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1. Introduction

A dynamic game model of a bioresource management problem (fisheries) is considered.
The center (state) which determines the reserved portion of the reservoir (where fishing
is prohibited), and the players (fishing farms) which harvest fish are the participants of
the game. FEach player is an independent decision maker, guided by the considerations
of maximizing the profit from fish sale. We consider finite and infinite planning horizon.
Pontryagin’s maximal principle and Hamilton-Jacobi-Bellman equation were applied to de-
termine Nash and Stakelberg equlibriums.

2. Game model

Let us consider the center, which determines the reserved area of the reservoir denoted
by s, 0 < s < 1. We consider the strategies of the two players which exploit the fish stock
during 7" time periods. Let us divide the water area into two parts: S; and Sy, where fishing
is prohibited and allowed, respectively. Denote by x; and x5 the size of the population per
unit area of S; and Sy, respectively. Then s = S;/S is the reserved area. There is a
migratory exchange between the two parts of the reservoir with the exchange coefficient
v = q/s, where ¢ is the exchange rate.

The dynamics of the fishery is described by the system of equations:

{ 1(t) = ez (t) + 71 (za(t) — 21 (1)), (1)
w5 (t) = ewa(t) + y2 (w1 (t) — wa(t)) — u(t) — v(t), @:(0) =27,

where #1(t) > 0 — size of the population at time ¢ in the reserved area; x2(t) > 0 — size of
the population at time ¢ in the area where fishing is allowed; ¢ — natural growth rate of the
population; u(t) > 0 — first farm’s fishing efforts at time ¢; v(¢) > 0 — second farm’s fishing
efforts at time ¢; s(t) — reserved portion of the reservoir and 54; = ¢q/s — coefficients of the
migratory exchange, ¢ = 1, 2.

Then the payoffs of the two players over a fixed time period [0, T] are

Ji= f) e mu((e1(t) — £1)° + (22(t) — £2)%) + cru(t)® — pru(t)] dt

Jo = [ e ma((21(t) — £1)? + (2a(t) — 82)%) + e20(t)? — pov(t)] dt 2)
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where Z;(t) — size of the population which is optimal for reproduction, m; — penalty for
deviation from the state (%1, Z2), ¢; — catching costs of the i-th player and p; — market price
for each player, i = 1, 2.

Let’s denote

_ —rt _ —rt _ —rt .
Cip = €7, My = MyeT | P = e 1= 1,2

We consider different optimality principles.
1.1. Nash optimal solution

We are interested in the optimal solution of the following problem:

The Hamilton function for player I is

Hy = my((x1(t) — 21)° + (x2(t) — 2)°) + crru(t)® — prru(t)+
+ A (ezi(t) +y(2(t) — 21 t;))‘i‘
_|_

Aa(t)(ea(l) + 72 (21(1) — 22(1)) — u(l) —v(1)).

e —

Let’s find the maximum of H;:

OH
a—ul = QClru(t) — Pir — /\12(t) =0.

Then the maximum is achieved at the point

_ A12(t) + pir

u(t)

2617‘
According to the maximum principle [4]
Ny (1) = =5 = —2mu, (21(1) — 21) = A () (e — ) = M2 (t)y2,

and the transversability conditions are
Au(T)=0,i=1,2.
In a similar manner, for player 11

Hy = mop((z1(t) = 71)° + (e2(t) — 7
+  Aar(®) (e (t) + 7 (w2(t) — 21
_|_

(
Aaa(t)(ex2(t) +v2 (21 () — 2o

It yields
_Aaa(t) + por
B 2627‘ ’

v(t)

and equations for additional variables are

Xop (t) = =322 = —2my, (21 (1) — 21) — Aaa (1) (€ = 71) — Aaa(t)y2
Noo(t) = =52 = —2ma, (s (1) — Z2) = Aaa(t) (e — 72) = A ()71,
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with the transversability conditions
Ai(T) =0, i=1,2.

