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1. Introduction

A dynamic game model of a bioresource management problem (fisheries) is considered.
The center (state), which determines the reserved portion of the reservoir (where fishing
is prohibited), and the players (fishing firms), which harvest fish, are the participants of
this game. Each player is an independent decision maker, guided by the considerations of
maximizing the profit from fish sale. In the traditional statement (see Clark, 1985, Ehtamo
and Hamalainen, 1993, Hamalainen, Kaitala and Haurie, 1984, Haurie and Tolwinski,
1984, Tolwinski, Haurie and Leitmann, 1986 ) the center’s objective is catch regulation
by introduction of quotas. In this paper the center’s task is to determine the optimal
reserved portion to maintain stable population development in the reservoir in the long

term and the harvest level, sufficient for demand satisfaction.

2. Game model for one player

Let us consider the center, which determines the reserved area of the reservoir, denoted
by s, 0 < s < 1. The area in which fishing is allowed, is equal to 1 — s, respectively. We
consider the player’s strategy, which exploits the fish stock during 7" time periods.

The dynamics of the fishery is described by the equation:

2 () = F(a(t) — qBE#)(1 — s(t))z(t), 0 <t < T, 2(0) = o, (1)

where (1) > 0 — size of the population at a time ¢; F' — natural growth function of the
population; E(t) > 0 — firm’s fishing efforts measured as the number of vessels involved
in fishing at time ¢, s(¢) — reserved portion of the reservoir, and ¢ > 0 — catchability
coefficient related to the unit fishing effort of the firm.

Assume that population evolves in accordance with Ferhulst model of the form:

Flz)=rz(l —z/K),
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where r — the intrinsic growth rate, and K — maximal natural object capacity.

Then the net revenue over a fixed time period [0,77] is

7= gl (1)t
+ [ e Mg (1), 2(1). E(1)) - gB()(1 = (1)) (1) = CE(D )]t

where p — discount rate, ¢® — catching costs for one vessel and II - price function, specified

as

(g, s(t),x(t), B(t)) = p — kqb(1)(1 — s(t))x(t), p,k > 0.

Function g(x) describes the salvage value of the stock at time T" and

g(x) >0, ¢"(x) <0.

Let’s rewrite the payoff function in the following way

7 = g(a(T))
+JIRaB(P = s(0)r(2) 4 D)L= s()e(t) = eE(1)]d1

where
0 = g exp (—pt)

b= pqexp (—pt),
c=cexp(—pt).

We are interested in the optimal solution of the following problem:

max(J(E(1). N
where x(t) is defined in (1).
Theorem 1. Let E*(t), 2*(t), A1) satisfy the equation (1) and

gy = L= O s W e (g
(1= s(0)2 (1)

N(t) = —E*(0)(1 = s())(b— ab"(1)(1 - s(1))
A (F(2(1)) = gB£7(1)(1 = (1)), 0

(1)
( t
MT) = g, («"(T)),

X
<I1<T,

and let
2¢9

pa(l = s(1))’

3e
A S )

Then E*(t) is the solution of the problem (2).

() > xp =
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Proof. Using the maximal principle, the Hamilton function is
H(x,E, N\ s,t) = —1aE*(1—s)*a? +bE(l — s)z — cE+
+ AMF(x)—qE(l —s)x).
Let’s find the maximum of H.

Z_Z = —aB(1 —s)*e* + b(1 — s)z —c— Ag(1 —s)z = 0.

Then the maximum is achieved at the point

(b—qg\)(1—3s)xr—c

a(l — s)2a?

E(x, A1) =

According to the maximal principle [6]

OH

N2
ox

—E(1—s)(b—aE(l —s)x) — A(F. — qE(1 —s)),
and the transversability condition is
MT) = g,(2"(T)) -

Substituting the optimal E*(¢) to (1) and the equation for A(¢) we obtain the following

system of equations:

P(t) = re)(1 -5 = 2 - smrsmy) A0S

z(0) = a9
NT) = g, (a*(T))

Let’s prove the optimality of the solution. At first we show, that A(¢) > 0, Vt. Repre-

sent the second equation in (3) as

where L(t) > 0 Vt, because ©*(1) > 7—Srm = —=° and x*(1) > .
Consider the equation for A(t).

