
Part of speech and gramset tagging algorithms
for unknown words based on morphological

dictionaries of the Veps and Karelian languages?

Andrew Krizhanovsky1,2[0000−0003−3717−2079], Natalia
Krizhanovskaya1[0000−0002−9948−1910], and Irina Novak3[0000−0002−9436−9460]

1 Institute of Applied Mathematical Research
of the Karelian Research Centre of the Russian Academy of Sciences

2 Petrozavodsk State University
3 Institute of Linguistics, Literature and History

of the Karelian Research Centre of the Russian Academy of Sciences,
Petrozavodsk, Russia, andrew.krizhanovsky@gmail.com

http://dictorpus.krc.karelia.ru

Abstract. This research devoted to the low-resource Veps and Kare-
lian languages. Algorithms for assigning part of speech tags to words
and grammatical properties to words are presented in the article. These
algorithms use our morphological dictionaries, where the lemma, part
of speech and a set of grammatical features (gramset) are known for
each word form. The algorithms are based on the analogy hypothesis
that words with the same suffixes are likely to have the same inflectional
models, the same part of speech and gramset. The accuracy of these al-
gorithms were evaluated and compared. 66 thousand Karelian and 313
thousand Vepsian words were used to verify the accuracy of these al-
gorithms. The special functions were designed to assess the quality of
results of the developed algorithms. 86.8% of Karelian words and 92.4%
of Vepsian words were assigned a correct part of speech by the developed
algorithm. 90.7% of Karelian words and 95.3% of Vepsian words were as-
signed a correct gramset by our algorithm. Morphological and semantic
tagging of texts, which are closely related and inseparable in our corpus
processes, are described in the paper.

Keywords: Morphological analysis · Low-resource language · Part of
speech tagging.

1 Introduction

Our work is devoted to low-resource languages: Veps and Karelian. These lan-
guages belong to the Finno-Ugric languages of the Uralic language family. Most
Uralic languages still lack full-fledged morphological analyzers and large cor-
pora [5].
? The study was supported by the Russian Foundation for Basic Research, grant 18-
012-00117.

2 A. Krizhanovsky et al.

In order to avoid this trap the researchers of Karelian Research Centre are
developing the Open corpus of Veps and Karelian languages (VepKar). Our
corpus contains morphological dictionaries of the Veps language and the three
supradialects of the Karelian language: the Karelian Proper, Livvi-Karelian and
Ludic Karelian. The developed software (corpus manager)4 and the database,
including dictionaries and texts, have open licenses.

Algorithms for assigning part of speech tags to words and grammatical prop-
erties to words, without taking into account a context, using manually built
dictionaries, are presented in the article (see Section 4).

The proposed technology of evaluation (see the section 5) allows to use all
313 thousand Veps and 66 thousand Karelian words to verify the accuracy of the
algorithms (Table 1). Only a third of Karelian words (28%) and two-thirds of
Veps words (65%) in the corpus texts are automatically linked to the dictionary
entries with all word forms (Table 1). These words were used in the evaluation
of the algorithms.

Table 1: Total number of words in the VepKar corpus and dictionary

Language
The total number
of tokens in texts,

103

N tokens linked to
dictionary automatically,

103

N tokens linked to
lemmas having

a complete paradigm,
103

Veps 488 400 (82%) 313 (65%)

Karelian
Proper

245 111 (45%) 69 (28%)

Let us describe several works devoted to the development of morphological
analyzers for the Veps and Karelian languages.

– The Giellatekno language research group is mainly engaged in low-resource
languages, the project covers about 50 languages [4]. Our project has some-
thing in common with the work of Giellatekno in that (1) we work with
low-resource languages, (2) we develop software and data with open licenses.
A key role in the Giellatekno infrastructure is given to formal approaches
(grammar-based approach) in language technologies. They work with mor-
phology rich languages. Finite-state transducers (FST) are used to analyse
and generate the word forms [4].