Finally, to find the Nash equilibrium we have to solve the following system:

2 (t) = ex1(t) + i (z2(t) — #1(1))

2h(t) = ewa(t) + o (@1 (1) — wo(t)) — ML Asalper
A () = =2map(21(t) — Z1) — A (t)(e — y1) — A2(t)y2
AMao(t) = =2map(22(1) — Z2) — Aa(t)(e — v2) — Aun(t) 7,
Aoy (1) = =2mop(21(t) — Z1) — A21(t) (e — y1) — A2a(t) 72,
Ago () = =2map(22(1) — T2) — Aza(t)(e — v2) — Aaa(t) 71,

M (T) = A2(T) =0, 2;(0) = 2¥.

Let’s recall our notations and introduce new variables:
Nij = Xjet i j=1,2.

Then for these variables we get the system:

2y (t) = ex1(t) + y(wa2(t) —21(t)), i
(1) = e (t) + 7 (i1 (1) — wa(t)) — 22204PL _ daallhbro
A (1) = =2my (e (t) = 21) — A (8) (e — v — 1) — Awz(t)y2,
Nip(t) = =2my(2(t) — 22) — Aa(t) (€ =72 = 7) = Ana(t)n (3)
Aoy (1) = =2ma (21 () = 21) = Aaa(t) (€ =71 = 7) = Aga(t)72,
Aoy (t) = =2ma (w2 (t) — 22) — Asa(t)(€ — 72 — 1) = Aaa(t) 11,
ANt (T) = Xi2(T) =0, 2;(0) = 2f .
Theorem 1. S (t)
% 12(8) +p1
u*(t) = 2
and -
_ A2a(t) + po

v ()
with Ai», 1 = 1,2 satisfing (3), form the Nash optimal solution of the problem (1)-(2).
Proof. See [8].

bl

262

Example.

Modelling was carried out for the following values: ¢ = 0.2, v4 = 72 = ¢/s, ¢ = 0.08,
mi1 =mo = 0.09, ¢ = ¢2 =10, p1 = p», =100, T =200, r = 0.1.

Let the initial size of the population be z1(0) = 50, 22(0) = 50. And the optimal for
reproduction population sizes are &1 = 100 and z; = 100.

You can see the optimal values of u*(¢) and v*(t) (equal for both players) in Fig.3. The
figure indicates that the player’s strategies should equal 8 almost all the time. The size of
the population in the reserved area grows from 50 to 160 individuals (Fig.1). The size of
the population in the area where fishing is allowed grows from 50 to 140 individuals (Fig.2).

The players’ profits given that they use the optimal strategies, are J; = Jo = 103.6457652.
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1.2. Stackelberg optimal solution

We are interested in the optimal solution of the following problem:

max Jy(u*,v) < max Ji(u,v),
vER(u*) ~ vER(u)

where R(u) = {v | Ja(u,v) < Ja(u,v")},
and v* € R(u*).

For solving this problem we use Pontryagin’s maximum principle modified for a two level
game.

We fix some strategy u(t), and the Hamilton function for player IT is

Hy = mo((w1(t) — 21)? + (22(t) — Z2)?) + corv(t)? — porv(t)+
+ Aar(t)(exi(t) + yi(z2(t) — 21()))+
+ Aoz(t)(ew2(t) + v2 (w1 (t) — 22(t)) — u(t) —v(t)).
Wherefore

A2a(t) + par
)= ——~L -~ —
v( ) 2627‘ ’

and the equations for additional variables are

Xy (1) = =82 = —2my, (w1 (1) — 21) — Aaa (8) (e — 71) — Aaa(t)y2
Moo () = 6352 = =2map (22(t) — Z2) — Ana(t) (e — v2) — A2a ()71,

with the transversability conditions
Ai(T) =0, i=1,2.