1. The solution of the equation

is
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2. ¢o(1) satisfies the equation

from which

Then

then

T t T

T
M(p)d M(p)d
¢ > /L(T)eof ) " dr > /L(T)eof ) "dr Ve [0,T].
0 0
We conclude that

A(t) >0 ,Vt.
Define
HO(z, M\ t,8) = rgaé(H(:z:,E,)\,t,s) = H(x, E*, )\ 1,38).
€
Substituting F*, we obtain
’ b—Aq)  (b—Ag)”
HO(z A\ t,5) = —— _d AF(z).
(2,2 ,5) 2a(1 — s)222  a(l —s)x 2a AP ()
The inequality b — Ag > % Vo > x,, yields
2c 3c 2r
HY (2,0, t,5) = —(b—Xg)) — =A(t) <0.
l’x(‘r7 Y 78) a$3(1 _ S)(Qw(l _ S) ( Q)) [X7 ( ) — 0

Therefore H° is concave.
Let E*(t),2*(t), A(t) be as in the theorem’s conditions.
By definition

H(z, B )\ t,8) < H(x,)\,t,3),

from concavity
HO(x, M\ t,s) < HO(2* M\ t,8) + HY (2%, M t,8)(2(t) — 27(¢)) .
The condition N(t) = —H2(x*, A\, t, s) gives

H(z, B )\ t,8) < Ho(z* A\ t,8) — N(t)(z —2).

59
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Integrating it from 0 to T" we obtain

/H(:L', E At s)dt < /HO(:L'*, Mty s)dt— M) (x — 2*)|] + / A (2! () — 2*()")dt
J + Of)\(t)(F(:L') —qE(l —s)x)dt — g(x(T)) < J 4+ OfA(t)(F(:L'*) —qF*(1 — s)x™) dt—

J+ Of)\(t)x’(t)dt —g(z(T)) < J 4+ Of At)a*(t)'dt — g(a*(T))—
—MNT)(x(T) —2*(T)) + Of)\(t)x’(t)dt — OfA(t)x*(t)’dt.
Then
J = (g(z(T)) — g(z™(T))) < J™ = MT)(a(T) — 2™(T)),
S < I = M) ((T) = 2(T)) + (g(2(T)) — g(x™(T))) <
< S = M) (@(T) = 2X(T) + g, (27(T)(x(T) = (1)) =
= S MY (e(T) = (1)) + NT)a(T) — 2*(T))
Finally,
J < Jr.

Consequently, £* is the solution of the problem. O

So, if the center’s strategy s(t¢),t € [0,7T] is known to the player, he can find the
optimal behaviour £*(¢). This, in turn, becomes known to the center, which, depending

on the player’s strategy, receives either a gain or a loss.
We examine the following functionals determining the center’s gain:

where z(t) — size of the population which is optimal for reproduction.

In this case [ is the center’s cost for population’s regeneration.
T
2. Iy =— [(U(t) — &(t))%dt,

0

3. I = — Of U(t) — #(1)] - o - T(q, s(t), x(t), E(t))dt,

where U(t) = qFE(t)(1—s(t))x(t) — player’s catch at time ¢, Z(¢) — consumption level
determined by demand, II(q, s(?),x(?), E(t)) = p — kqE(t)(1 — s(t))x(t), p,k > 0.
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The center’s profit is determined as the cost of demand satisfaction expressed in case
3) in monetary units, taking into account the transport cost.
In Section 4 the values of J, 1, [ and [5 are found for various s(¢) and Nash bargaining

solution is obtained.
3. Game models for the population with three age classes

3.1. Game model for a naturally regenerating population

Let’s consider a model, which allows the existence of more that one age class of fish in
the reservoir. In this subsection, let it be three classes, namely — young fish, middle-age
fish and old fish. Fish of two adult classes are able of reproduction. The model is given
for the naturally regenerating population. The player can catch either middle—age fish or
old fish using different fishing nets.

Let us consider the center, which determines the reserved area of the reservoir, denoted
by s, 0 < s < 1. The portion where fishing is allowed, is thus equal to 1 —s. We consider
the player’s strategy, which exploits the fish stock during T' time periods.