– There is a texts and words processing library for the Uralic languages called
UralicNLP [2]. This Python library provides interface to such Giellatekno
tools as FST for processing morphology and constraint grammar for syntax.
The UralicNLP library lemmatizes words in 30 Finno-Ugric languages and

4 See https://github.com/componavt/dictorpus

POS tagging and gramset algorithms (Veps and Karelian dictionaries) 3

dialects including the Livvi dialect of the Karelian language (olo – language
code).

2 Data organization and text tagging in the VepKar
corpus

Automatic text tagging is an important area of research in corpus linguistics. It
is required for our corpus to be a useful resource.

The corpus manager handles the dictionary and the corpus of texts (Fig. 1).
The texts are segmented into sentences, then sentences are segmented into words
(tokens). The dictionary includes lemmas with related meanings, word forms,
and sets of grammatical features (in short – gramsets).

Fig. 1: Data organization and text tagging in the VepKar corpus.
Total values (e.g. number of words, texts) are calculated for all project languages.

Text tokens are automatically searched in the dictionary of lemmas and word
forms, this is the first stage (I) of the text tagging, it is not presented at Fig. 1.

1. Semantic tagging. For the word forms found in the dictionary, the lemmas
linked with them are selected (II at Fig. 1), then all the meanings of the
lemmas are collected (III) and semantic relationships are established between
the tokens and the meanings of the lemmas (marked “not verified”) (IV).
The task of an expert linguist is to check these links and confirm their correct-
ness, either choose the correct link from several possible ones, or manually
add a new word form, lemma or meaning.

tokens (words) word forms lemmas meaningsI IIIII

IV not verified

When the editor clicks on the token in the text, then a drop-down list of
lemmas with all the meaning will be shown. The editor selects the correct
lemma and the meaning (Fig. 2).

4 A. Krizhanovsky et al.

Fig. 2: Vepsian and Russian parallel Bible translation‡ in the corpus. The editor
clicks the word “Opendai” in the text, a menu pops up. This menu contains a list
of meanings collected automatically for this token, namely: the meaning of the
noun “teacher” (“opendai” in Veps) and five meanings of the Veps verb “opeta”.
The noun “opendai” and the verb “opeta” have the same wordform “opendai”.
If the editor selects one of the lemma meanings in the menu (clicks the plus
sign), then the token and the correct meaning of the lemma will be connected
(IV stage is verified).

‡ See full text online at VepKar: http://dictorpus.krc.karelia.ru/en/corpus/text/494

POS tagging and gramset algorithms (Veps and Karelian dictionaries) 5

2. Morphological tagging. For the word forms found in the dictionary, the
gramsets linked with them are selected (V) and morphological links are es-
tablished (VI) between the tokens and the pairs “word form – gramset”
(Fig. 1). The expert’s task is to choose the right gramset.

tokens (words) word forms gramsetsI V

VI

3 Corpus tagging peculiarities

In this section, we describe why the word forms with white spaces and analytical
forms are not taken into account in the search algorithm described below. An-
alytical form is the compound form consisting of auxiliary words and the main
word.

The ultimate goal of our work is the morphological markup of the text,
previously tokenized into words by white spaces and non-alphabetic characters
(for example, brackets, punctuation, numbers). Therefore, analytical forms do
not have markup in the texts.

Although we store complete paradigms in the dictionary, including analytical
forms, such forms do not used in the analysis of the text, because each individual
word is analyzed in the text, not a group of words.

For example, we take the Karelian verb “pageta” (leave, run away). In the
dictionary not only the negative form of indicative, presence, first-person singular
“en pagene” is stored, but also connegative (a word form used in negative clauses)
of the indicative, presence “pagene”, which is involved in the construction of
five of the six forms of indicative, presence. Thus, in the text the word ‘en’
(auxiliary verb ‘ei’, indicative, first-person singular) and ‘pagene’ (verb ‘pageta’,
connegative of indicative, presence) are separately marked.

