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A game theoretical model of tax

auditing with using a statistical

information about taxpayers

V. M. Bure, S. Sh. Kumacheva

St.-Petersburg State University, Saint-Petersburg, Russia

At the heart of this model there is the hierarchical game ([5]), in
which tax authority and finite number of taxpayers are players. Due to
the tradition, founded by [2], [3], [6] we will consider the interaction of
the tax authority to each taxpayer due to the scheme principal-to-agent.

There are n taxpayers, each of them has an income ik, where k = 1, n.
Taxpayer k can declare his incomes level rk and rk ≤ ik for every k = 1, n.
Let t be tax rate π – penalty rate; they are measured as the parts of some
amount of money. Tax auditing of the taxpayer k is made by the tax
authority with probability pk, where k = 1, n. The model is built in an
assumption that these probabilities are known by taxpayers. Audit is
supposed to reveal evasions always.

As a result of a tax audit, that revealed a tax evasion, the taxpayer
must pay the underpaid tax and the penalty; both of them depend on
the evasions level. Four kinds of penalties are known from papers [2],
[3]. In the simplest case, when the penalty is proportional to evasion, the
taxpayer k must pay: (t + π)(ik − rk). The expected tax payment of the
taxpayer k is:

uk = trk + pk(t + π)(ik − rk),

where the first summand is always paid by the taxpayer (pre-audit pay-
ment), and the second - as the result of the tax auditing, made with
probability pk (post-audit payment). The expected payoff bk of the tax-
payer k is:

c©V. M. Bure, S. Sh. Kumacheva, 2009
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bk = ik − uk = ik − trk − pk(t + π)(ik − rk).

Every taxpayers aim is to maximize his payoff function bk.
Let c be the cost of one audit. The tax authoritys net income consists

of taxation (taxpayers payments corresponding to their declared income),
taxes on the evasion level and penalties (as the audit results) less total
audit cost. Being the sum of tax payments got from every taxpayer, the
expected tax authoritys net income can be calculated as the difference
between expected tax payments of n taxpayers and expected cost of audit
of n taxpayers:

R =
n∑

k=1

Rk =
n∑

k=1

(uk − ck) =
n∑

k=1

(trk + pk(t + π)(ik − rk) + pkc).

The tax authoritys aim is to maximize its expected income R.
A taxpayers strategy is to make a decision to evade or not to evade, i.e.

to declare rk < ik or rk = ik. A tax authoritys strategy is to choose the
optimal (in order to maximize the income) combination of the quantities
(t, pi, pk) – some optimal contract ([2], [3]).

This game is considered in assumption the players are risk neutral.
Therefore, making decision to evade or not (choosing the strategy), the
taxpayer compares the quantities tik (profit less taxes as a result of declar-
ing of the true income) and uk (the expected loss as a result of auditing)
and then models the best answer on the tax authoritys expected actions
in every situation.

Much more difficult is to estimate the tax authoritys expected income:
it doesnt know the exact meaning of every taxpayers true income. Taking
in consideration this circumstance, several mathematical models ([1], [2],
[3], [6]) consider as an additional factor in choosing a strategy of the tax
authority the disposed information about taxpayers income distribution
or statistical information about each taxpayers income as a result of mon-
itoring. This model assumes the probability of taxpayers tax evasion is
beta-distributed. In analogy of a credit story a taxpayers ¡¡tax story¿¿
is considered – Bernoulli-distributed replicate sample, which characterize
a taxpayers behavior in the previous tax periods (tax authority has such
information as a rule). Then, using the feature of conjugate families of
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distribution, the tax authority can conclude, that the taxpayer k audit is
necessary and choose the appropriate probability

Taking into consideration the last feature we built and analyzed the
graphics of players payoff functions, depending on audit probabilities
bk(pk) and Rk(pk). The optimal (in order to maximize the payoff func-
tions) strategies and equilibrium are found.
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Equilibria in Bayesian Splittable

Traffic Routing Game

Julia V. Chuyko

Institute of Applied Mathematical Research,
Karelian Research Centre RAS, Petrozavodsk, Russia

E-mail: julia@krc.karelia.ru

Consider Bayesian routing game Γ = 〈n,m, f, T, p〉 in network with n
selfish users and m parallel links, where each user chooses his route trying
to minimize the expected delay of his own traffic he send. Delays are
based on player-specific capacities fie(x) = aiex. Each user has a set of
traffic types Ti and a joined distribution p(t1, . . . , tn) of users’ traffic types
is known. Traffic amounts wi(t) we suppose to be encoded in T . In the
model each user i knows only his traffic type ti that he is going to send and
joined type distribution, so he can find conditional distribution depending
on his traffic type p(t1, . . . , ti−1, ti+1, . . . , tn|ti = t) = p(t1,...,t,...,tn)

p(i,t) , where
p(i, t) =

∑
(t1,...,tn)∈T :ti=t

p(t1, . . . , tn) is a probability that user i sends traf-

fic of type t.
Strategies profiles in the game are x = {xte

i }i∈[n],t∈Ti,e∈[m] where xte
i

is i-th user’s traffic of type t to send it throw link e. They must be
non-negative and

∑
e∈[m]

xte
i = wi(t).

An expected load of link e we can find as
δe(x, p) =

∑
(t1,...,tn)∈T

p(t1, . . . , tn)
∑

i∈[n]

xtie
i . Since user doesn’t know traffic

types that others send, he need to use conditional expected loads to de-
fine his costs depending his own behaviour. Conditional expected load of
link e is δe(x, (p|tk = t)) = δ−k

e (x, (p|tk = t)) + xte
k , where δ−k

e (x, (p|tk =
t)) =

∑
(t1,...,tn)∈T :tk=t

p(t1, . . . , tk−1, tk+1, . . . , tn|tk = t)
∑

i∈[n]\{k}
xtie

i is con-

ditional expected load from other users than k.

c© J. V. Chuyko, 2009
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So, conditional expected costs for user k sending traffic of type t are
v(k,t)(x, p) = max

e∈[m]:xte
k >0

fke(δe(x, (p|tk = t))) and his expected costs are

PCk(x, p) =
∑

t∈Tk

p(k, t)v(k,t)(x, p). Note that each component of the sum

doesn’t depend on other traffic types of the user k.
The objects of the research are equlibria: Wardrop Equilibrium, that

always exists and can be found using potential function, and its special
case Bayesian Wardrop Equilibrium, that can be more easily understood
by users, but its existence is an open question.
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Ñåòåâûå èãðû è èãðû íà ñåòÿõ
Ì. Â. Ãóáêî, Ä. À. Íîâèêîâ, À. Ã. ×õàðòèøâèëè

Ó÷ðåæäåíèå Ðîññèéñêîé àêàäåìèè íàóê
Èíñòèòóò ïðîáëåì óïðàâëåíèÿ

èì. Â.À. Òðàïåçíèêîâà ÐÀÍ, Ìîñêâà

Èãðû è ãðàôû. Ìåæäó òàêèìè ðàçâèòûìè ðàçäåëàìè ïðèêëàä-
íîé ìàòåìàòèêè, êàê òåîðèÿ èãð è òåîðèÿ ãðàôîâ, ñóùåñòâóåò ãëó-
áîêàÿ âçàèìîñâÿçü. Ìîæíî ïðèâåñòè ìíîæåñòâî ïðèìåðîâ èñïîëüçî-
âàíèÿ êîíñòðóêöèé è ðåçóëüòàòîâ òåîðèè ãðàôîâ â èãðîâûõ ïîñòàíîâ-
êàõ: äåðåâî çàäàåò ñòðóêòóðó ïðèíÿòèÿ ðåøåíèé â èãðå â ðàçâåðíóòîé
ôîðìå [11]; ãðàô (âåðøèíû - èãðîêè) çàäàåò ñòðóêòóðó âîçìîæíûõ êî-
àëèöèé [14]; íà ãðàôå â äèñêðåòíîì âðåìåíè îñóùåñòâëÿåòñÿ ¾èãðà ïî-
èñêà¿ (âåðøèíû � ïîçèöèè èãðîêîâ, ðåáðà � âîçìîæíûå ïóòè ïåðåõî-
äîâ) [10]; îðèåíòèðîâàííûé ãðàô îïèñûâàåò, îò ÷üèõ äåéñòâèé çàâèñÿò
âûèãðûøè àãåíòîâ (äëÿ ðåàëèçóåìîñòè ðàâíîâåñèÿ Íýøà äîñòàòî÷íî
ñâÿçíîñòè ãðàôà), â áîëåå îáùåì ñëó÷àå ãðàô îòðàæàåò ñòðóêòóðó
èíôîðìèðîâàííîñòè èãðîêîâ [9] èëè ñòðóêòóðó êîììóíèêàöèé ìåæäó
íèìè [8]; ãðàô îòðàæàåò ïîñòîÿííûå èëè âðåìåííûå ñâÿçè (èíôîð-
ìàöèîííûå, òåõíîëîãè÷åñêèå, ïîä÷èíåííîñòè è ò.ï.) ìåæäó èãðîêàìè
[7]. . .

Ñåòåâûå èãðû. Îòäåëüíî ñëåäóåò óïîìÿíóòü òåîðèþ ñåòåâûõ èãð
� îòíîñèòåëüíî ìîëîäîé (ðàçâèâàþùèéñÿ ñ êîíöà 70-õ ãîäîâ XX âå-
êà) ðàçäåë òåîðèè èãð, àêöåíòèðóþùèé âíèìàíèå êàê ðàç íà ôîð-
ìèðîâàíèè ñòðóêòóð � óñòîé÷èâûõ ñâÿçåé ìåæäó èãðîêàìè � â óñëî-
âèÿõ íåñîâïàäåíèÿ èíòåðåñîâ è/èëè ðàçëè÷íîé èíôîðìèðîâàííîñòè
ïîñëåäíèõ (ñì. îáçîðû [3] è [13]).