The dynamics of the fishery is described by the system of equations:

1(1) = k(laoa(t) + lzozwa(l)) — (a1 + Bi)x(t) — dai(l),
o(t) = anai(t) — (Bo + az)a2(l) — qu(t) E(1)(1 — s(t))x2(t) (4)
5(1) = agaa(l) — Baxa(t) — ga(H)E()(1 — s(1))wa(t), 0 <t < T, 2;(0) = a7,

X

where 21(¢) > 0 — number of young fish at time ¢, x5(¢) > 0 — number of middle—age fish
at time ¢, x5(¢) > 0 — number of old fish at time ¢, l5, [3 — escapement rates, o4, 03 — mean
fertility in the second and third age classes, & — egg survival rate, aq,as — recruitment
rates, 81 + dx(1), 02, B3 — mortalities, E(¢) > 0 — firm’s fishing efforts measured as the
number of vessels involved in fishing at time ¢, ¢a(t), ¢3(t) > 0, ¢2(¢) + ¢3(¢) = 0.02 —
catchability coefficients for middle—age fish and old fish related to the unit fishing effort
of the firm (fishing net’s ratio for the two classes), s(t) — proportion of the reserved area
in the reservoir.

The player’s revenue is

J = glaa(T), 25(T)) + Ofe_”t[ﬂz(%(t)aS(t)al‘z(t)aE(t)) () E()(1 = s(t))a(t)+
+ Ha(gs(t), s(2), (1), E(1)) - qa(D) E()(1 = s(1))ws(t) — < E(1)(q2(t) + gs(2))]dE

where p — discount rate, ¢ — catching cost for one vessel and II;, i = 2,3 - price functions

for different age classes, specified as

M2 (qa(t), 5(t), w2(t), E(1)) = p2 — kqa() E()(1 — s(t))xa(1) ,
a(ga(t), s(t), wa(t), E(1)) = ps — kags(1) E()(1 — s(t))ws(1) .

For simplicity denote
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Hence the player’s payoff becomes:

Jo= glaa(T), xs(T)) + Ofe‘”"‘[—kuxt)?(l — 5(t)) %22 (t)* + paua(t)(1 — s(t))wa(t) — Pua(t)—
— hus(1)*(1 = s(t))*2s(1)” + paua(t)(1 — s(t))ws(t) — Cus(t)]dl,

or

~—

J=g(xx(T),25(T)) +  [[=gaua(t)*(1 = s(8))*22(t)* + baua(t)(1 — s(t))aa(t) — cua(t)—

ausz(t)?(1 — s(¢))x3()? + baus(¢)(1 — s(2))xa(t) — cus(t)]dt,

(Sl e]

where
a =2kexp(—pt),

by = pyexp (—pt),
bs = psexp (—pt),
c=c"exp(—pt).

We are interested in the optimal solution of the following problem:

{ max(J (uz(t), us(t))), (5)
where x(1), x2(t), x5(t) are defined in (4).

Theorem 2.  Let ub(t), ui(t), «5(t), a3(t), x5(t), A2(1), As(t) satisfy the equation (4)

and

uy(t) =

() = —u <t (1= s(t))(ba — aus(1)(1 — s(1))a3(1)) = Au()klaos+
T ha(t)(B+ aa + u3(0)(1 - 5(1)) — Ma(t)az, 0< 1< T,

Ny(1) = —us(0)(1 = s(1)(bs — aus(t)(1 — s(D)a3(1)) — M (1)klaoat
+ (B + st —s(1), 0< < T,

Ai(T) = g, (21(T), 25(T), 23(T)) i =1,2.3.
Then wi(t),us(t) is the solution of the problem (7).

From the system

we can find
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So, if the center’s strategy s(t¢),t € [0,7] is known to the player, he can find the
optimal behaviour u3(¢), u3(t). This, in turn, becomes known to center, which, depending
on the player’s strategy, receives either a gain or a loss.