4 Part of speech and gramset search by analogy
algorithms

The proposed algorithms operate on data from a morphological dictionary. The
algorithms are based on the analogy hypothesis that words with the same suffixes
are likely to have the same inflectional models and the same sets of grammatical
information (part of speech, number, case, tense, etc.). The suffix here is a final
segment of a string of characters.

Let the hypothesis be true, in that case, if the suffixes of new words coin-
cide with the suffixes of dictionary words, then part of the speech and other
grammatical features of the new words will coincide with the dictionary words.
It should be noted that the length of the suffixes is unpredictable and can be
various for different pairs of words [1, p. 53].

6 A. Krizhanovsky et al.

The POSGuess and GramGuess algorithms described below use the concept
of “suffix” (Fig. 3), the GramPseudoGuess algorithm uses the concept “pseudo-
ending” (Fig. 4).

4.1 The POSGuess algorithm for part of speech tagging with
a suffix

Given the set of words W , for each word in this set the part of speech is known.
The algorithm 1 finds a part of speech posu for a given word u using this set.

POS tagging and gramset algorithms (Veps and Karelian dictionaries) 7

Algorithm 1: Part of speech search by a suffix (POSGuess)
Data: P – a set of part of speech (POS),

W = {w | ∃posw ∈ P} – a set of words, POS is known for each word,
u /∈W – the word with unknown POS,
len(u) – the length (in characters) of the string u.

Result:

uz :

len(uz) −−−−−−−−−→
z=2,...,len(u)

max, // Longest suffix

∃w ∈W : w = wprefix + uz // Concatenation of strings

Counter
[
posk

]
= ck, k = 1,m, where :

ck ∈ N, c1 ≥ c2 ≥ . . . ≥ cm,

∃wk
i ∈W : wk

i = wprefix
k
i + uz ⇒ ck = |poskwk

i
|,

i = 1, ck,

∀i : poskwk
i
= posk ∈ P, a 6= b⇔ posa 6= posb

m – the number of different POS of found words wk
i

1 z = 2 // The position in the string u
2 zfound = FALSE

3 while z ≤ len(u) and ¬zfound do

// The suffix of the word u from z-th character
4 uz = substr (u, z)

5 foreach w ∈W do
// If the word w has the suffix uz (regular expression)

6 if w =∼ m/uz$/ then
7 Counter [posw] + +
8 zfound = TRUE // Only POS of words with this uz suffix

will be counted. The next "while" loop will break, so the
shorter suffix uz+1 will be omitted.

9 end
10 end
11 z = z + 1
12 end

// Sort the array in descending order, according to the value
13 arsort(Counter [])

8 A. Krizhanovsky et al.

In Algorithm 1 we look for in the set W (line 5) the words which have the
same suffix uz as the unknown word u. Firstly, we are searching for the longest
substring of u, that starts at index z. The first substring uz=2 will start at the
second character (line 1 in Algorithm 1), since uz=1 = u is the whole string
(Fig. 3).

Then we increment the value z decreasing the length of the substring uz in
the loop, while the substring uz has non-zero length, z ≤ len(u). If there are
words in W with the same suffix, then we count the number of similar words for
each part of the speech and stop the search.

The Fig. 3 shows the idea of the algorithm 1: for a new word (kezaman), we
look for a word form in the dictionary (raman) with the same suffix (aman).

We begin to search in the dictionary for word forms with the suffix uz=2. If
we have not find any words, then we are looking for uz=3 and so on. The longest
suffix uz=4=“aman” with z = 4 is found.

Then we find all words with the suffix uz=4 and count how many of such
words are nouns, verbs, adjectives and so on. The result is written to the array
Counter[]. In Fig. 3 the noun “raman” was found, therefore we increment the
value of Counter[noun].

Fig. 3: Veps nouns in the genitive case “kezaman” (“kezama” means “melted
ground”) and “raman” (“rama” means “frame”). The word u with an unknown
part of speech is “kezaman”. The word w from the dictionary with the known
POS is “raman”. They share the common suffix uz, which is “aman”.