Êîíöåïöèè ðåøåíèÿ ñåòåâûõ èãð óäà÷íî ñî÷åòàëè â ñåáå ýëåìåíòû
êîîïåðàòèâíîãî è íåêîîïåðàòèâíîãî ïîäõîäîâ � ñïåöèôèêà çàäà÷è ïîç-
âîëÿëà ðàññìàòðèâàòü òîëüêî ïàðíûå âçàèìîäåéñòâèÿ (¾êîàëèöèè¿ èç
äâóõ èãðîêîâ) [13]. Â òî æå âðåìÿ, ïðèìåíåíèå òàêèõ èãð â ýêîíîìè-
÷åñêèõ çàäà÷àõ ïîêàçàëî, ÷òî ïåðå÷èñëåíèÿ ñâÿçåé çà÷àñòóþ íåäîñòà-
òî÷íî äëÿ îïèñàíèÿ ñèòóàöèè � êàæäàÿ ñâÿçü ¾îòÿãîùåíà¿ íàáîðîì

c©Ì. Â. Ãóáêî, Ä. À. Íîâèêîâ, À. Ã. ×õàðòèøâèëè, 2009
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÷èñëîâûõ ïàðàìåòðîâ (íàïðèìåð, îáúåìàìè è öåíàìè ïåðåäàâàåìûõ
òîâàðîâ â èãðàõ ôîðìèðîâàíèÿ òîðãîâûõ ñåòåé [4]), òàêæå ÿâëÿþùèõ-
ñÿ ñëåäñòâèåì âûáîðà èãðîêîâ. Ìîäåëüþ ñåòè ïðè ýòîì ñòàíîâèòñÿ
âçâåøåííûé ãðàô, à ñïåöèôèêîé ñåòåâûõ èãð, îòëè÷àþùåé èõ îò ¾èãð
âîîáùå¿ îñòàåòñÿ òî, ÷òî âûáîðû è âûèãðûøè èãðîêîâ îïèñûâàþòñÿ
õàðàêòåðèñòèêàìè ïîïàðíûõ âçàèìîäåéñòâèé (ñâÿçåé) ìåæäó èãðîêà-
ìè.

Èãðû íà ñåòÿõ. Â ïîñëåäíèå ãîäû âñå ÷àùå ïîÿâëÿþòñÿ ñîäåð-
æàòåëüíûå ïîñòàíîâêè çàäà÷ îïèñàíèÿ è èññëåäîâàíèÿ òàêîãî âçàèìî-
äåéñòâèÿ èãðîêîâ, ÷òî ðåçóëüòàò èõ âçàèìîäåéñòâèÿ (èëè ñâÿçü ìåæäó
âûáèðàåìûìè äåéñòâèÿìè èëè ñòðàòåãèÿìè è âûèãðûøàìè) îïðåäå-
ëÿåòñÿ òîé èëè èíîé ¾ñåòåâîé¿ (òåîðåòèêî-ãðàôîâîé) ìîäåëüþ. Òàêîãî
ðîäà èãðû áóäåì íàçûâàòü èãðàìè íà ñåòÿõ. Ïðèâåäåì äâà ïðèìåðà.

¾Êîãíèòèâíûå èãðû¿ [6], â êîòîðûõ êîãíèòèâíàÿ êàðòà [12] � âçâå-
øåííûé îðèåíòèðîâàííûé ãðàô (åãî âåðøèíàìè ÿâëÿþòñÿ ôàêòîðû,
çíà÷åíèÿ êîòîðûõ èçìåðÿþòñÿ â íåïðåðûâíîé èëè íå÷åòêîé øêàëå, à
âçâåøåííûìè èëè ôóíêöèîíàëüíûìè äóãàìè îïèñûâàåòñÿ âçàèìîâëè-
ÿíèå ôàêòîðîâ) � èñïîëüçóåòñÿ äëÿ ó÷åòà ïðè÷èííî-ñëåäñòâåííûõ ñâÿ-
çåé è âçàèìîâëèÿíèÿ ôàêòîðîâ, à òàêæå äëÿ ìîäåëèðîâàíèÿ äèíàìèêè
ñëàáîôîðìàëèçóåìûõ ñèñòåì. Íàïðèìåð, îïèñàâ âçàèìîñâÿçü ìåæäó
ôàêòîðàìè â âèäå ñèñòåìû ëèíåéíûõ äèôôåðåíöèàëüíûõ óðàâíåíèé
âòîðîãî ïîðÿäêà è çàäàâ íà÷àëüíûå çíà÷åíèÿ, ìîæíî àíàëèçèðîâàòü
äèíàìèêó ôàêòîðîâ, ¾óñòàíîâèâøèåñÿ¿ çíà÷åíèÿ è ò.ä., ðàññìàòðè-
âàÿ âñå ýòè àñïåêòû ñ òî÷êè çðåíèÿ ëèö, çàèíòåðåñîâàííûõ â òîì èëè
èíîì ðàçâèòèè ñèòóàöèè, èëè èññëåäóÿ íåñîâïàäåíèå öåëåé ðàçëè÷íûõ
ñóáúåêòîâ. Èìåÿ ìîäåëü ñâÿçè ìåæäó ôàêòîðàìè ìîæíî ðàññìàòðè-
âàòü èãðîâóþ ïîñòàíîâêó � ïóñòü èãðîêè èìåþò âîçìîæíîñòü âëèÿòü
íà íà÷àëüíûå çíà÷åíèÿ ôàêòîðîâ (íàïðèìåð, äëÿ êàæäîãî èãðîêà çà-
äàíî ìíîæåñòâî ¾êîíòðîëèðóåìûõ¿ èì ôàêòîðîâ), à èõ âûèãðûøè
çàâèñÿò îò ¾óñòàíîâèâøèõñÿ¿ çíà÷åíèé ôàêòîðîâ. Ïðèìåð ëèíåéíîé
èãðû òàêîãî ðîäà ðàññìîòðåí â [6].

¾Èãðû íà ñîöèàëüíûõ ñåòÿõ¿ [2], â êîòîðûõ âåðøèíàìè ÿâëÿþòñÿ
àãåíòû � ó÷àñòíèêè ñîöèàëüíîé ñåòè, à âçâåøåííûå äóãè îòðàæàþò
ñòåïåíè èõ ¾äîâåðèÿ¿ äðóã äðóãó. Ìíåíèå êàæäîãî àãåíòà ôîðìèðó-
åòñÿ ïîä âëèÿíèåì åãî íà÷àëüíîãî ìíåíèÿ è ìíåíèé äðóãèõ àãåíòîâ ñ
ó÷åòîì èõ äîâåðèÿ äðóã äðóãó (äèíàìèêà ìíåíèé îïèñûâàåòñÿ ñèñòå-
ìîé ëèíåéíûõ äèôôåðåíöèàëüíûõ óðàâíåíèé ïåðâîãî ïîðÿäêà). Ïî-
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ìèìî àãåíòîâ, â ìîäåëè ñóùåñòâóþò èãðîêè, êîòîðûå ìîãóò âëèÿòü
íà àãåíòîâ è èõ âçàèìîäåéñòâèå. Çíàÿ ñâÿçü ìåæäó íà÷àëüíûìè ìíå-
íèÿìè, à òàêæå ñòðóêòóðîé ñîöèàëüíîé ñåòè, è èòîãîâûìè ìíåíèÿìè,
ìîæíî ñòàâèòü è ðåøàòü çàäà÷ó ôîðìèðîâàíèÿ èãðîêàìè òàêèõ íà-
÷àëüíûõ ìíåíèé ó àãåíòîâ è òàêèõ ñâÿçåé ìåæäó íèìè (âêëþ÷àÿ êàê
ñòðóêòóðó, òàê è ñòåïåíè äîâåðèÿ), êîòîðûå áûëè áû ðàâíîâåñèåì (â
òîì èëè èíîì ñìûñëå) ñîîòâåòñòâóþùåé èãðû.

Îáùèì äëÿ ïðèâåäåííûõ äâóõ ïðèìåðîâ, äà è, ïîæàëóé è äëÿ äðó-
ãèõ èãð íà ñåòÿõ, ÿâëÿåòñÿ ñëåäóþùåå. Ñâÿçü ìåæäó äåéñòâèÿìè èã-
ðîêîâ è ðåçóëüòàòîì, êîòîðûé îïðåäåëÿåò èõ âûèãðûøè, îïèñûâàåòñÿ
â ðàìêàõ äîñòàòî÷íî ïðîñòîé ñåòè äèíàìè÷åñêîé ñèñòåìîé. Äàëüøå
âñå ñâîäèòñÿ ê àíàëèçó ñâîéñòâ äèíàìè÷åñêîé ñèñòåìû, à çàòåì � ê
òîé èëè èíîé êëàññè÷åñêîé òåîðåòèêî-èãðîâîé ïîñòàíîâêå (â îáùåì
ñëó÷àå � ê äèíàìè÷åñêîé èãðå [6]).

Âçàèìîñâÿçü ìåæäó èãðàìè íà ñåòÿõ è ñåòåâûìè èãðàìè1.
Ðàçëè÷èå ìåæäó ñåòåâûìè èãðàìè è èãðàìè íà ñåòÿõ ñîñòîèò â òîì,
÷òî â ïåðâûõ ïðåäìåòîì âûáîðà èãðîêîâ ÿâëÿþòñÿ ïåðåìåííûå, îò-
íîñÿùèåñÿ ê ïàðíîìó âçàèìîäåéñòâèþ ìåæäó èãðîêàìè, à â èãðàõ íà
ñåòÿõ � ïåðåìåííûå, îïèñûâàþùèå âåðøèíû ñåòè (çíà÷åíèÿ ôàêòîðîâ
â èãðàõ íà êîãíèòèâíûõ êàðòàõ, ìíåíèÿ àãåíòîâ � â èãðàõ íà ñîöè-
àëüíûõ ñåòÿõ. . . ). Îäíàêî ñ÷èòàÿ ¾âåðøèííûå¿ ïåðåìåííûå îòíîñÿ-
ùèìèñÿ ê ïåòëÿì âçâåøåííîãî ãðàôà, ýòè ìîäåëè ìîæíî ôîðìàëüíî
îáúåäèíèòü. Ïîëüçà æå îò òàêîãî îáúåäèíåíèÿ âåëèêà, ïîñêîëüêó âî
ìíîãèõ èãðàõ ôîðìèðîâàíèÿ ñåòåé (íàïðèìåð, â ìîäåëÿõ èíôîðìà-
öèîííûõ êîììóíèêàöèé â ìíîãîàãåíòíûõ ñèñòåìàõ [1]) äëÿ ðàñ÷åòà
âûèãðûøåé èãðîêîâ òðåáóåòñÿ ïðèâëåêàòü ìîäåëü ñåòåâîé äèíàìèêè,
êàê è â èãðàõ íà ñåòÿõ. Îáúåäèíåíèå ìîäåëåé ïðèâåäåò ê äâóõýòàïíîé
èãðå, íà ïåðâîì ýòàïå êîòîðîé èãðîêè ôîðìèðóþò ñåòü, à íà âòîðîì
ýòàïå èñïîëüçóþò ñôîðìèðîâàííóþ ñåòü äëÿ ïåðåäà÷è èíôîðìàöèè,
ðåñóðñîâ è ò.ä. â ñîîòâåòñòâèè ñ êîíöåïöèåé èãð íà ñåòÿõ.