We substitute this strategy of player II into the system (1) and combine it with the
equations for additional variables

() = ez (t) +m
a5 (t) = exa(t) + 72
Alzl(t) —szr (l‘l
Moo (t) = mzr(l‘z To
A1 (T) = Aoa(T) =0, (0)

m)—xz())—u—%i“m

) = 1) = A (t)(e — 1) — Aza(t)y2,
) — (t)(6 —72) = Aa(t)71,

o e —
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Then we repeat all operations using the Pontryagin’s maximum principle. The Hamilton

function for player I is

Hy 22)?) + crpu(t)? — prru(t)+
)+
. U(t) . >\22(2tc)2‘|;172r)+

(
(

pa () (=2map (z1(t) — 21) — A1 (1) (e — 71) — A22()72)+
) (e = 7v2) = Aza(t)1)

+ 4+ +
kg

Let’s find the maximum of H;:
OH,
Ou
Then the maximum is achieved at the point

u(t) = A12(t) + pir .

2617‘
According to the maximal principle [4]

M () = =2map (21(t) — 21) — A (t)(e — ) —

Ao(t) = =2ma, (22(t) — 22) — Aio(t)(e — 72) —

() = —Z5 = () (e — 1) + pa (O

1o () = = Git = B2 4 pua(t) (= = 72) + (D)3
and the transversability conditions are

A2 (T) =0, 1;(0)=0.
Finally, to find the Stackelberg equilibrium we have to solve the following system:

= QClru(t) — Pir — /\12(t) =0.

12(t)y2 + 2mappa (1)

A
A1 (t)y1 + 2mappia(t)

2y (t) = exi(t) +vi(22(t) — 21(2)),

2h(t) = cxa(t) +7a(w1 (1) — (1)) — M2fHRe  Amaldver

M) = =2map (21(8) — Z1) = A (t) (e — 1) — Aa(t)y2 + 2mappa (¢)
Mo (t) = =2map (22(t) — Z2) — Aa(t) (e — 72) — A (D)1 + 2mapa(t)
Aoy (8) = =2mop (21(8) — Z1) — A2 (t) (e — 1) — Aza(t) 72,

Aoo (8) = =2mop (22(t) — Z2) — Aa(t) (e — 72) — Az ()71,

11 (t) = pa () (e —v1) + p2(t)

wh(t) = 228 4o (1)(e = 72) + p (8)72

Air(T) = Azz( ) =0, #(0) ==}, p:(0)=0.

Let’s recall our notations and introduce new variables:
\ij = Aijet

Then for these variables we get the system:

2y (t) = ewi(t) + ylw2(t) — 22(t)), i

£ (1) = s (t) + 7 (a1 (1) — wa(t)) — 22244PL _ daallhbro

A (t) = =2ma(21(t) — 21) = A (t)(e — 71— 7) = Aiz(t)y2 + 2map (1),

No(t) = =2ma (2(t) — T2) = Az (t)(e — 72 = 7) = A ()71 + 2mapa(t)

Mgy (t) = =2my (21 (t) — T1) = Aor(8) (e — 71 — ) = Anz(t)72, (4)
Aoy () = =2ma(2(t) — T2) — Asa(t) (e — 72 —7) = Aaa(t) 11,

P () = pa(t) (e — 7)) + p2(t)y

p(t) = 228 4 s (1) (2 — 92) + (D)2

/\21(T) = /\ZQ(T) = 0, 1‘2(0) =;, /JZ(O) =0
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Theorem 2. The strategies

w(p = 220 it
and _

v (t) = /\22(;1;' b2

bl

with A\ia, i = 1,2 satisfing (4), form the Stackelberg optimal solution of the problem (1)-(2).

Example.

Modelling was carried out for the same values as in section 1.1.