POS tagging and gramset algorithms (Veps and Karelian dictionaries) 9

4.2 The GramGuess algorithm for gramset tagging with a suffix

The GramGuess algorithm is exactly the same as the POSGuess algorithm,
except that it is needed to search a subset of gramsets instead of parts of speech.
That is in the set W the gramset is known for each word. The gramset is a set
of morphological tags (number, case, tense, etc.).

4.3 The GramPseudoGuess algorithm for gramset tagging with a
pseudo-ending

Let us explain the “pseudo-ending” used in the algorithm GramPseudoGuess.
All word forms of one lemma share a common invariant substring. This sub-

string is a pseudo-base of the word (Fig. 4). Here the pseudo-base is placed at
the start of a word, it suits for the Veps and Karelian languages. For example,
in Fig. 4 the invariant substring “huuk” is the pseudo-base for all word forms
of the lemma “huukkua”. The Karelian verb “huukkua” means “to call out”, “to
holler”, “to halloo”.

Fig. 4: Wordforms of the Karelian verb “huukkua” (it means “to call out”, “to
holler”, “to halloo”). All word forms have the same pseudo-base and different
pseudo-endings for different set of grammatical attributes (gramsets).

Given the set of words W , for each word in this set a gramset and a pseudo-
ending are known. The algorithm 2 finds a gramset gu for a given word u using
this set.

In Algorithm 2 we look for in the set W (line 5) the words which have the
same pseudo-ending uz as the unknown word u. Firstly, we are searching for the
longest substring of u, that starts at index z.

Then we increment the value z decreasing the length of the substring uz in
the loop, while the substring uz has non-zero length, z ≤ len(u). If there are
words in W with the same pseudo-ending, then we count the number of similar
words for each gramset and stop the search.

10 A. Krizhanovsky et al.

Algorithm 2: Gramset search by a pseudo-ending (GramPseudoGuess)
Data: G – a set of gramsets,

W = {w | ∃ gw ∈ G,∃pendw : w = wprefix + pendw} – a set of words,
where gramset and pseudo-ending (pend) are known for each word,
u /∈W – the word with unknown gramset,
len(u) – the length (in characters) of the string u.

Result:

uz :

len(uz) −−−−−−−−−→
z=2,...,len(u)

max, // Longest substring

∃w ∈W : pendw = uz

Counter
[
gk

]
= ck, k = 1,m, where :

ck ∈ N, c1 ≥ c2 ≥ . . . ≥ cm,

∃wk
i ∈W : pendwk

i
= uz ⇒ ck = |gkwk

i
|,

i = 1, ck,

∀i : gkwk
i
= gk ∈ G, a 6= b⇔ ga 6= gb

m – the number of different gramsets of found words wk
i

1 z = 2 // The position in the string u
2 zfound = FALSE

3 while z ≤ len(u) and ¬zfound do

// The substring of the word u from z-th character
4 uz = substr (u, z)

5 foreach w ∈W do
// If the word w has the pseudo-ending uz

6 if pendw == uz then
7 Counter [gw] + +
8 zfound = TRUE // Only gramsets of words with the

pseudo-ending uz will be counted. The next "while" loop
will break, so the shorter uz+1 will be omitted.

9 end
10 end
11 z = z + 1
12 end

// Sort the array in descending order, according to the value
13 arsort(Counter [])

POS tagging and gramset algorithms (Veps and Karelian dictionaries) 11

5 Experiments

5.1 Data preparation

Lemmas and word forms from our morphological dictionary were gathered to
one set as a search space of part of speech tagging algorithm. This set contains
unique pairs “word – part of speech”.

In order to search a gramset, we form the set consisting of (1) lemmas without
inflected forms (for example, adverbs, prepositions) and (2) inflected forms (for
example, nouns, verbs). This set contains unique pairs “word – gramset”. For
lemmas without inflected forms the gramset is empty.