Â äîêëàäå òàêæå ðàññìàòðèâàþòñÿ ýòîò è äðóãèå âîçìîæíûå ñïî-
ñîáû îáúåäèíåíèÿ äâóõ îïèñàííûõ êëàññîâ èãð, ïðèâîäèòñÿ îáùàÿ

1Òåðìèí ¾ñåòåâûå èãðû¿ (network games) âñå ÷àùå çàìåùàåòñÿ òåðìèíîì ¾èã-
ðû ôîðìèðîâàíèÿ ñåòåé¿ (network formation game), áîëåå ñîîòâåòñòâóþùèì ñóòè
èãðû, ðåçóëüòàòîì êîòîðîé ÿâëÿåòñÿ ñåòü, ñâÿçûâàþùàÿ èãðîêîâ. Ýòà òåíäåíöèÿ
èìååò ñâîå îáîñíîâàíèå � ñåòåâûå èãðû ìîãóò ðàññìàòðèâàòüñÿ êàê âêëþ÷àþùèå
â ñåáÿ èãðû ôîðìèðîâàíèÿ ñåòåé è èãðû íà ñåòÿõ, ïðè÷åì â ïîñëåäíèõ ñåòü ôèê-
ñèðîâàíà.
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ïîñòàíîâêà çàäà÷è óïðàâëåíèÿ ôîðìèðîâàíèåì ñåòåé, ôîðìóëèðóåòñÿ
ðÿä ñîäåðæàòåëüíûõ ìîäåëåé è îïèñûâàþòñÿ ðåçóëüòàòû èõ èññëåäî-
âàíèÿ.
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Òåîðåòèêî-èãðîâûå çàäà÷è
óïðàâëåíèÿ â ëèíåéíûõ ñîöèàëüíûõ

ñåòÿõ
Ä.À. Ãóáàíîâ, À.Ã. ×õàðòèøâèëè

Ó÷ðåæäåíèå Ðîññèéñêîé àêàäåìèè íàóê
Èíñòèòóò ïðîáëåì óïðàâëåíèÿ

èì. Â.À. Òðàïåçíèêîâà ÐÀÍ, Ìîñêâà

Ñîöèàëüíûå ñåòè. Ñîöèàëüíàÿ ñåòü � ýòî ãðàô, âåðøèíàìè êî-
òîðîãî ÿâëÿþòñÿ èíäèâèäóóìû, à ðåáðàìè � ñîöèàëüíûå îòíîøåíèÿ
ìåæäó íèìè. Ñîöèàëüíûå ñåòè ñóùåñòâîâàëè âñåãäà â ÷åëîâå÷åñêîì
îáùåñòâå, èõ ìîäåëè èñïîëüçóþòñÿ, íàïðèìåð, â ðàçëè÷íûõ íàïðàâ-
ëåíèÿõ ýêîíîìè÷åñêîãî àíàëèçà (ñì. [1]). Ñ ðàçâèòèåì Èíòåðíåòà è
òàê íàçûâàåìûõ îíëàéíîâûõ ñîöèàëüíûõ ñåòåé (òàêèõ êàê Livejournal
� www.livejournal.com, Õàáðàõàáð � habrahabr.ru è ïð.) èõ ðîëü, ïî-
âèäèìîìó, áóäåò âîçðàñòàòü.

Èç ñîöèàëüíîé ïñèõîëîãèè (ñì., íàïð., [2]) èçâåñòíî, ÷òî ìíåíèå
èíäèâèäóóìà â ñîöèàëüíîé ñåòè â çíà÷èòåëüíîé ìåðå îïðåäåëÿåòñÿ
ìíåíèåì âëèÿòåëüíûõ äëÿ íåãî ñîñåäåé. Çíàÿ ýòî, íåêòî çà ïðåäåëàìè
ñåòè èëè âíóòðè íåå äëÿ äîñòèæåíèÿ ñâîèõ öåëåé ìîæåò ïîïûòàòü-
ñÿ èçìåíèòü ìíåíèÿ íåáîëüøîãî ìíîæåñòâà êëþ÷åâûõ ïîëüçîâàòåëåé
â ïîïóëÿðíûõ îíëàéíîâûõ ñîöèàëüíûõ ñåòÿõ, ïîñðåäñòâîì êîòîðûõ
ïðîèçîéäåò ðàñïðîñòðàíåíèå ìíåíèé ïî âñåé ñåòè. Ïðåäìåòîì äàííîãî
äîêëàäà ÿâëÿåòñÿ ôîðìèðîâàíèå ìíåíèé â ñîöèàëüíîé ñåòè, ìîäåëè-
ðóåìîå ïðè ïîìîùè ìàðêîâñêèõ öåïåé (î ìàðêîâñêèõ öåïÿõ ñì., íàïð.,
ãë. VIII [3]).

Íåïîñðåäñòâåííîå è êîñâåííîå âëèÿíèå. Ïóñòü ýëåìåíòû èç
ìíîæåñòâà N = 1, . . . , n � àãåíòû � îáðàçóþò ñîöèàëüíóþ ñåòü. Îáî-
çíà÷èì íåîòðèöàòåëüíûì ÷èñëîì tij ñòåïåíü äîâåðèÿ i-ãî àãåíòà j-ìó
(ñòåïåíü âëèÿíèÿ j-ãî àãåíòà íà i-ãî). Çäåñü è äàëåå ìû áóäåì ãîâî-
ðèòü êàê î âëèÿíèè, òàê è î äîâåðèè. Áóäåì ñ÷èòàòü, ÷òî ýòè äâà
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ïîíÿòèÿ ñîîòíîñÿòñÿ ñëåäóþùèì îáðàçîì: âûðàæåíèå ¾ñòåïåíü äîâå-
ðèÿ i-ãî àãåíòà j-ìó ðàâíà tij¿ òîæäåñòâåííî ïî ñìûñëó âûðàæåíèþ
¾ñòåïåíü âëèÿíèÿ j-ãî àãåíòà íà i-ãî ðàâíà tij¿. Ìàòðèöó t = (tij)
áóäåì íàçûâàòü ìàòðèöåé íåïîñðåäñòâåííîãî äîâåðèÿ (âëèÿíèÿ).

Äîâåðèå â ñîöèàëüíîé ñåòè ìîæíî íàãëÿäíî èçîáðàæàòü â âèäå
ñòðåëîê ñ âåñàìè, ñîåäèíÿþùèõ âåðøèíû (íàïðèìåð, ñòðåëêà îò i-
ãî àãåíòà ê j-ìó ñ âåñîì tij îçíà÷àåò, ÷òî ñîîòâåòñòâóþùóþ ñòåïåíü
äîâåðèÿ). Áóäåì ñ÷èòàòü âûïîëíåííûì óñëîâèå íîðìèðîâêè: ñóììà
âåñîâ âñåõ èñõîäÿùèõ ñòðåëîê êàæäîãî àãåíòà ðàâíà 1 (òåì ñàìûì,
ìàòðèöà t ÿâëÿåòñÿ ñòîõàñòè÷åñêîé).

Åñëè i-é àãåíò äîâåðÿåò j-ìó, à j-é äîâåðÿåò k-ìó, òî ýòî îçíà÷àåò
ñëåäóþùåå: k-é àãåíò êîñâåííî âëèÿåò íà i-ãî (õîòÿ i-é ìîæåò äàæå
íå çíàòü î åãî ñóùåñòâîâàíèè). Ýòî ñîîáðàæåíèå ïîáóæäàåò ê ïîèñêó
îòâåòà íà âîïðîñ î òîì, êòî â èòîãå ôîðìèðóåò ìíåíèå â ñîöèàëüíîé
ñåòè.

Ñòðóêòóðà ðåçóëüòèðóþùèõ âëèÿíèé. Ïóñòü ó êàæäîãî àãåí-
òà â íåêèé íà÷àëüíûé ìîìåíò âðåìåíè èìååòñÿ ìíåíèå ïî íåêîòîðîìó
âîïðîñó, ìíåíèå i-ãî àãåíòà îòðàæàåò âåùåñòâåííîå ÷èñëî bi. Ìíåíèå
âñåõ àãåíòîâ ñåòè îòðàæàåò âåêòîð-ñòîëáåö ìíåíèé b ðàçìåðíîñòè n.
Àãåíòû â ñîöèàëüíîé ñåòè âçàèìîäåéñòâóþò, îáìåíèâàÿñü ìíåíèÿìè.
Ýòîò îáìåí ïðèâîäèò ê òîìó, ÷òî ìíåíèå êàæäîãî àãåíòà ìåíÿåòñÿ â
ñîîòâåòñòâèè ñ ìíåíèÿìè àãåíòîâ, êîòîðûì äàííûé àãåíò äîâåðÿåò.
Áóäåì ñ÷èòàòü ýòî èçìåíåíèå ëèíåéíûì: ìíåíèå àãåíòà â ñëåäóþùèé
ìîìåíò âðåìåíè ÿâëÿåòñÿ âçâåøåííîé ñóììîé ìíåíèé àãåíòîâ, êîòî-
ðûì îí äîâåðÿåò (âåñàìè ÿâëÿþòñÿ ñòåïåíè äîâåðèÿ tij). Îòìåòèì,
÷òî àãåíò ìîæåò äîâåðÿòü, â òîì ÷èñëå, è ñàìîìó ñåáå: tii > 0.

Íåòðóäíî óáåäèòüñÿ, ÷òî â âåêòîðíîé çàïèñè èçìåíåííîå ìíåíèå
àãåíòîâ ñòàíîâèòñÿ ðàâíûì ïðîèçâåäåíèþ ìàòðèöû íåïîñðåäñòâåííî-
ãî äîâåðèÿ íà âåêòîð íà÷àëüíûõ ìíåíèé: tb. Åñëè îáìåí ìíåíèÿìè
ïðîäîëæàåòñÿ è äàëåå, òî âåêòîð ìíåíèé àãåíòîì ñòàíîâèòñÿ ðàâíûì
t2b, t3b è ò.ä.

Åëè âçàèìîäåéñòâèå àãåíòîâ ïðîäîëæàåòñÿ äîñòàòî÷íî äîëãî, òî
èõ ìíåíèÿ ñòàáèëèçèðóþòñÿ � ñõîäÿòñÿ ê ðåçóëüòèðóþùåìó ìíåíèþ

B = Tb,
ãäå b � âåêòîð íà÷àëüíûõ ìíåíèé, T � ìàòðèöà ðåçóëüòèðóþùåãî

âëèÿíèÿ, tn → T ïðè n →∞ (îá óñëîâèÿõ ñóùåñòâîâàíèÿ ïðåäåëà ñì.
íèæå), B � âåêòîð èòîãîâûõ ìíåíèé.
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Ìíîæåñòâî àãåíòîâ, ïðÿìî èëè êîñâåííî âëèÿþùèõ äðóã íà äðóãà,
áóäåì íàçûâàòü ãðóïïîé.

Îïðåäåëåíèå. Ãðóïïà � ìíîæåñòâî àãåíòîâ, êàæäûé èç êîòîðûõ
âëèÿåò (ïðÿìî èäè êîñâåííî) íà ëþáîãî àãåíòà èç ýòîãî ìíîæåñòâà.