You can see the optimal values of u*(¢) in Fig.6 and those of v*(t) in Fig.7. The figures
indicate that player’s I startegy should equal 6 almost all the time, and player’s 11 strategy
—equal 12. The size of the population in the reserved area grows from 50 to 200 individuals
(Fig.4). The size of the population in the area where fishing is allowed grows from 50 to
180 individuals (Fig.5),

The players’ profits given that they use the optimal strategies, are J; = —253.7144427,
Jo = 943.6131678.
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Figure 4. Values of 27 (¥) Figure 5. Values of 23(¢)
7 ya » ~ TN

0 2 4 6 8 100 120 140 160 180 200

0 2 4 6 8 100 120 140 160 180 200

Figure 6. Values of u* () Figure 7. Values of v*(¢)

Let’s compare the players’ payoffs when we use different optimality principles.

Profit of player I, which corresponds to different sizes of the reserved area s(t), are shown
in Table 1, and profit of player IT — in Table 2.
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Table 1. Player I profit

s(t) 01 [02]03]04[05[06]07]08]09
Nash | 11591 6670|3177 1017 | 103 353 | 1689|4040 7341
Stakelberg [ 112406329 2837| 673 |-253[-26 [ 127735826820

Table 2. Player II profit

s(t) 01 [02]03]04[05]06]07][08]0.9
Nash  |11591 (667031771017 [103] 353 | 1689 4040 | 7341
Stakelberg | 12426 | 7498 [4002 | 1846 [ 943 1210 | 2571 4955 | 8294

In the case of the Nash equilibrium both players are in the same conditions, so their
strategies and profits are equal.

In the case of the Stackelberg equilibrium player I is the leader and, as Tables 1, 2 show,
this equilibrium is better for player I, but worse for player II. This solution gives the gain
to player I, whereas player II carries all the expenses of maintaining a stable population
development.

2. Model over an infinite horizon

The dynamics of the fishery, as before, is described by the system of equations:

{ 2 (1) = 221 (1) + 71 (22(t) — 21 (1)), &)
2 (1) = ewa(t) + pa(a (1) — wa(1)) — u(t) — o(t), 2:(0) = 29,

where #1(t) > 0 — size of the population at time ¢ in the reserved area; x2(t) > 0 — size of
the population at time ¢ in the area where fishing is allowed; ¢ — natural growth rate of the
population; u(t) > 0 — first farm’s fishing efforts at time ¢; v(¢) > 0 — second farm’s fishing
efforts at time ¢; s(t) — reserved portion of the reservoir and 54; = ¢q/s — coefficients of the
migratory exchange, ¢ = 1, 2.

Then the discounted payoffs of the two players over an infinite horizon at a rate r are

Ji= [ e (1 (t) — 21)? + (w2(t) — 22)?) + cru(t)? — pru(t)] di

Ja = 13 e mal(ar(0) — 212 + (walt) - 22)°) + 200 — poo(]dt, )

where Z;(t) — population size optimal for reproduction, m; — penalty for deviation from the
state (Z1,Z2), ¢; — catching costs of the i-th player and p; — market price for each player,
i=1,2.

When we investigated the model with a finite planning horizon, we used Pontryagin’s
maximum principle. The infinite horizon gives us an opportunity to use Hamilton—Jacobi—
Bellman equation.

Let’s consider different optimality principles for infinite horizon model.

2.1. Nash optimal solution

Let’s fix the second player’s strategy and consider the problem of determining the optimal
strategy of player I.
Define the value function V' (z) for our problem

Vizr,z2) = H}}H{/OOO e " ma ((w1(t) — 21)° + (wa(t) — 22)®) + cru(t)® — pru(®)]}.
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The Hamilton—Jacobi-Bellman equation is

Ve, x2) = Hgﬂ{ml((m —21)* + (z2 — #2)%) + c1u® — pru+ g—XI(EM +y1(®2 — 1))+
+  E(ewa +ya(vr —wa) —u—v)}

Let’s find the maximum over w:

ov
2ciu— — —p1 =0.
8l‘2

Then the maximum is achieved at the point

ov
U = (3—l‘2 +p1)/2e .