We put on constraints for the words in both sets: strings must consist of more
than two characters and must not contain whitespace. That is, analytical forms
and compound phrases have been excluded from the sets (see section 3).

5.2 Part of speech search by a suffix (POSGuess algorithm)

For the evaluation of the quality of results of the searching algorithm POSGuess
the following function eval(posu) was proposed:

eval

posu,
Counter

[
posk

]
→ ck,

∀k = 1,m

 =

The array Counter[] do not contain the correct posu.

0, posu 6= posk,∀k = 1,m,

First several POS in the array can have
the same maximum frequency c1, one of this POS is posu.
1, posu ∈ {

[
pos1, . . . ,posj

]
: c1 = c2 = . . . = cj , j ≤ m},

ck∑m
k=1 ck

, ∃k : posk = posu, ck < c1

(1)
This function (1) evaluates the result of the POSGuess algorithm against

the correct part of speech posu. The POSGuess algorithm counts the number of
words similar to the word u separately for each part of speech and stores the
result in the Counter array.

The Counter array is sorted in descending order, according to the value. The
first element in the array is a part of speech with maximum number of words
similar to the unknown word u.

71 091 “word – part of speech” pairs for the Proper Karelian supradialect and
399 260 “word – part of speech” pairs for the Veps language have been used in
the experiments to evaluate algorithms.

During the experiments, two Karelian words were found, for which there were
no suffix matches in the dictionary. They are the word “cap” (English: snap;
Russian: цап) and the word “štob” (English: in order to; Russian: чтобы). That
is, there were no Karelian words with the endings -p and -b. This could be
explained by the fact that these two words migrated from Russian to Karelian
language.

12 A. Krizhanovsky et al.

Figure 5 shows the proportion of Veps and Karelian words with correct and
wrong part of speech assignment by the POSGuess algorithm. Values along the X
axis are the values of the function eval(posu), see the formula (1). This function
for evaluating the part of speech assignment takes the following values:

0 4.7% of Vepsian words and 9% of Karelian words (x = 0 in Fig. 5)
were assigned the wrong part of speech. That is, there is no correct
part of speech in the result array Counter[] in the POSGuess algo-
rithm. This is the first line in the formula (1).

0.1 – 0.5 2.92% of Vepsian words and 4.23% of Karelian words (x ∈ [0.1; 0.5]
in Fig. 5) were assigned the partially correct POS tags. That is, the
array Counter[] contains the correct part of speech, but it is not
at the beginning of the array. This is the last line in the formula (1).

1 92.38% of Vepsian words and 86.77% of Karelian words (x = 1
in Fig. 5) were assigned the correct part of speech. The array
Counter[] contains the correct part of speech at the beginning of
the array.

Fig. 5: The proportion of Vepsian (red curve) and Karelian (blue curve) words
with correct (x = 1) and wrong (x = 0) part of speech assignment by the
POSGuess algorithm with the formula (1).

Figure 5 shows the evaluation of the results of the POSGuess algorithm
for all parts of speech together. Table 2 (Veps) and Table 3 (Karelian) show
the evaluation of the same results of the POSGuess algorithm, but they are
presented for each part of speech separately.

POS tagging and gramset algorithms (Veps and Karelian dictionaries) 13

Table 2: Number of Vepsian words of different parts of speech used in the experi-
ment. The evaluation of results found by POSGuess algorithm by the formula (1)
and fraction of results in percent, where the column 0 means the fraction of words
with incorrectly found POS, 1 – the fraction of words with correct POS in the
top of the list created by the algorithm.

Veps Fraction of not guessed (column 0),
partly guessed (0.1–0.5) and guessed (1) POS, %

POS Words 0 0.1 0.2 0.3 0.4 0.5 1

Verb 93 047 2.12 0.52 0.55 0.47 0.36 0.01 95.97
Noun 240 513 2.88 0.3 0.67 0.6 0.42 0.24 94.89
Adjective 61 845 12.45 1.62 1.44 1.53 1.58 0.51 80.87
Pronoun 1244 46.54 8.12 0.56 0.64 0 0 44.13
Numeral 1200 44 6.25 2.33 0.67 0.33 0 46.42
Adverb 650 64.92 3.08 2.46 1.23 0.46 0 27.85

Table 3: Number of Karelian words of different parts of speech used in the
experiment.