We examine the following functionals determining center’s gain:

L T = — [[(ea(t) = 21(0)? + (a{t) — 22(0)? + (ea(t) — 2a(8)) )

0

2. I, =— f(U(t) — &(t))*dt,

3. Iy = — Of U(1) = &@)] -0 - (Ha(q(t), s(1), 2a(t), E(1)) + Hs(q(t), s(1), 2s(t), E(1)))dt

where U(t)

= q(O)E()(1 — s(t))xa(t) + gs(t) E(t)(1 — s(t))xs(t) — player’s catch at
time ¢, 1;(qi(t), s(t), x

ys(t), i), E(t) = pi — kai(1) E(t)(1 = s(t))ai(t), pik > 0.
3.2. Game model for an artificially regenerated population

Let the population consist of three age classes: young fish, middle-age fish and old
fish. The model is given for the artificially regenerated population.
The dynamics of the fishery is described by the system of equations [7]:

(1) = k(l2025(1) + Iso525(1)) — (a1 + Br)aa(t) — dai(t)
02 = o) s 1 s eoront) — DB Do)
(1) = asea(t) — (15 + Ba)as(t) — (D) E()(1 — s(t))as(t), 0< ¢ < T, 2(0) = a2,
(6)
where 21(¢) > 0 — number of young fish at time ¢, x5(¢) > 0 — number of middle—age fish
at time ¢, x5(¢) > 0 — number of old fish at time ¢, l5, [3 — escapement rates, o4, 03 — mean
fertility in the second and third age classes, & — egg survival rate, aq,as — recruitment
rates, 81 + dx(1), 02, B3 — mortalities, E(¢) > 0 — firm’s fishing efforts measured as the
number of vessels involved in fishing at time ¢, ¢a(t), ¢3(t) > 0, ¢2(¢) + ¢3(¢) = 0.02 —
catchability coefficients for middle—age fish and old fish related to the unit fishing effort
of the firm (fishing net’s ratio for the two classes), s(¢) — proportionof the reserved area
in the reservoir.

The player’s revenue is

S = g(@s(T),25(T)) + [ e [Ia(qa(t), s(1), 2ot

)
(RO E@)1 = s()2o(t) + laa(t)) + Ha(gs(t), s
(ga() E()(1 = s(t))ws(t) + laws(t)) — < E(1)(qa(

O%’ﬂ

, B(1)-

(1), (1), (1))
t) + gs(1))]dt

where p — discount rate, ¢ — catching cost for one vessel and II;, i = 2,3 - price functions

for different age classes, specified as

(1), wa(1), E(1)) = pa — kgo(1) E(O)(1 — s(1))2a(t) — Laa(l),
(1), w3(1), (1)) = ps — kgs(1) E(1)(1 — s(1))2s(t) — lszs(l) .

= =
[USIE ]
N TN
0 R
[VC )
N TN
e
N
»n 0
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For simplicity denote

Hence the player’s payoff becomes:

S = g(2o(T),25(T)) + f@‘”t ua()*(1 = s(1))?22(1)* + paua(t)(1 — s(t))22(t)—
— lus(1)(1 - ) 2(t ) klaua(t)(1 = s(1))a5(t) + palawa(t) — Ba3(t) — Cua(t)—
= kua(t)*(1 — s(t))*2s(1)* + paus(t)(1 — 8( ))ws(t) — laus(t)(1 — s)a3(t)—

)
= klsus(t)(1 = s(1))23(t) + pslsws(t) — Bas(t) — Cus(t)]dL .

Let’s rewrite the payoff function in the following way

J = glax(T), Of —gaug(t)*(1 — s(t))2w2(t)? + baua(t)(1 — s(t))aa(t)—
— %lzguz( )(1 — 3) 2(t) — al2u2(t)(1 — s(4))@2(t)? + balaza(t)—
— %lzzlzl’ (1) — cuq(t) — %au;),( (1 — s(t))?xa(t)*+
+ baua(t)(1 — s(t))xa(t) — lagua(t)(1 — s)a3(t) — galsus(t)(1 — s(t))aa(t)+
) ]

dt |

— cus(t)

+ bglgl’g(t) — %l33l3$3(

where

l22 = 2[2 exXp (
l33 = 2[3 exXp (
c=c"exp(—pt).

We are interested in the optimal solution of the following problem:

{ max(J (uz(t), us(t))), (7)
where x(1), x2(t), x5(t) are defined in (6).