Substituting it into the equation, we get

_ _ (Fas+p1)?
rV(xy, za) = mi((x1 — 21)% + (22 — 22)?) — 22— 24¢1p

Q@
=

. (ex1 + 71 (22 — 1))+
+ 6—172(61‘2 —|—’)/2(l‘1 —l‘z)—v)

@
25

It is easy to verify that the quadratic form provides a solution to this equation.
Let V(x1,22) = ara? + bixy + asxd + boxs + kryas + 1
Then the player’s I strategy is

_ 2azxa +ba+kxy +py
o 261

u(x)

bl

where the coefficients satisfy the system of equations

ra; = ml—g—i—Qal(a—'yl)—l—k'yz

7“[)1 = —lei‘l—%—%+b1(6—’71)+b2’72—k0

ra, = ml— % + 2a0(e — y2) + k1 M)
rby = —2myZo — aifQ — % +ba(e — y2) + b1y1 — 2a2v

rk = —% + k(e — 1) + 2a171 + 2a272 + k(e — 72)

rl = mli‘%—i—mli‘%—%—%—%—bzv

Analogously for player 11

_ 20i3x3 + B+ kawy + p2
a 262

v(x)

bl

where the coefficients satisfy the system of equations

ray = Mo — %-1-2041(6—71)-1-/47272

rB1 = —2ma¥; — k;ff - %-1—51(6—71)-1-@72 — kou

rags = m2— 24_15 + 2a0(e — y2) + ka1 (8)
7By = —2maly — a—i‘f—Q — 2L+ Ba(e — 72) + Bim — 2a0u

rky = —ang + ka(e — 1) + 20191 + 20072 + ka(e — 72)

rls = mzi‘%—i—mzi‘%—%—%—%—ﬁzu

So, we proved the following theorem.
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Theorem 3.
_ 2azxa+ba+kxy +py
o 261

u*(z)

and
wr v 200w+ B2 + ko + po
v (l’) o 262

form the Nash optimal solution of the problem (5)-(6), where the coefficients are defined
from (7) and (8).

Example.

bl

Modelling was carried out for the following values: ¢ = 0.2, v4 = 72 = ¢/s, ¢ = 0.08,
mi1 =mo = 0.09, ¢ = ¢2 =10, p1 = p», =100, T =200, r = 0.1.

Let the initial size of the population be z1(0) = 50, 22(0) = 50. And the optimal for
reproduction population sizes are &1 = 100 and z; = 100.

You can see the optimal values of u*(t) and v*(¢) (equal for both players) in Fig.10.
The figure indicates that players’ strategies should increase from 2 to 8. The size of the
population in the reserved area grows from 50 to 120 individuals (Fig.8). The size of the
population in the area where fishing is allowed grows from 50 to 90 individuals (Fig.9).

The players’ payoffs given that they use the optimal strategies, are J; = J, = 388.0627019.

2
3
R

50
0 20 4 6 8 100 10 140 160 180 200 0 20 4 6 8 100 10 140 160 180 200 0 20 4 6 8 100 10 140 160 180 200

Figure 8. Values of 25 () Figure 9. Values of 25() Figure 10. Values of u* ()

2.2. Stackelberg optimal solution

Using Hamilton—Jacobi-Bellman equation for player Il we get

20929 + P2 + kox1 +p2 +ou
v(r) = 20y

bl

where the coefficients are defined from (8).

Define the value function V' (z) for player’s T problem

Vizr,z2) = H}}H{/OOO e~ [y ((1(t) — 21)% + (2(t) — 22)%) + cru(t)® — pru(t)]} .