Karelian Fraction of not guessed (column 0),
partly guessed (0.1–0.5) and guessed (1) POS, %

POS Words 0 0.1 0.2 0.3 0.4 0.5 1

Verb 26 033 3.26 0.5 0.74 0.6 0.23 0.01 94.67
Noun 36 908 5.47 0.38 1.13 1.08 0.52 0.04 91.38
Adjective 6596 35.81 6.66 4.15 4.56 2.73 0.38 45.71
Pronoun 610 81.64 2.13 0.66 3.11 2.3 0 10.16
Numeral 582 65.81 1.72 1.03 0.17 1.03 0 30.24
Adverb 235 68.51 3.4 2.98 2.13 0 0 22.98

14 A. Krizhanovsky et al.

Fig. 6: Number of Vepsian and Karelian words of different parts of speech used
in the experiment.

5.3 Gramset search by a suffix (GramGuess algorithm) and by a
pseudo-ending (GramPseudoGuess algorithm)

73 395 “word – gramset” pairs for the Karelian Proper supradialect and 452 790
“word – gramset” pairs for the Veps language have been used in the experiments
to evaluate GramGuess and GramPseudoGuess algorithms.

A list of gramsets was searched for each word. The list was ordered by the
number of similar words having the same gramset.

For the evaluation of the quality of results of the searching algorithms the
following function eval(gu) has been proposed:

eval

gu,

Counter
[
gk
]
→ ck,

∀k = 1,m

 =

The array Counter do not contain the correct gramset gu.

0, gu 6= gk,∀k = 1,m,

First several gramsets in the array can have
the same maximum frequency c1, one of these gramsets is gu.
1, gu ∈ {

[
g1, . . . , gj

]
: c1 = c2 = . . . = cj , j ≤ m},

ck∑m
k=1 ck

, ∃ k : gk = gu, ck < c1

(2)
This function (2) evaluates the results of the GramGuess and GramPseu-

doGuess algorithms against the correct gramset gu.

POS tagging and gramset algorithms (Veps and Karelian dictionaries) 15

Table 4: Evaluations of results of gramsets search for Vepsian and Karelian by
GramGuess and GramPseudoGuess algorithms.

GramGuess GramPseudoGuess

Evaluation Veps Karelian Veps Karelian

0 2.53 5.72 7.9 9.23
0.1 0.53 0.83 1.04 1.57
0.2 0.71 1.16 1.24 1.37
0.3 0.64 0.89 2.68 1.36
0.4 0.2 0.56 0.14 0.68
0.5 0.11 0.09 0.83 0.43
1 95.29 90.74 86.17 85.36

The table 4 shows that the GramGuess algorithm gives the better results
than the GramPseudoGuess algorithm, namely:

Karelian 90.7% of Karelian words were assigned a correct gramset by GramGuess
algorithm versus 85.4% by GramPseudoGuess algorithm;

Veps 95.3% of Vepsian words were assigned a correct gramset by GramGuess
algorithm versus 85.4% by GramPseudoGuess algorithm.

It may be suggested by the fact that suffixes are longer than pseudo-endings.
In addition, the GramPseudoGuess algorithm is not suitable for a part of speech
without inflectional forms.

6 Morphological analysis results

In order to analyze the algorithm errors, the results of the part-of-speech algo-
rithm POSGuess were visualized using the Graphviz program. Part-of-speech er-
ror transition graphs were built for Veps language (Fig. 7a) and Karelian Proper
supradialect (Fig. 7b).