Theorem 3.  Let ui(t), ui(t), «5(t), a3(t), x5(t), A2(1), As(t) satisfy the equation (6)

and
B (by — A2() — %Glzl’z — %lzzwz(t))(l —s(t))as(t) — ¢
a(l = s(t))%a5(1)*
_ (bs = Xa(t) — jalses — jlasws)(1 — s(t))e5(t) -
a(l = s(t))2a5(t)’
N = () (a1 + B 4 2dzi (1) — A2(t)ay, 0 <t < T,
M) = —u3()(1 — s(0))(b — aug(t)(1 — s())5(t) — alyr3(t) — aw3(t) — balat
+  laalea3(t) — M()klzos + Aa(D)(la + B2 + ag + us(1)(1 — s(1))) — As(t)ae, 0 <t < T,

Mo(t) = —us(0)(1 — s())(bs — aus(t)(1 — s(t))23(t) — alsw3(t) — lssw5(l))—
— bals + lsalszi ()M () klsos + As(t)(ls + B3 + ws(t) (1 — s(£))), 0 <t < T,

L0<t<T,

C
L0<t<T,
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A(T) = g, (23(T), 25(T), 25(T)) i =1,2.3.
Then ui(t),us(t) is the solution of the problem (7).

From the system

we can find

We examine the following functionals determining the center’s gain:

L L=~ Of[(xl(t) — 21(1))" + (2a(t) — 22(1))* + (w3(t) — 25(1))]dt ,

3. Iy = — Of U(t) = &(0)] - 0 - (Ta(g(t), s(1), 22(1), E(1)) + Us(q(1), s(1), ws(t), E(1)))dt

where U(t) = q(t)E(t)(1 —s(t))aa(t) +laxo(t)+gs(t) E(t)(1 —s(1))xs(t) +lsx5(t) — player’s
catch at time t, I;(g;(¢), s(t), x,(t), £(1)) = pi—kaq:(1) E(t)(1—s(t))a,(t) =Lz, (1), pik > 0.

In Section 4 the values of J, 1, [ and [5 are found for various s(¢) and Nash bargaining
solution is obtained. Note that the results of numerical simulations for this case are almost

the same as in the model analysed in the previous section.

4. Numerical modelling
4.1. Game model for one player and a constant s(t)

Modelling was carried out for the following values:

r=0.06, K = 300000, p=0.02,
k=038, p=06000,  q=0.002,
& = 500000, o=0.02, T =100.

Let the initial size of the population be x(0) = 150000 and there is no reserved area
at all ((s(t) =0,¢ € [0,7])). You can see the optimal values of F*(¢) in Fig.1.1. The
figure indicates that the number of vessels involved in fishing should be reduced from 8
to 6. The size of the population grows from 150000 to 230000 individuals (Fig.1.2), and
the catch also increases from 2400 to 2900 individuals per time unit (Fig.1.3).

The player’s profit, if he uses the optimal behavior is J = 310903428.6. If the size
of the population which is optimal for reproduction is ¥ = 180000, then the population
restoration cost for the centre is [; = —153576318700.
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Figure 1.1. Values of 2*(¢f)  Figure 1.2. Values of E*(t)  Figure 1.3. Values of U*()

Now consider the case where 40 percents of the territory is reserved (s(t) = 0.4, ¢ €
[0,71]). The optimal values of E*(t) are given in Fig.2.1. The number of vessels in the
first 10 periods of time increases from 9, and then decreases to 8. The population growth
is greater, than in the first scenario, from 150000 to 250000 individuals (Fig.2.2), and the
catch increases from 1600 to 2500 individuals (Fig.2.3), which is less, than in the first
case.

The player’s payoft decreases J = 221247734.8, and for the same value z = 180000,
the population restoration cost for the centre also decreases Iy = —254620482600.

N 2000

Figure 2.1. Values of 2*(¢f)  Figure 2.2. Values of E*(t) Figure 2.3. Values U*(t)

For s(t) = 0.8, ¢t € [0,T], the optimal values of E*(t),U*(t), x*(t) are shown in Fig.3.1-
3.3. Interestingly, the opimal solution is no harvesting on the time interval [0, 14], and
after progressive raising of fishing efforts to 8 vessels. The catch grows from 0 to 900
individuals, and the size of the population increases from 150000 to 290000 individuals.

