, 2017, pp.
54–59.

[90] G. Chmaj, K. Walkowiak, M. Tarnawski, and M. Kucharzak,
“Heuristic algorithms for optimization of task allocation and
result distribution in peer-to-peer computing systems,” Interna-
tional Journal of Applied Mathematics and Computer Science, vol. 22,
no. 3, pp. 733–748, 2012.

[91] L.-C. Canon, A. Essafi, and D. Trystram, “A proactive approach
for coping with uncertain resource availabilities on desktop
grids,” in High Performance Computing (HiPC), 2014 21st Interna-
tional Conference on. IEEE, 2014, pp. 1–9.

[92] N. Nikitina, E. Ivashko, and A. Tchernykh, “Congestion game
scheduling for virtual drug screening optimization,” Journal of
Computer-Aided Molecular Design, vol. 32, no. 2, pp. 363–374, 2018.

[93] E. Hwang, S. Kim, T. kyung Yoo, J.-S. Kim, S. Hwang, and Y.-R.
Choi, “Resource allocation policies for loosely coupled applica-
tions in heterogeneous computing systems,” IEEE Transactions on
Parallel and Distributed Systems, vol. 27, no. 8, pp. 2349–2362, 2016.

[94] D. Kondo, A. Chien, and H. Casanova, “Scheduling task parallel
applications for rapid turnaround on enterprise desktop grids,”
Journal of Grid Computing, vol. 5, no. 4, pp. 379–405, oct 2007.

[95] B. Qu, Y. Lei, and Y. Zhao, “A new genetic algorithm based
scheduling for volunteer computing,” in Computer and Com-
munication Technologies in Agriculture Engineering (CCTAE), 2010
International Conference On, vol. 3. IEEE, 2010, pp. 228–231.

[96] M. T. Rahman, H. Nguyen, J. Subhlok, and G. Panduran-
gan, “Checkpointing to minimize completion time for inter-
dependent parallel processes on volunteer grids,” in 2016 16th
IEEE/ACM International Symposium on Cluster, Cloud and Grid
Computing (CCGrid), May 2016, pp. 331–335.

[97] T. LaBlanc, “Design and evaluation of a communication library
for volunteer computing environments,” Ph.D. dissertation, Uni-
versity of Houston, Houston, USA, 2009.

[98] S. Kwan and J. Muppala, “Bag-of-tasks applications scheduling
on volunteer desktop grids with adaptive information dissemina-
tion,” in Local Computer Networks (LCN), 2010 IEEE 35th Conference
on. IEEE, 2010, pp. 544–551.

[99] J. Rius, F. Cores, and F. Solsona, “Cooperative scheduling mech-
anism for large-scale peer-to-peer computing systems,” Journal of
Network and Computer Applications, vol. 36, no. 6, pp. 1620 – 1631,
2013.

[100] Y. Murata, T. Inaba, H. Takizawa, and H. Kobayashi, “Imple-
mentation and evaluation of a distributed and cooperative load-
balancing mechanism for dependable volunteer computing,” in
Dependable Systems and Networks With FTCS and DCC, 2008. DSN
2008. IEEE International Conference on. IEEE, 2008, pp. 316–325.

[101] J. Celaya and U. Arronategui, “A task routing approach to large-
scale scheduling,” Future Generation Computer Systems, vol. 29,
no. 5, pp. 1097–1111, 2013.

[102] M. Hussin, A. Abdullah, and S. Subramaniam, “Adaptive re-
source allocation for reliable performance in heterogeneous dis-
tributed systems,” in Algorithms and Architectures for Parallel Pro-
cessing. Springer, 2013, pp. 51–58.

[103] G. Cordasco, R. De Chiara, and A. Rosenberg, “On scheduling
DAGs for volatile computing platforms: Area-maximizing sched-
ules,” Journal of Parallel and Distributed Computing, vol. 72, no. 10,
pp. 1347–1360, oct 2012.

[104] Z. Farkas and P. Kacsuk, “Evaluation of hierarchical desktop
grid scheduling algorithms,” Future Generation Computer Systems,
vol. 28, no. 6, pp. 871–880, jun 2012.

[105] L. Gao and G. Malewicz, “Internet computing of tasks with de-
pendencies using unreliable workers,” in Principles of Distributed
Systems. Springer, 2004, pp. 443–458.

[106] G. Cordasco and A. L. Rosenberg, “On scheduling series-parallel
DAGs to maximize AREA,” International Journal of Foundations of
Computer Science, vol. 25, no. 05, pp. 597–621, 2014.

[107] G. Cordasco, R. De Chiara, and A. L. Rosenberg, “An AREA-
oriented heuristic for scheduling DAGs on volatile computing
platforms,” IEEE Transactions on Parallel and Distributed Systems,
vol. 26, no. 8, pp. 2164–2177, 2015.

Dr. Evgeny Ivashko is an expert
in the field of BOINC-based high-
performance distributed computing.
He obtained his Ph.D. degree in Math
and Physics in 2010 and joined the
researchers of the Institute of Applied
Mathematical Research of Karelian Re-
search Centre of the Russian Academy

of Sciences. In 2011 he became a head of the new High-
performance computing Center of KRC. Also Dr. Ivashko
is an expert of the Skolkovo Fund and the head of one
of the leading groups in Russia in the BOINC-based dis-
tributed computing. He is the author of papers in game
theory and high-performance and distributed computing.
The main topics of interest are the game theory, high-
performance computing, distributed computing, artificial
information systems.

Dr Ilya Chernov received his Ph.D. in
Mathematics and Physics from Saint-
Petersburg State University (Russia) in
2004. He has been working in the Insti-
tute of Applied Mathematical Research
of KRC as a senior researcher and is
an expert in the mathematical and nu-
merical modeling of physical phenom-
ena, including formation and decom-
position of metal hydrides and large-

scale sea circulation. Other research interests include numer-
ical mathematics, high-performance computing, parabolic
boundary-value problems of mathematical physics.

Dr. Natalia Nikitina is a researcher
in the Institute of Applied Mathemat-
ical Research of KRC. She received
her Ph.D. in Technics from Petroza-
vodsk State University (Russia) in 2014.
Her main research interests are high-
performance and distributed comput-

ing, parallel job scheduling, workload characterization and
modeling, desktop grids, BOINC and applications of game
theory.