Ñïðàâåäëèâû ñëåäóþùèå óòâåðæäåíèÿ.
Óòâåðæäåíèå 1. Êàæäûé àãåíò ëèáî âõîäèò ðîâíî â îäíó ãðóïïó,

ëèáî íå âõîäèò íè â îäíó.
Óòâåðæäåíèå 2 (äîñòàòî÷íîå óñëîâèå ñòàáèëèçàöèè ìíåíèé). Åñ-

ëè â êàæäîé ãðóïïå ñóùåñòâóåò õîòÿ áû îäèí àãåíò i, äëÿ êîòîðîãî
tii > 0, òî ìíåíèÿ ñòàáèëèçèðóþòñÿ.

Òàêèì îáðàçîì, íàðÿäó ñ àãåíòàìè, âõîäÿùèìè â òó èëè èíóþ ãðóï-
ïó, â ñåòè ñóùåñòâóþò ñïóòíèêè � àãåíòû, íå âõîäÿùèé íè â îäíó
ãðóïïó.

Îêàçûâàåòñÿ, ÷òî ñòðóêòóðà ðåçóëüòèðóþùèõ âëèÿíèé (â ñëó÷àå
ñòàáèëèçàöèè ìíåíèé) óñòðîåíà ñëåäóþùèì îáðàçîì:

1) â êàæäîé ãðóïïå èòîãîâûå ìíåíèÿ ýëåìåíòîâ ñîâïàäàþò, ò.å.
êàæäàÿ ãðóïïà èìååò îáùåå ìíåíèå (êîòîðîå ìîæíî ñ÷èòàòü ìíåíèåì
ãðóïïû);

2) èòîãîâûå ìíåíèÿ ñïóòíèêîâ îïðåäåëÿþòñÿ òîëüêî ìíåíèÿìè ãðóïï,
ò.å. íà÷àëüíûå ìíåíèÿ ñïóòíèêîâ íå îêàçûâàþò íèêàêîãî âëèÿíèÿ íà
ðåçóëüòèðóþùèå ìíåíèÿ êàêèõ-ëèáî àãåíòîâ.

Óïðàâëåíèå è èãðà â ñîöèàëüíîé ñåòè.Ïîìèìî àãåíòîâ, ó÷àñò-
íèêàìè ìîäåëè ìîãóò ÿâëÿòüñÿ äðóãèå ñóáúåêòû, òåì èëè èíûì îáðà-
çîì çàèíòåðåñîâàííûå â îêàçàíèè âëèÿíèÿ íà ðåçóëüòèðóþùèå ìíå-
íèÿ àãåíòîâ � áóäåì íàçûâàòü èõ èãðîêàìè. Åñëè èãðîê îäèí (â ýòîì
ñëó÷àå åãî ìîæíî ðàññìàòðèâàòü êàê íåêèé óïðàâëÿþùèé îðãàí, âîç-
äåéñòâóþùèé íà ñåòü), òî âîçìîæíà ïîñòàíîâêà çàäà÷è óïðàâëåíèÿ:
ïóòåì âîçäåéñòâèÿ íà íà÷àëüíûå ìíåíèÿ àãåíòîâ äîáèòüñÿ âûãîäíûõ
öåíòðó ðåçóëüòèðóþùèõ ìíåíèé. Åñëè èãðîêîâ íåñêîëüêî, è êàæäûé
èç íèõ ìîæåò âîçäåéñòâîâàòü íà àãåíòîâ, òî ñèòóàöèÿ äîïóñêàåò ôîð-
ìàëèçàöèþ è èññëåäîâàíèå â òåðìèíàõ òåîðèè èãð: êàæäûé èç èãðîêîâ
ñòðåìèòüñÿ ìàêñèìèçèðîâàòü ñâîþ öåëåâóþ ôóíêöèþ, îïðåäåëåííóþ
íà ìíîæåñòâå ðåçóëüòèðóþùèõ ìíåíèé àãåíòîâ.
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Index of riskiness for finit game

Anton S. Gurevich

The purpouse of this work is spreading of ”measure of riskinnes”, pro-
posed by Foster & Hart for gambles, to the random variable and finite
games.

1 Foster & Hart measure of riskiness

Everything contained in this section was presented in articles [1] and [2].

Definition 1 Gamble is the random variable g ∈ R, satisfying the fol-
lowing conditions, E(g) > 0, P (g < 0) > 0.

Definition 2 L(g) = −min(g) is the maximal loss of g. L(g) > 0.

Definition 3 Real number R(g) > 0, uniquely determined by the equation
E

[
log(1 + g

R(g) )
]

= 0, on [L(g);∞) is measure of riskiness for gamble g.

Now suppouse g and h are gambles.

Axiom 1 If g and h have the same distribution then Q(g) = Q(h).

Axiom 2 If g ≤ h and g 6= h then Q(g) > Q(h).

Axiom 3 Q(λg) = λQ(g) for every λ > 0.

Axiom 4 Q(g) + g ≥ 0.

Axiom 5 If for every value x of g either h‖g=x ≡ 0 or h‖g=x is a gamble
with Q(h‖g=x) = Q(g) + x, then Q(g + h) = Q(g).

Theorem 1 The minimal function that satisfies axioms 1–5 is the mea-
sure of riskiness R.
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2 Spreaded index of riskines

To have the opportunity to work with random variable, we have to define
spreaded index of riskines.

Definition 4

R+(g) =





+∞ for E(g) ≤ 0, P [g < 0] > 0,
R(g) for E(g) > 0, P [g < 0] > 0,
0 for P [g < 0] = 0.

is the spreaded index of riskiness

Axiom 6 If g ≤ h and g 6= h, then Q(g) ≥ Q(h).

Axiom 7 P [Q(g) + g ≥ 0] = 1.

Theorem 2 Spreaded index of rickiness R+ satisfies axioms 1,3,5–7.

3 Index of riskines for finite game

Now introduce a model of games of many players. Let us have a set
of players I = {1, . . . , n}, also have infinite sequence of finite games
G1, G2, G3, . . . . In every moment t ∈ N players are offered a finite game
Gt = (I, Y t,Kt), Y = {Y1, . . . , Yn} – set of strategies for each player, K =
{K1, . . . , Kn} – gain functions of players. Let every player i offers game
Gλi

t = (I, Y t, λiK
t), λi ≥ 0. Let λ = mini∈N (λi) will be selected and

Gλ
t = (I, Y, λK) will be played. Though the Nash equilibrium situation

Z(Gλ
t ) will be realized, and player i gain Fi(λ, t) = λKi(Z(Gλ

t )). Players
also have wealth Wi(t), Wi(1) > 0, dynamics: Wi(t+1) = Wi(t)+Fi(λ, t).
W (t) = (W1(t),W2(t), . . . , Wn(t), )

Let the goal of players is avoiding bankruptcy: Wi(t) > 0 for any
t ∈ N , and

P
[

lim
t→∞

Wi(t) = 0
]

= 0.

Definition 5 Global strategy S is unambiguous mapping from set of all
pairs (W,G) to [0, +∞)
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Definition 6 Strategy S∗ guarantees no-bankruptcy if it yields avoiding
bankruptcy with probability 1 for every process G and every initial wealth
W > 0

Definition 7 R++
i (G) = R+(Fi(1)) is index of riskiness for finit game

G for player i.

Theorem 3 For any finite game Gt, any wealth Wi(t) and any player i
exist unique number Λi(Gt,Wi(t)) such that strategy S∗ guarantees no-
bankruptcy if and only if S∗(Wi(t), Gt) ≤ Λi(Gt,Wi(t)). Where

Λi(Gt,Wi(t)) =





+∞ for P [F t
i (1) < 0] = 0,

Wi(t)
R+(F t

i (1))
for E(F t

i (1)) > 0, P [F t
i (1) < 0] > 0,

0 for E(F t
i (1)) ≤ 0, P [F t

i (1) < 0] > 0.

Let W (t) = W ∗ = (1, . . . , 1). Then

Λ∗i (G) = Λi(G, W ∗
i (t)) =





+∞ for P [Fi(1) < 0] = 0,
1

R+(Fi(1))
for E(Fi(1)) > 0, P [Fi(1) < 0] > 0,

0 for E(Fi(1)) ≤ 0, P [Fi(1) < 0] > 0.

Λ∗(G) = min
i∈N

(Λ∗i (G,W ∗
i ))

Definition 8 Player j such that Λ∗j (G) = Λ∗(G), is minimizes player in
finite game G.

Definition 9 R++(G) = R+(Fj(1)), where j – minimizes player is index
of riskiness for finit game G.

Index of riskiness for finit game has the following properties.

Proposition 1 If W (t) = kW ∗, then

Λ∗i (G) = Λi(G, W ∗
i (t)) =





+∞ for P [Fi(1) < 0] = 0,
k

R+(Fi(1))
for E(Fi(1)) > 0, P [Fi(1) < 0] > 0,

0 for E(Fi(1)) ≤ 0, P [Fi(1) < 0] > 0.
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Proposition 2 For every finite game R++(Gλ) = λR++(G).

Proposition 3 If G
′
= (N,Y,K

′
), G

′′
= (N,Y,K

′′
), where K

′
= K

′′
+

C, C ≥ 0, then R++(G
′
) ≤ R++(G

′′
).
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Random priority zero-sum best
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Evgeny E. Ivashko

Institute of Applied Mathematical Research,
Karelian Research Centre RAS, Petrozavodsk, Russia

E-mail: ivashko@krc.karelia.ru

Abstract

A zero-sum version of the best-choice game with disorder is con-
sidered. Two players observe sequentially iid random variables with
a known continuous distribution. In random time the distribution
of observation is changed. The random variables cannot be per-
fectly observed. Players may use different values of levels in every
step. After each sampling players take a decision for acceptance or
rejection of the observation. If both want to accept the same obser-
vation then a random assignment mechanism is used. The aim of
the players is to choose the observation more than opponent’s one.

In the paper we consider the best-choice game with disorder and im-
perfect observation. Two players (I and II) observe sequentially n iid
random variables ξ1, ..., ξθ−1, ξθ, ..., ξn with a known continuous distribu-
tion F1(x). In random time θ the distribution of observation is changed
to continuous distribution F2(x) (the disorder is happened). The moment
of the cnanging the distribution has a geometric distribution, i.e. at ev-
ery step the probability of disorder is 1− α. Players know parameters α,
F1(x), F2(x) but the exact moment θ is unknown.

Players may use different values of levels xi and yi (for player I and
player II respectively) in every step i ∈ [1, n]. After each sampling players
take a decision for acceptance or rejection of the observation. If both want
to accept the same observation then a random assignment mechanism is
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used: player I gets the observation with probability p and player II – with
probability 1−p. Each player can choose at most one observation. When
some player accepts the observation at time k, then the other one will
investigate the sequence of future realizations having an opportunity to
accept one of them.