The player’s profits for the same parameters are J = 26999742 and [y = —745334490900.

Thus, changing values of s(t), the centre and the player get different profits. The Nash
bargaining solution can be used to settle this conflict.
As the initial bargaining solution it is natural to choose the pair (1°,0), where I is

center’s cost, when no harvesting is done, and player’s payoft is equal to zero.
T
In case 1) I = — [(x(t) — z)*dt is the cost for restoration of a naturally regenerating
0

population, where the equation (1) is of the form 2/(t) = F(z(?)), and in case 2) I3 =
—#*T and 3) I3 = =2 pa T are the costs for demand satisfaction.
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Figure 3.1. Values of x*(¢) Figure 3.2. Values of E*(¢)  Figure 3.3. Values of U*()

Values of s(t), which correspond to optimal Nash solutions, are shown in Table 1.

Table 1. Optimal values of s(t)

Functional [

z(t) [ 180000 | 200000 | 220000
Nash 0 0 0

240000
0.3

250000
0.55

260000
0.7

280000
0.8

300000
0.9

320000
0.9

For the functionals I5, I5, values of s(¢), which correspond to optimal Nash solutions,

are shown in Table 2.

Table 2. Optimal values of s(t)

Functional I,

(1)

500

700

1000

1200

1500

2000

2200

2500

3000

Nash

0.8

0.8

0.7

0.6

0.4

0

Functional /5

(1)

500

700

1000

1200

1500

2000

2200

2500

3000

Nash

0.8

0.8

0.6

0.5

0.1

0

4.2. General case for one player

In the general case s(?) can be an arbitrary function. We model the variant, in which
the center can change the reserved portion of the reservoir one or more times at an
arbitrary time moment.

Denote the moment, when the center can change it’s policy as t*, the reserved portion
of the reservoir on the interval [0,1*) as s;(¢), and on [t*,T] as sa(t).

You can see the results of simulations for uniformly distributed ¢, s1(¢), s2(¢) in Fig.4.
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Figure 4. Values of I3 and J

4.3.

————— 8 x(o) = 150000 :% = 2500

° Nash equilibrium is achieved at t* = 95

s1(t) =0 s3(¢) =0.7

Modelling was carried out for the following values:

T =10,

I3 = 0.002,
a1 = 02,

ﬁz = 021,

p=0.02,
p3 = 12000, ° =500000/0.02, 6 =0.02.

I3 = —2444747.669 J = 309403975

Game model for an artificially regenerated population

k= 0.025, [, =0.012
oy = 4800, o5 = 5600,
ay = 0.2, 3 = 0.36,
By = 0.54, d = 0.0000000057 ,
k=08, p2 = 6000,

Let the initial sizes of the populations be #1(0) = 100000, x2(0) = 50000, x3(0) = 20000
and there is no reserved area at all ((s(¢) =0, ¢ € [0,7])) You can see the optimal values
of E*(t) in Fig.5.4. From the figure we observe that the number of vessels involved in
fishing should be extend to 24. The number of young fish grows from 100000 to 175000
individuals (Fig.5.1), of middle—age fish — from 50000 to 70000 (Fig.5.2). The number of
old fish decreases from 20000 to 11500 individuals in the first 4 time periods, and increases
to 14000 individuals afterwards (Fig.5.3). The catch of middle—age fish increases to 2800
individuals per time unit (Fig.5.5). The catch of old fish decreases from 5800 to 4900

individuals in the first 4 time periods, and increases to 6000 individuals per time unit

afterwards (Fig.5.6).
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Figure 5.1. Values of x7(¢)

Figure 5.2. Values of a3(t)

Figure 5.3. Values of a3(¢)
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Figure 5.4. Values of E*(t)  Figure 5.5. Values of U;(t)  Figure 5.6. Values of Uj(t)

The player’s payoff, if he uses the optimal behavior is J = 431638465.7. If the sizes
of the age classes which are optimal for reproduction are z; = 150000,z = 100000,
x3 = 30000, then the population restoration cost for the centre is [; = —28871013660.