The Hamilton—Jacobi-Bellman equation is

rV(zi,22) = ming{mi((z1 — 21)* + (22 — 22)%) + c1u? — pru+ g—XI(EM +y1(z2 — 21))+
+ 2_2/2(5902 +y2(21 — ®2) —u — 2a2x2+ﬁ22i2x1+p2+0u)}
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Let’s find the maximum over w:

V o
2 -1 —0,
e 6 2( + 262) P11 =
wherefore
ov
u= (3 (2¢2 + 0) + 2p1ca) [4cica .
Ta
Substituting it into the equation, we get
Ve = (o - jl)z + (w2 — 2)°) + (5&)2% + 2pc11 + - (ewr + (e — 21))+
+ 2_2/2($1(72 ) + l‘z(g — vy — ) + 22c621-|c-2g @221_52)

It is easy to verify that the quadratic form provides a solution to this equation.
Let V(x1,22) = a12} + bixy + ase + boxs + griza + 1.
Then the player’s I strategy is

u(z) = ((2azw2 + b2 + g21)(2¢2 + 0) 4 2p1c2) /4c1ca,

where the coefficients satisfy the system of equations

ra; = my +92%+201(5_71)+9(W 2cQ)

rby = —2miz + 2bzg(2§§j’f§) + 9(22662;20)[71(5 —71) + ba(y2 — 2cQ) - ﬂ%l

rag = ml—i—az%—kg’h-l-?az@—’h—_)

rby = —2mZs + azzz (2;2)2 +az (25122—20) +ba(e =72 — 22) + b1y — az ﬁ2+p2 v
rg = azﬂ%*‘ﬂ@-’hﬂ'?aﬂl+2a2(72 38) +9(e =2 = 82)

rl = mizi 4+ mz3 + b3 (2;;?2 + b2 (2265120) + 2pc11 - %

So, we proved the following theorem.

Theorem 4. The strategies

u*(2) = ((2a222 + ba + g1)(2c2 + o) + 2p1c2)/4eica

v (2) = (0(2a322+ b2+ gx1)(2c2a+0) +4erca(2aama+ fo + kawy) + 22 (opy —|—261p2))/8616§ ,

form the Stackelberg optimal solution of the problem (5)-(6), where the coefficients are de-
fined from (8) and (9).

Example.

Modelling was carried out for the same values as in section 2.1.

You can see the optimal values of «*(¢) in Fig.13 and those of v*(t) in Fig.14. The figure
indicates that player’s I strategy should increase from 4.6 to 5.2, and player’s II strategy —
from 0 to 14. The size of the population in the reserved area grows from 50 to 120 individuals
(Fig.11). The size of the population in the area where fishing is allowed grows from 50 to
100 individuals (Fig.12).

The players’ profits given that they use the optimal strategies, are J; = 163.4798825 and
Ja = 1153.667808.
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Figure 11. Values of #3(¢)
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Figure 13. Values of u*()
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0 2 4 6 8 100 120 140 160 180 200

Figure 12. Values of 25()

D@6 @ 100 180 140 166 180 200

Figure 14. Values of v*(¢)

Let’s compare the players’ profits when we use different optimal principls.
Profit of player I, which corresponds to different sizes of the reserved area s(t), are shown
in Table 3, and profit of player II — in Table 4.

Table 3. Player I profit

s(t) 0.1 {02]03]04 (0506|071 08|09
Nash 11868 (6930|3431 {1280 [ 388 | 668 | 2037 (4414|7720
Stakelberg [ 116416702 {3203 | 1053 | 163|446 | 1818|4199 | 7508
Table 4. Player II profit
s(t) 0.1 {02|03]04]05|06]07]|08]0.9
Nash 118686930 3431|1280 | 388 | 668 |2037|4414|7720
Stakelberg | 12642 | 7706|4207 | 2052 | 1153 | 1425 | 2784|5149 | 8442

As in the case of the finite planning horizon, the Stackelberg equilibrium is better for

player I, but worse for player II than the Nash equilibrium.

In practice, the Hamilton—-Jacobi-Bellman equation is more convenient for long—term

planning.
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