The aim of the players is to choose the observation more than opponent
one. A class of suitable strategies and a gain function for the problem is
constructed. The asymptotic behavior of the solution is also studied.
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Abstract

In this work we present some models of voting game. We used
generating functions for finding indexes of power. We present gen-
erating functions for Holler index, Digan-Packel index and Hoede-
Bakker index.

We consider a weighted voting game with n players and a quota q.
Each player is a party with w votes. A generating function can be obtained
for each player. Using the generating function one can find values of
Banzhaf index, Shapley-Shubik index, Holler index, Digan-Packel index.
The generating functions for Banzhaf index were described by Brams and
Affuso [1], and for Shapley-Shubik index - in the Cantor’s work [4].

In our work we present Holler index and Deegan-Packel index in terms
of generating functions.

Holler index in weighted voting game < N, v > is a vector h(v) =
(h1(v), ..., hn(v)), where the index of the player i is equal

hi(v) =
mi(v)∑

i∈N

mi(v)
, i = 1..., n,

where mi(v) - number of the minimal winning coalitions, containing i.
Digan-Packel index in weighted voting game < N, v > is a vector

dp(v) = (dp1(v), ..., dpn(v)), where the index of the player i is equal

dpi(v) =
1
m

∑

S∈M :i∈S

1
s
, i = 1..., n,
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where M - set of all minimal winning coalitions, m - general number of the
minimal winning coalitions and s - number of the members of a coalition
S.

Let < q; w1..., wn > - weighted voting game.
1) Number of the minimal winning coalitions mi(v) in Holler index

can be presented as

mi(v) =
q−1∑

k=q−wi

{S :
∑

j∈S,j 6=i

wj = k, wiS
≥ k − q + wi + 1},

where iS : wiS
= min

l∈S,l 6=i
wl, and the generating function looks like:

Gi(x) =
∏

j 6=i

(1 + γix
wj ).

2) Number of the minimal winning coalitions m is equal

m =
q+wlS

−1∑

k=q

{S :
∑

j∈S

wj = k},

where lS : wlS = min
l∈S

wl and the generating function looks like:

G(x) =
∏

i∈N

(1 + γix
wi).

3) Deegan-Packel index can be presented as

dpi(v) =
1
m
·

q−1∑

k=q−wi

Ai(k, s)
s + 1

, i = 1..., n,

where m - number of the minimal winning coalitions,
Ai(k, s) = {S :

∑
j∈S,j 6=i

wj = k, |S| = s, wiS
≥ k − q + wi + 1}, for which

the generating function looks like:

Gi(x, z) =
∏

j 6=i

(1 + zγjx
wj ),



30 A. M. Kalugina

where the symbol γj is the ”label” of the player j.
These indexes do not take into account influence of the players against

each other. For that purpose Hoede-Bakker index can be used. In our
work we present Hoede-Bakker index in terms of generating functions.

Let n players can to either approve (accept) or reject (not accept)
some decision. Let N = {1, ..., n} be the set of all players. Assume that
each player has a preference to vote ”yes” (denote it by 1) or to vote ”no”
(denote it by 0). Let p be the vector of preferences, which consists of
components, 1 and 0, and specifies preferences of the players, and let P
be the set of all vectors of preferences. |P | = 2n. The initial decision
of the player is his preference. Assume that some players can influence
others during the game, wherefore the final decision of the player may
differ from his initial decision.

As the result, each vector of preferences p ∈ P transforms into the
vector of decision b, which also consists of n components (0 and 1), and
shows the final decisions of the players.

We apply the algorithm of Hoede and Bakker, but to the linear oper-
ator B.

b = B · p,

where B = (βjk)j,k=1,n is the matrix of influence.

βjk =

{
0, if k does not influence j,

1, if k influences j.

βjj =

{
0, if j is under anybody’s influence,
1, if j otherwise.

Assume that the set of all players N = {1, ..., n} can be split into 3
disjoint subsets: the set of players having influence on other players - B;
the set of players liable to influence - S; the set of independent players -
I.

Let’s present Hoede-Bakker index in the terms of generating function.
Then, Hoede-Bakker index is

HBk =
τk

2n−2
− 1,

where τk =
n∑

j=q

αj and R
(1)
k (x) = γkx

∏
m∈N\S

γk
mx

∏
l∈N\S,l 6=k

(1+γlx
∏

j∈S

γl
jx).
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Here, R
(1)
k (x) - generating function for Hoede-Bakker index. The sym-

bol γj is the ”label” of the player j. The labels have no numerical value,
and fulfill the information function. The notation γk means the player k
is not under any influence. The notation γk

j means the player k influences
the player j. 1 · γk = γk, 1 · γk

j = γk
j .
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Abstract

The present paper studies farsighted behavior of firms to form
a dominant cartel of the price leadership model by [2] and stability
of the dominant cartel. Our stability concept is based on the von
Neumann-Morgenstern stable set according to the indirect domi-
nance relation. While [2] and [3] analyze the stability of cartel size
in the price leadership model, we identify a cartel by its constituent
members. We show that any pareto efficient and individual rational
cartel is itself a stable set. Our results are mathematical extensions
of the results of [13], who consider farsighted stability of n-person
prisoner’s dilemma.
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1 Introduction

Empirical studies have shown that in a wide variety of oligopolistic indus-
tries, there are many instances of price leadership, i.e., one dominant firm
or group of firms announces a new price in the industry and the remain-
ing firms immediately follow the price. 2 This type of collusive behavior
was pointed out in traditional works such as [12] and [6], and has been
modeled by theoretical economists for a number of years (see, [7], [10], [4],
and [14]).

The model of a finite economy with a dominant cartel and many fringe
firms by [2] is one of the most seminal work in literature because they not
only provide a theoretical model to predict the market but also analyze
stability of the cartel. In their model, the dominant cartel acts as a leader
by determining the market price, while, given the price set by the cartel,
the fringe firms behave as the price taker (the fringe is called a competitive
fringe). They also show that the stable cartel (to be precise, the stable
size of the cartel) always exists if the number of firms is finite.

[3] states that stability criteria used by [2] rely on a myopic view of
firms and are inconsistent with the farsighted view of the firms implicitly
assumed in their model. (Details of her discussion are given in the next
section.) Diamantoudi reconsiders cartel stability of the price leadership
model from the viewpoint of firms’ foresight and shows that the set of
stable cartel sizes uniquely exists.

The purpose of this paper is along the same lines as that of [3]. That
is, we analyze the stability of cartels in the price leadership model when
each firm has the ability to foresee the final outcome induced by its current
action. We adopt [15] stable set as our stability concept since it enables
us to capture the foresight of the firm.

Although we adopt the same stability concept as that of Diamantoudi,
there is a critical difference between her and our approach. d’Aspremont
et al. as well as Diamantoudi identify a cartel by its size. In other words,
two distinct cartels, which are composed of the different members, are
classified into the same cartel if their sizes are equal. In contrast, we
identify a cartel by its constituent members. This modification enables

2An example of the market where a dominant group of agents is seen as a price leader
is an international oil market, where OPEC sets prices and non-OPEC members follow
them.
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us to suitably describe individual incentives to form a cartel.
More precisely, given a set of firms in the market N = {1, . . . , n},

while Diamantoudi defines the dominance relation over a set of the cartel’s
sizes, i.e., {0, 1, . . . , n}, we define our dominance relation over 2N := {C :
C ⊆ N}. The effort to capture the individual incentives in a suitable
manner is successful. Although Diamantoudi shows the existence and
the uniqueness of the stable set according to her dominance relation, the
shape of the stable set remains open. In contrast, in our study, the stable
set always exists and the shape of the stable set is revealed.

The remaining part of the paper is organized as follows. In section
2, we provide a simple example by [3], which shows that the arguments
for cartel stability by [2] contains some inconsistencies and explains her
way to resolve this inconsistency. Then, we illustrate that the validity
of her discussion is in question if we identify a cartel by its constituent
members. In section 3, we explain the model of price leadership cartel
and our stability concept. Section 4 gives our results and their proofs,
and we conclude in section 5.

2 Stabilities in the literature

In this section, we provide an example by [3] to demonstrate inconsisten-
cies in the stability concept adopted by [2] with an implicit assumption
on firms’ farsighted perspective in the price leadership model. Then, we
explain that Diamantoudi’s approach to capture a farsighted view of firms
is useful to resolve these inconsistencies. This approach, however, has a
limitation since she identifies a cartel by its size. Finally, we illustrate
that the validity of her discussion is in question if we identify a cartel by
its constituent members.

Consider a market composed of five identical firms producing homo-
geneous output. Let N = {1, . . . , 5} denote a set of five firms. If k firms
form a dominant cartel of size k, the remaining firms constitute a fringe.
When there is a size k cartel, the profits of a firm in the cartel and in
a fringe are denoted by g(k) and f(k), respectively. Table 1 shows the
relationship between the profits per firm and the size of cartel for some
parameters selection. 3

3Here, we consider a market with a linear demand function d(p) = 100 − p and
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Perfect competition k = 0 ↙ f(0) = 222
k = 1 g(1) = 223 ↙ f(1) = 224
k = 2 g(2) = 226 ↙ f(2) = 230
k = 3 g(3) = 231 f(3) = 241
k = 4 g(4) = 239 ↗ f(4) = 258

Full cooperation k = 5 g(5) = 250 ↗

Table 1: The relationship between the profits and the cartel size (cited
from [3])

Let Ck denote a size k cartel and Fk be a fringe of cartel Ck. According
to [2], Ck is stable if no firm has an incentive to enter or exit it. That
is, Ck is stable if both (1) g(k) = f(k − 1) and (2) f(k) = g(k + 1) hold.
If k = 0, condition (1) holds automatically, and if k = n, condition (2)
holds.

When condition (1) is not satisfied, a firm in Ck has an incentive to
exit the cartel because in doing so, it can gain a profit f(k − 1) higher
than in the current situation g(k). If condition (2) does not hold, a firm in
a fringe would join the cartel to gain a profit of g(k + 1), which is greater
than its current profit f(k). Thus, when either condition (1) or (2) does
not hold, Ck is considered as an “unstable” cartel. Meanwhile when both
conditions hold, then Ck is considered as a “stable” cartel.

In other words, [2] defines the following dominance relation and uses
the core as the stability notion. A cartel Ck a-dominates a cartel Ch if
either (a.1) or (a.2) holds:

(a.1) k = h + 1 and g(k + 1) > f(k).

(a.2) k = h− 1 and f(k − 1) > g(k).

A cartel Ck is stable if and only if it is an element of the core, the set of
the cartels which are not dominated by any other cartel according to the
above dominance relation.