Now consider the case, when 50 percents of the territory is reserved (s(t) = 0.5,
t € [0,T]). The optimal values of E*(t) are given in Fig.6.4. The number of young fish
grows more than in the first scenario: from 100000 to 180000 individuals (Fig.6.1), of
middle—age fish — from 50000 to 75000 (Fig.6.2). The number of old fish decreases from
20000 to 13000 individuals in the first 4 time periods, and increases to 17000 individuals
afterwards (Fig.6.3). The catch of middle—age fish increases to 2600 individuals (Fig.6.5).
The catch of old fish decreases from 4700 to 3900 individuals in the first 4 time periods,

and increases to 5200 individuals per time unit afterwards (Fig.6.6).
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The player’s payoff decreases to J = 339883803.6 and for the same values
x; = 150000, z, = 100000, z3 = 30000, the population restoration cost for the centre
decreases to I; = —27598969290.

For s(t) = 0.9, t € [0, T], the optimal values are shown in Fig.7.1-7.6. It is interesting
to note, that the opimal solution is to catch no middle—age fish first 3 time periods, and
an increase to 1200 individuals per unit of time afterwards (Fig.7.5) and to catch no old
fish first 5 time periods, and an increase to 1400 individuals afterwards (Fig.7.6).

The player’s profits for the same parameters are J = 97221147.26 and [ = —30095273290.
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Figure 7.4. Values of E*(t)  Figure 7.5. Values of U;(t)  Figure 7.6. Values of Uj(t)

As the initial bargaining solution it is natural to choose the pair (1°,0), where I is

center’s cost, when no harvesting is done, and player’s payoft is equal to zero.

T
In case 1) I} = — [[(z1(t) — T1)* + (w2(t) — 22)? + (23(t) — T3)?]dt is the cost for
0
restoration of a naturally regenerating population, and in case 2) I = —3*T and 3)

I9 = =3 (p2 + p3) 0 T are the costs of satisfying the demand.
Values of s(t), which correspond to optimal Nash solutions, are shown in Table 3—4.

Table 3. Optimal values of s(t)

Functional [

100000

150000

150000

150000

150000

200000

200000

200000

200000

50000

60000

70000

100000

120000

70000

70000

70000

100000

20000

15000

20000

30000

20000

20000

25000

30000

30000

0

0

0

0.5

0.6

0.9

0.9

0.9

0.9
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Table 4. Optimal values of s(t)

Functional I,

#(t) {2000 3000 [4000 | 4500 |5000 [ 5500 | 5700|6000 | 7000
Nash| 09 [ 08 | 0.6 | 0.5 |04 [ 01| O 0 0

Functional /5

#(t) {2000 3000 [4000 | 4500 |5000 [ 5500 | 5700|6000 | 7000
Nash| 0.8 [ 0.8 | 0.7 0.6 | 04 [ 0.1 | O 0 0

4.4. General case with three age classes

The results of simulations for the case with three age classes are presented in Fig.8-10.

YLl e
s S x1(0) = 100000 z; = 150000
2evn — x4(0) = 50000 2 = 100000
1e+08 . 1}3(0) — 20000 :f3 — 30000
D*- —-3e+10 -2.95e+10-2.9e+10-2.85e+10-2.8e+10-2.75e+10-2.7e+10 Nash equilibrium iS achieved at t* pu— 3
Sl(t) =0.3 Sg(t) =0
Figure 8: Values of I and J I, = —26976400230 J = 352132946.8
A B 21(0) = 100000 25(0) = 50000
1e+08 . $3(0) = 20000 :% — 4500
e Nash equilibrium is achieved at t* =3

Sl(t) =0.1 Sg(t) =0.7
Figure 9: Values of I and J I, = —28572831.16 J = 3257621134
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) X
L Sl 21(0) = 100000 z5(0) = 50000
16408 . $3(0) = 20000 :% — 5500
o T Tagion ~1e%07-8e+06-6e+06-4e+06-2¢+06 Nash equlllbrlum iS achieved at t* — 4
Sl(t) =0.6 Sg(t) =0.1
Figure 10: Values of I3 and J Is = —4111816.166 J = 395847353.3
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