Let us explain how these graphs were built. For example, a thick grey vertical
arrow connects adjective and noun (Fig. 7b), and this arrow has labels of 21.6%,
1424 and 3.9%. This means that the POSGuess algorithm has erroneously iden-
tified 1424 Karelian adjectives as nouns. This accounted for 21.6% of all Karelian
adjectives and 3.9% of nouns. This can be explained by the fact that the same
lemma (in Veps and Karelian) can be both a noun and an adjective. Nouns and
adjectives are inflected in the same form (paradigm).

The experiment showed that there are significantly more such lemmas (noun-
adjective) for the Karelian language than for the Veps language (21.6% versus
9.8% in Fig. 7). Although in absolute numbers Veps exceeds Karelian, namely:
6061 versus 1424 errors of this kind. This is because the Veps dictionary is larger
in the VepKar corpus.

16 A. Krizhanovsky et al.

(a) Veps language

(b) Karelian Proper supradialect

Fig. 7: Part-of-speech error transition graph, which reflects the results of the
POSGuess algorithm.

7 Conclusion

This research devoted to the low-resource Veps and Karelian languages.
Algorithms for assigning part of speech tags to words and grammatical prop-

erties to words are presented in the article. These algorithms use our morpho-
logical dictionaries, where the lemma, part of speech and a set of grammatical
features (gramset) are known for each word form.

The algorithms are based on the analogy hypothesis that words with the
same suffixes are likely to have the same inflectional models, the same part of
speech and gramset.

The accuracy of these algorithms were evaluated and compared. 313 thousand
Vepsian and 66 thousand Karelian words were used to verify the accuracy of these
algorithms. The special functions were designed to assess the quality of results
of the developed algorithms.

71,091 “word – part of speech” pairs for the Karelian Proper supradialect and
399,260 “word – part of speech” pairs for the Veps language have been used in
the experiments to evaluate algorithms. 86.77% of Karelian words and 92.38%
of Vepsian words were assigned a correct part of speech.

POS tagging and gramset algorithms (Veps and Karelian dictionaries) 17

73,395 “word – gramset” pairs for the Karelian Proper supradialect and
452,790 “word – gramset” pairs for the Veps language have been used in the
experiments to evaluate algorithms. 90.7% of Karelian words and 95.3% of Vep-
sian words were assigned a correct gramset by our algorithm.

If you need only one correct answer, then all three of developed algorithms
are not very useful. But in our case, the task is to get an ordered list of the parts
of speech and gramsets for a word and to offer this list to an expert. Then the
expert selects the correct part of speech and gramset from the list and assigns to
the word. This is a semi-automatic tagging of the texts. Thus, these algorithms
are useful for our corpus.

References

1. G. G. Belonogov, Yu. P. Kalinin, A. A. Khoroshilov: Computer Linguistics and
Advanced Information Technologies: Theory and Practice of Building Systems for
Automatic Processing of Text Information (In Russian). Russian World, Moscow
(2004)

2. Hämäläinen, M.: UralicNLP: An NLP Library for Uralic Languages. Journal of open
source software, 4(37), 1345 (2019). https://doi.org/10.21105/joss.01345

3. Klyachko, E. L., Sorokin, A. A., Krizhanovskaya, N. B., Krizhanovsky, A. A.,
Ryazanskaya, G. M.: LowResourceEval-2019: a shared task on morphological anal-
ysis for low-resource languages. In: Conference “Dialog”, 45–62. Moscow, Russia
(2019). arXiv:2001.11285.

4. Moshagen, S., Rueter, J., Pirinen, T., Trosterud, T. and Tyers, F.M.: Open-source
infrastructures for collaborative work on under-resourced languages. In: Collabora-
tion and Computing for Under-Resourced Languages in the Linked Open Data Era,
71–77. Reykjav́ık, Iceland (2014).

5. Pirinen, T. A., Trosterud, T., Tyers, F. M., Vincze, V., Simon, E., Rueter, J.: Fore-
word to the Special Issue on Uralic Languages. Northern European Journal of Lan-
guage Technology 4(1), 1–9 (2016). https://doi.org/10.3384/nejlt.2000-1533.1641