Following [2], C3 is a unique stable cartel in the example described
in Table 1. Although C5 is preferred over C3 by all the firms (g(5) >

identical quadratic cost function of the firms ci(qi) = 5q2
i . For details of the model,

see subsection 3.1.



36 Y. Kamijo, Sh. Muto

f(3) > g(3)), it is not stable since a firm in C5 wants to exit and gain
f(4) = 258 > 250 = g(5). There is a myopic view behind the argument
that C5 is not stable because firm i, which decides to deviate from C5,
does not consider the further exits of the other firms from C4 in spite
of C4 being dominated by C3 according to the dominance relation). The
important point is that when firm i compares the current profit g(5) = 250
with f(4) = 258 – the one after its deviation – it is implicitly assumed
that it foresees that after its deviation, the remaining cartel readjusts a
price that suitably responds to the new circumstances, which include the
four firms cartel and one fringe firm. From this viewpoint, firm i has a
farsighted view. Therefore, stability criteria based on a myopic view are
inconsistent with the firm’s foresight, which is implicitly assumed in the
model.

Therefore we need to reconsider the stability of cartel from the view-
point of firms’ farsighted perspective. The firm’s farsighted perspective
is summarized as the following two type of behaviors. The first is that a
firm decides to move from the current situation even if it gains less profit
in the immediate aftermath of its move, when it expects that after its
move, another firm, and a third firm would move and so on, and it would
enjoy the more profit in the end than the current profit. The second is
that a firm decides to refrain from move from the current situation even if
it gains more profit immediately after its move, when it expects that after
its move, a sequence of moves of firms would occur and it would obtain
less profit in the end than the current situation.

[3] captures the first type of the behavior by modifying the dominance
relation as follows. A cartel Ck d-dominates a cartel Ch, k 6= h if either
(d.1) or (d.2) holds:

(d.1) If k < h, for any l (k < l 5 h), f(k) > g(l) holds.

(d.2) If k > h, for any l (h 5 l < h), g(k) > f(l) holds.

Thus, for each step of the dominance path, a firm enters (detach from) a
cartel if after its move, it expects that a sequence of entries to (exits from)
the cartel would occur and it compares the current profit with the profit
in the final situation. The definition of the dominance relation results
from the critique of [5] and the idea of [1].

The second type of the farsighted behavior is expressed by using the
[15] stable set as the stability notion, instead of the core. The second type
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of the behavior means that even if Ck d-dominates Ch, the firm that is
the first mover in this dominance relation, refrains from move when there
is no rationale for Ch being “stable”. As mentioned in [2]’s arguments,
the core does not take into account the stability of the ending point of the
dominance path. Following [2], C5 is not stable because it is dominated
by the “unstable” C4, which is dominated by the stable C3.

Thus, taking into account the stability of the ending point of the dom-
inance path corresponds to the second type of the farsighted behavior of
the firm. This point is well captured by the stable set. 4 The stable set is
a set of outcomes satisfying two stability notions: external stability and
internal stability.

Let A and >> be a set of outcomes and the dominance relation defined
over A. Then, subset K of A is a stable set if it satisfies

(i) for each a ∈ A \ K, there exists b ∈ K such that b >> a, and
(externally stable)

(ii) for each a ∈ K, there does not exist b ∈ K such that b >> a.
(internally stable)

The external stability means that any outcome outside the stable set is
attracted into the set, and thus, the outcome does not “prevail” in this
society. On the other hand, the internal stability gives the rationale to
this attraction such that the end point of this attraction is also “stable”.
When the dominance relation is extended to the farsighted version, even
if an individual (or a group of individuals) deviates from an outcome a
in the stable set and can induce outcome b, b is dominated by outcome
c in the stable set (the external stability), and thus, he refrains from the
deviation since c is not profitable to a for him (the internal stability).

[3] shows that the stable set according to the dominance relation is
{C3, C5}. A cartel C5 is considered to be stable since C4, which d-
dominates C5, is d-dominated by C3, which is also considered as sta-
ble cartel and C3 does not d-dominated C5. On the other hand, C3

d-dominates C0, C1, C2 and C4, and C5 does not d-dominates C3. Thus,
{C3, C5} is a stable set.

Although [3]’s discussion mentioned above is persuasive, there is an
inadequacy in her discussion. To see this, let reconsider the stability of

4Another way to capture this point is to use the credible core by [9].
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a cartel C3. The stability that the stable set assumes is that even if the
deviation from an outcome in the stable set to an outcome outside the
set exists, the outcome outside the set is attracted into other outcome in
the set (externally stable) and the first deviant firm never gain from this
sequence of deviation (internally stable), and thus farsighted individual
refrains from the first deviation. Is this appropriate to stability of C3?
If a firm detaches from C3, C2, a cartel after its exit, is dominated by
C3 and thus, C3 prevails. It appears true, but actually doubtful because
there is no reason that the first deviant firm from C3 to C2 and the second
from C2 to C3 is the same firm.

Now we identify cartel by its members and let C3 = {1, 2, 3} and
C ′3 = {2, 3, 4} denote two distinct size 3 cartels. Consider a path from
C3 to C ′3 such that first firm 1 exits and then firm 4 in a fringe joins the
cartel. Since firm 1 prefers the profit f(3) = 241 in C ′3 to g(3) = 231, and
firm 4 prefers the profit g(3) = 231 in C ′3 to the profit f(2) = 230, which
firm 4 obtains when there is a cartel C2 = {2, 3}, a dominance path from
C3 to C ′3 seems to exist.

C3 = {1, 2, 3} 1’s exit−−−−−→ C2 = {2, 3} 4’s entry−−−−−−→ C ′3 = {2, 3, 4}.

This inadequacy is due to the fact that [3] considers the stability of
cartel sizes, not cartel. In other words, [3] (as well as [2]) identifies cartel
by its size and two distinct cartels with equal size are considered as the
same one. Since the dominance relation is derived by the individual in-
centives to deviate, we have to pay attention to who forms a cartel and
who belongs to a fringe. Thus, it seems natural that a cartel is identified
by its constituent members.

Therefore, in this paper, we define dominance relation with respect to
firms’ farsighted perspective over the set of cartels that are identified by
their members, i.e., {C : C ⊆ N} = 2N given the set of firms N , and
analyze stability of a dominant price leadership cartel. Another difference
between our and Diamantoudi’s approach is that we allow a coalitional
move following many existing studies.

In these settings, we show the following result:
If a cartel C ⊆ N is pareto efficient and individual rational, then C

is a stable cartel. That is, {C} is a stable set according to our dominance
relation.
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Thus, we uncover the shapes of the stable sets. In the next section,
we explain the price leadership model of [2] and provide the definition of
our stability concept.

3 The model

3.1 Collusive price leadership

We consider an industry composed of n (n = 2) identical firms, which
produce a homogeneous output. If k firms decide to form a cartel and set
a price p, the remaining n − k firms constitute a competitive fringe and
decide each output qf (p) by

p = c′(qf (p)),

where c′ is firm i’s marginal cost, which satisfies c′ > 0 and c′′ > 0.
Let d(p) be a market demand function satisfying d′ < 0. Members

of a dominant cartel choose the price that maximize their joint profit,
given the supply decision of a competitive fringe. Since the marginal cost
is increasing, the maximization of the joint profit is achieved by equal
division of their total output. Therefore, each firm of a cartel behaves
as a monopolist with respect to the individual residual demand function
defined as d(p)−(n−k)qf (p)

k . Thus, the price that a cartel actually chooses
is obtained as follows:

Maxp>0
d(p)− (n− k)qf (p)

k
p− c

(
d(p)− (n− k)qf (p)

k

)

According to the price as a solution of the above problem, the profits of a
cartel firm and a fringe firm are obtained for each k (k = 1, . . . , n) and are
denoted by g(k) and f(k), respectively. If k = 0, that is, there is no cartel,
then it is assumed that the market structure is competitive. Therefore,
f(0) is defined by a profit of a fringe firm for a competitive price pcomp,
which satisfies d(pcomp) = nqf (pcomp).

In this setting, the following proposition is shown by [2].

Proposition 1 ([2]) The following properties about the profits of a cartel
firm and a fringe firm hold.
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(i) f(k) > g(k) for each k (= 1, . . . , n− 1).

(ii) g(k) is an increasing function in k.

This proposition says that there is a dilemma structure in firms who
decide to join or detach from a cartel. The second property of Proposition
1 means that a firm who belongs to a cartel prefers the cartel being larger.
The first property indicates that it is more profitable for each firm to
belong to a fringe if the size of a cartel is unchanged.

This dilemma structure is similar to but weaker than the typical pris-
oner’s dilemma situation. In the prisoner’s dilemma, the “defect” is more
profitable than the “cooperate”, irrespective of the others choices. When
we interpret cooperate and defect as joining and not joining a cartel,
f(k−1) > g(k) always holds in the prisoner’s dilemma. In contrast to the
prisoner’s dilemma, in the price leadership model, each cartel firm wants
to switch positions with a fringe firm (f(k) > g(k)). Thus, cartel firm
envies a fringe firm’s position.

The next proposition shows that fringe firms prefer a situation with a
dominant cartel to one without it.

Proposition 2 For any k (= 1, . . . , n− 1), f(0) < f(k) holds.

Proof. Suppose that there exists a k firms cartel. If the cartel chooses
price p = pcomp, then they can gain f(0), the profit for a competitive
equilibrium. Since they set a price to maximize their profit, g(k) = f(0)
holds. This inequality and (i) of Proposition 1 implies f(k) > f(0). ¤

In the rest of the paper, we analyze the stability of the price leadership
cartel characterized by profit functions f and g, which satisfy the prop-
erties described in Propositions 1 and 2. In order to expand the scope
of our discussion, we establish our discussion and complete proof of our
theorems in a weaker setting than the conditions mentioned above. We
impose the following three conditions on functions f and g.
Assumption 1: f(0) 5 f(k) for any k = 1, . . . , n− 1.
Assumption 2: g(k) is an increasing function in k.
Assumption 3: g(n) > f(0).

Thus, we provide our discussion without mentioning a dilemma struc-
ture (f(k) > g(k)) in the price leadership model. Assumption 3 is ob-
tained from the facts that g(k) is an increasing function and g(k) = f(0)
holds by the proof of Proposition 2.
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3.2 Stability

We begin by explaining some additional notations and definitions to ex-
press our stability concept. Let N = {1, . . . , n} and X = ×i∈NXi =
{0, 1}n be a set of firms and a set of cartels, respectively. For each i ∈ N ,
xi = 1 implies that firm i belongs to a dominant cartel, and xi = 0 implies
that firm i belongs to a competitive fringe. An element x ∈ X is called
a cartel structure, or simply a cartel since each x ∈ X corresponds to a
unique cartel C ⊂ N . For each x ∈ X, the set of firms that belong to a
cartel is denoted by C(x) = {i ∈ N : xi = 1}, and the set of fringe firms
is denoted by F (x) = N \ C(x).

The payoff function ui : X → R for each i ∈ N is defined as follows:

ui(x) =
{

g(k) if xi = 1,
f(k) if xi = 0,

where |C(x)| = k. Functions f and g satisfy Assumptions 1, 2, and 3.
Let x ∈ X and y ∈ X be two distinct cartel structures. We say that

a cartel structure x pareto dominates y, and denote xPy if ui(x) = ui(y)
holds for all i ∈ N and strict inequality holds for some j ∈ N . If x is not
pareto dominated by any other cartel, the x is called a pareto efficient
cartel structure. The set of all the pareto efficient cartel structures is
denoted by XP ⊆ X. Since x = (1, . . . , 1), that is, the grand cartel is
pareto efficient by Assumptions 2 and 3, XP is not empty.

We define X∗ ⊆ X by

X∗ = {x ∈ X : g(|C(x)|) > f(0)}.
Since g is increasing by Assumption 2 and g(n) > f(0) holds by Assump-
tion 3, there exists integer s∗ ∈ N such that X∗ = {x ∈ X : |C(x)| = s∗}.
Let vi be a minimax payoff of firm i ∈ N , i.e., vi = minx−imaxxiui(x).
Then,

vi = max{g(1), f(0)} (1)

by Assumptions 1 and 2. If cartel structure x satisfies ui(x) = vi for all
i ∈ N , then x is called an individual rational cartel structure. If strict
equality holds for all i ∈ N , then x is called a strictly individual rational
cartel structure. We denote the sets of all the individual rational cartel
structures and the strictly individual rational cartel structures by XI and
XSI respectively. By its definition, XSI ⊆ X∗.
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A cartel structure y is inducible from x through coalition S ⊆ N if
xi = yi holds for any i ∈ N \ S and we write x →S y. Clearly, if x →S y
holds, then y →S x also holds. For a coalition S ⊆ N , we write x ÂS y if
ui(x) > ui(y) holds for any i ∈ S.

Next, let us define a dominance relation over X. Since there exists
one-to-one correspondence between X and 2N , it is equivalent to define a
dominance relation over a set of cartels. Following [5] and [1]’s perspective,
we define indirect dominance relation over X that captures the ability for
each firm to foresee the final outcome which is induced by the firm’s
current behavior.

Definition 1 A cartel structure x is indirectly dominated by y and we
write y >> x if there exist a (finite) sequence of cartels x0, x1, . . . , xM with
x0 = x and xM = y and a sequence of coalitions S1, . . . , SM such that for
each m (= 1, . . . , M) (a) xm−1 →Sm xm and (b) y = xM ÂSm xm−1.

If M = 1, we say that x is directly dominated by y via coalition S1.
A farsighted stable set is a stable set or [15] solution defined by dom-

inance relation >> over X. Formally, a subset K of X is called a far-
sighted stable set (FSS) if the following conditions hold:

(i) For any x ∈ K, there does not exist y ∈ K such that y >> x (internal
stability of K).

(ii) For any z ∈ N \K, there exists x ∈ K such that x >> z (external
stability of K).

In the next section, we characterize FSSs of the price leadership cartels.

4 Results

In this section, we reveal the complete shapes of farsighted stable sets for
a price leadership model. Our main statement is that a pareto efficient
and individual rational cartel is itself a farsighted stable set and there is
no other type of farsighted stable set except for some degenerate cases.

First we prove the following two lemmas on the properties of pareto
efficient cartels and individual rational cartels. Let xc ∈ X and xf ∈ X
denote (1, . . . , 1) and (0, . . . , 0), respectively. That is, xc represents the
grand cartel structure and xf represents a competitive situation.
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Lemma 1 The following properties hold:

(i) A cartel structure x ∈ X,x 6= xc is pareto efficient, that is, x ∈
XP \ {xc} if and only if f(|C(x)|) > g(n).

(ii) x ∈ XP \ {xc} if and only if x >> xc.

(iii) For any x ∈ XP and for any y ∈ X with y 6= x and y 6= xf , there
exists i ∈ C(y) such that ui(x) > ui(y).

Proof. (i) Suppose that x satisfies f(|C(x)|) > g(n) and that there
exists y ∈ X such that yPx. For i ∈ F (x), yi must be ‘0’ since ui(x) =
f(|C(x)|) > g(n) = g(|C(y)|) by Assumption 2. Thus, C(x) ) C(y). For
i ∈ C(y) ( C(x), ui(y) = g(|C(y)|) < g(|C(x)|) = ui(x). This contradicts
yPx.

Next we show the only if part. Suppose that x ∈ XP , x 6= xc but
f(|C(x)|) 5 g(n). Then xc pareto dominates x by Assumption 2 and this
contradicts x ∈ XP .
(ii) We first show the ‘if’ part. If x >> xc holds, then there exists the first
deviant coalition S from xc to the final outcome x. Hence, x ÂS xc holds.
Let i ∈ S. Then, xi = 0 because there is no cartel better for a cartel firm
than grand cartel structure xc. The fact that ui(x) > ui(xc) implies that
f(|C(x)|) > g(n). Thus, x is pareto efficient by (i) of this lemma.

Next, we show the “only if” part. Suppose x ∈ XP \ {xc}. Then,
by (i) of this lemma, ui(x) > ui(xc) for any i ∈ F (x). Thus, x directly
dominates xc via F (x).
(iii) If xi = 1 for any i ∈ C(y), then C(x) ) C(y) since x 6= y. Therefore,
|C(x)| > |C(y)|. This implies that for any i ∈ C(y), ui(x) = g(|C(x)|) >
g(|C(y)|) = ui(y). Otherwise, there exists i ∈ C(y) such that xi = 0.
Then ui(x) = f(|C(x)|) > g(n) = g(|C(y)|) = ui(y). The second strict
inequality is by (i) of this lemma and the third inequality is by Assumption
2. ¤

Lemma 2 The following properties hold:

(i) x ∈ X∗ if and only if x >> xf .

(ii) Let x ∈ X \ {xf}. Then, xf >> x if and only if f(0) > g(|C(x)|).
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Proof. (i) First we show the “only if” part. Let x ∈ X∗. Then, x directly
dominates xf via coalition C(x) because all the firms in C(x) prefer x to
xf by the definition of X∗ and x is inducible from xf through coalition
C(x).

Next, we show the “if” part. Suppose x indirectly dominates xf . By
the definition of the indirect dominance relation, there exist a sequence
of the cartel structures xf = x0, x1, . . . , xM = x and a sequence of the
deviant coalitions S1, . . . , SM satisfying conditions (a) and (b) in Defini-
tion 1. Let k be the first natural number such that there exists i ∈ C(x)
with xk

i = 0 and xk+1
i = 1. Then, g(|C(x)|) > f(|C(xk)|) = f(0) by

Assumption 1.
(ii) Suppose f(0) > g(|C(x)|). Then, all the firms in C(x) prefers xf to x
and xf is inducible from x through C(x). Thus, xf directly dominates x
via C(x).

Next, suppose xf >> x. Let S ⊆ N be the first deviant coalition in
the dominance relation from x to xf . If there exists i ∈ S with xi = 0,
then f(0) > f(|C(x)|) by the definition of the dominance relation and
this contradicts Assumption 1. If there exists i ∈ S with xi = 1, then
f(0) > g(|C(x)|). ¤

The first and the second theorems show that any pareto efficient and
individual rational cartel structure is a FSS.

Theorem 1 For any x ∈ X∗ ∩XP , {x} is a farsighted stable set.

Proof. Since {x} consists of one point, we only consider the external
stability. Take any y ∈ X, y 6= x. When y = xf , x dominates y by (i) of
Lemma 2.

When y 6= xf , by (iii) of Lemma 1, there exists i1 ∈ C(y) such that
ui1(x) > ui1(y). Then, we construct a cartel structure y1 as follows. For
all i ∈ N ,

y1
i =

{
0 if i = i1,
yi if i 6= i1.

If either y1 = x or y1 = xf holds, then we stop this process. Otherwise,
there exists i2 ∈ C(y1) such that ui2(x) > ui2(y

1). Then, we construct y2

by

y2
i =

{
0 if i = i2,
y1

i if i 6= i2.
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If y2 = x or y2 = xf , then we stop this process. Otherwise, there exists
i3 ∈ C(y2) such that ui3(x) > ui3(y

2) and we continue the same process
at most n− 3 times.

Since N is finite, we can find an integer M ∈ N, a sequence of players
i1, . . . , iM , and a sequence of outcomes y = y0, y1, . . . , yM such that yM is
either x or xf , ym−1 →{im} ym for any m = 1, . . . ,M and x Â{im} ym−1

for any m = 1, . . . , M . If ym = x, then x indirectly dominates y. If
ym = xf , then x dominates ym by (i) of Lemma 2, and therefore, x
indirectly dominates y. We obtain the desired result. ¤

Theorem 2 If g(1) 5 f(0), X∗ ∩ XP = XSI ∩ XP . Otherwise, X∗ ∩
XP = XI ∩XP .

Proof. If g(1) 5 f(0), vi = f(0) by equation (1). Then, x ∈ XP ∩ X∗

is strictly individual rational since if i ∈ F (x), then ui(x) = f(|C(x)|) >
g(n) > f(0) by Lemma 1 and if i ∈ C(x), then ui(x) = g(|C(x)|) > f(0)
by Lemma 2. Since XSI ⊆ X∗, X∗ ∩XP = XSI ∩XP holds.

If g(1) > f(0), then X∗ = X \ {xf}. By Assumption 3, X∗ ∩XP =
XP . Let x ∈ XP . Then, x 6= xf . For i ∈ C(x), g(|C(x)|) = g(1) by
Assumption 2. For i ∈ F (x), f(|C(x)|) > g(n) > g(1) since x ∈ XP .
Therefore, XP ⊆ XI and XI ∩XP = XP . ¤

Theorem 1 and Theorem 2 say that the cartel structure that is pareto
efficient and (strictly) individual rational is a FSS.

Lemma 3 If there does not exist an integer k∗ such that f(0) = g(k∗),
the fact x ∈ X∗ and y /∈ X∗ means that x dominates y.

Proof. Because of the assumption of this lemma, y /∈ X∗ means that
g(|C(y)|) < f(0). For any i ∈ C(y), if xi is 1, then ui(x) = g(|C(x)|) >
f(0) > g(|C(y)|) since x ∈ X∗. If xi is 0, then ui(x) = f(|C(x)|) =
f(0) > g(|C(y)|) by Assumption 1. Thus, all the firms in C(y) prefers x
to y. Moreover, all the firms in C(x) prefer x to xf by the definition of
X∗. Therefore, the deviation defined by (i) first, all the members in C(y)
detaching from the cartel and (ii) next, all the members in C(x) forming
a cartel, implies that x indirectly dominates y. ¤

Next theorem shows that without some degenerate cases, there is no
farsighted stable set other than the ones defined in Theorem 1.
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Theorem 3 If either condition (1) or (2) holds, then there exists no far-
sighted stable set other than that given in Theorem 1:

(1) XP ⊆ X∗.

(2) There does not exist an integer k∗ such that f(0) = g(k∗).

Proof. Take any farsighted stable set K that is different from the set
given in Theorem 1. Then, K does not contain any outcome that belongs
to X∗∩XP since, as shown in Theorem 1, such a cartel structure indirectly
dominates all the others and this contradicts the internal stability of K.

Suppose condition (1) is satisfied. If x ∈ K, then x /∈ XP since
otherwise, x is an element of X∗ by the supposition. Thus K ∩XP = ∅
and this implies that by (ii) of Lemma 1 there exists no x ∈ K such that
x >> xc. Since xc ∈ XP ∩X∗ and thus xc /∈ K, the external stability of
K does not hold.

Suppose condition (2) holds. If K ∩X∗ 6= ∅, then K does not have an
element in X \X∗ because otherwise the internal stability of K does not
hold by Lemma 3. Of course, K does not have an element in X∗ ∩ XP

because of the argument of the first paragraph in this proof. Thus, K ⊆
X∗ \XP . However, any element in K does not indirectly dominate xc by
(i) of Lemma 1 and this contradicts the external stability of K.

When K ∩X∗ = ∅, for any x ∈ K, g(|C(x)|) < f(0) holds by Assump-
tion 2 and condition (2). Since K is not a set {xf}, we can take x ∈ K
with x 6= xf . Then, x is indirectly dominated by xf because of (ii) of
Lemma 2. To guarantee the internal stability of K, K does not have xf .
In order to preserve the external stability of K, some element y ∈ K must
indirectly dominate xf . However y must be an element in X∗ by (i) of
Lemma 2 and this is a contradiction. ¤

In the next theorem, we describe the shapes of FSSs in the degenerate
cases, i.e., f(0) = g(k∗) for some k∗, using an additional assumption.
The assumption in the next theorem is, however, satisfied in the price
leadership model (Proposition 2).

Theorem 4 Assume that f(0) < f(k) for any k(= 1, . . . , n−1). Consider
the case where there exists an integer k∗ such that f(0) = g(k∗). If the
following condition (a) holds,

f(k∗) > g(n),
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then K1 = {xf} ∪ {x ∈ X : |C(x)| = k∗} is a farsighted stable set in
addition to those given in Theorem 1 and there is no farsighted stable
set. Otherwise there is no farsighted stable set except for ones given in
Theorem 1.

Proof. First, we show that K1 is a farsighted stable set when condition
(a) holds. Let K2 = K1 \ {xf}. By (i) of Lemma 2, any element in K2

does not indirectly dominate xf , and by (ii) of Lemma 2, xf does not
indirectly dominate any element in K2. Let x ∈ K2, y ∈ K2, x 6= y. For x
to indirectly dominate y, there exist some element x′ ∈ X and some firm
i ∈ N such that firm i prefers x to x′, and xi = 1 and x′i = 0. However,
there does not exist such x′ because f(|C(x′)|) = f(0) = g(|c(x)|) by
Assumption 1. Thus, the internal stability of K1 holds.

Let y ∈ X such that |C(y)| > k∗. Take any S ⊆ C(y) such that
|S| = |C(y)| − k∗. Then, a cartel structure x such that xi = 1 for all
i ∈ C(y) \ S and xi = 0 otherwise, directly dominates y via S because in
cartel structure x, all the firms in S are in a fringe and they prefer x to
y (f(k∗) > g(n) > g(k)) by condition (a) and Assumption 2. Next, let
y ∈ X, y 6= xf such that |C(y)| < k∗. Then, xf dominates y by (ii) of
Lemma 2. Hence, the external stability of K1 holds, and thus, K1 is a
farsighted stable set.

Let K be a farsighted stable set other than those in Theorem 1. If
xf /∈ K, there exists x ∈ K such that x dominates xf . By (ii) of Lemma 2,
x ∈ X∗ and |C(x)| = k∗ + 1. Then, x /∈ XP since otherwise {x} becomes
a farsighted stable set described in Theorem 1. By (ii) of Lemma 1, x
does not dominate xc. Thus, there exists y ∈ K such that y dominates
xc, and thus, y ∈ XP by (ii) of Lemma 1. To preserve the internal
stability of K, y ∈ XP \ X∗. Thus, |C(y)| 5 k∗. Then, g(|C(y)|) 5
f(0) < f(|C(x)|) and f(0) < g(|C(x)|) hold by the assumption of this
theorem and the definitions of X∗ and XP . Hence, x indirectly dominates
y through y →C(y) xf →C(x) x because all the firms in C(y) prefer x to
y and all the firms in C(x) prefers x to xf . This contradicts the internal
stability of K.

Consider the case that xf ∈ K. Clearly {xf} 6= K. Thus, there exists
x ∈ K with x 6= xf . To preserve the internal stability, x satisfies |C(x)| =
k∗ since by Lemma 2, x dominates xf if |C(x)| > k∗ and xf dominates x
otherwise. Moreover, as shown in the first paragraph of this proof, x does
not indirectly dominate y such that |C(y)| = k∗. To preserve the external



48 Y. Kamijo, Sh. Muto

stability of K, K must be {xf} ∪ {x ∈ X : |C(x)| = k∗}. As shown, this
K is in fact a farsighted stable set if f(k∗) > g(n). Otherwise, K is not a
farsighted stable set because xc pareto dominates all the elements in K.
¤

In this paper, it is assumed that to induce a cartel structure x from
another cartel structure y, it is enough that all the firms that actually
move (i.e., enter or exit from a cartel) agree to this movement. From a
viewpoint of coalition formation theory, however, it is often assumed that
the permission of the members in a current cartel is necessary for a fringe
firm to join the cartel. Meanwhile, firms in the cartel can exit from the
cartel in a unilateral way. As a result, we can redefine the inducement
relations as follows:

x →S y ⇐⇒ xi = yi ∀i ∈ N \ S, and

if C(y) \ C(x) 6= ∅, then S ⊇ C(x) ∩ C(y).
This definition reflects the fact that on one hand, players in C(x) \ C(y)
detach from the cartel in a unilateral way, and on the other hand, to
join the cartel, players in C(y) \C(x) need the permission of members in
C(x) ∩ C(y).

It is possible to redefine the indirect dominance relation and the far-
sighted stable set according to the above inducement relations. An impor-
tant point is that this restriction on inducement relations does not alter
our conclusions. That is, Theorems 1, 2, 3, and 4 hold when this new
indirect dominance relation is used. The reason is that for every indi-
rect dominance path that is used in the lemmas and the theorems in this
paper, either members in a cartel prefer the final cartel structure to the
current situation or there is no cartel whenever fringe firms form a cartel.

5 Conclusions

In this paper, we analyzed the stability of a dominant cartel model of
the price leadership introduced by [2]. The solution concept adopted in
this study is the stable set with indirect dominations, which reflect firms’
farsighted view.

The dominance relation proposed by [3] is defined over a set of cartel
sizes, i.e., {0, . . . , n}. Thus, in her paper, two distinct cartels are consid-
ered as the same when these sizes are equal. In contrast, we distinguish
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one cartel from the other when the constituent members are different even
if they are of the same size. Hence, we define our dominance relation over
{C : C ⊆ N}. Another difference between our and [3]’s approach is that
while she considers an individual move for each step of the dominance
path, we allow a coalitional move following many other literatures.

We can find the complete shapes of farsighted stable sets, which re-
main open in [3]. Our results imply the possibility of cooperation in the
dilemma situation and shed some light on dissolution of the dilemma,
which has been widely studied by non-cooperative approach and equilib-
rium concept. In addition, our discussions have policy implications on a
market structure because our theorem (Theorem 1) shows that there is
the possibility of firms forming a large cartel even if the decision problem
of the firms joining or not joining a cartel is in a dilemma situation. These
implications are in contrast to the results of [11] and [8] who analyze car-
tel formation in non-cooperative way and show that firms encounter some
difficulty to form a large cartel.

Finally, our theorems are mathematical extensions of the results of
[13] who study farsighted stability of the n-person prisoner’s dilemma
described by a normal form game and show that a pareto efficient and
individual rational outcome is itself a farsighted stable set.

References

[1] Chwe, M. S.-Y. (1994): “Farsighted coalitional stability,” Journal of
Economic Theory, 63, 299–325.

[2] d’Aspremont, C., A. Jacquemin, J. J. Gabszewicz, and J. A. Wey-
mark (1983): “On the stability of collusive price leadership,” Canadian
Journal of Economics, pp. 17–25.

[3] Diamantoudi, E. (2005): “Stable cartels revisited,” Economic Theory,
26, 907–921.

[4] Furth, D., and D. Kovenock (1993): “Pricce leadership in a duopoly
with capacity constraints and product differentiation,” Journal of Eco-
nomics, 57, 1–35.

[5] Harsanyi, J. C. (1974): “Interpretation of stable sets and a proposed
alternative definition,” Management Science, 20, 1472–1495.



50 Y. Kamijo, Sh. Muto

[6] Markham, J. W. (1951): “The nature and significance of price leader-
ship,” The American Economic Review, 41, 891–905.

[7] Ono, Y. (1982): “Price leadership: A theoretical analysis,” Econom-
ica, 49, 11–20.

[8] Prokop, J. (1999): “Process of dominant-cartel formation,” Interna-
tional Journal of Industrial Organization, 17, 241–257.

[9] Ray, D. (1989): “Credible coalitions and the core,” International Jour-
nal of Game Theory, 18, 185–187.

[10] Rotemberg, J. J., and G. Saloner (1990): “Collusive price leader-
ship,” Journal of Industrial Economics, 39, 93–111.

[11] Selten, R. (1973): “A simple model of imperfect competition, where
4 are few and 6 are many,” International Journal of Game Theory, pp.
141–201.

[12] Stigler, G. J. (1947): “The kinky oligopoly demand curve and rigid
prices,” The Journal of Political Economy, 55, 432–449.

[13] Suzuki, A., and S. Muto (2005): “Farsighted stability in an n-person
prisoner’s dilemma,” International Journal of Game Theory, 33, 441–
445.

[14] van Damme, E., and S. Hurkens (2004): “Endogenous price leader-
ship,” Games and Economic Behavior, 47, 404–420.

[15] von Neumann, J., and O. Morgenstern (1953): Theory of Games and
Economic Behavior. Princeton University Press, third edn.



N-Player Game in a Multiple Access Channel is Selfish 51

N-Player Game in a Multiple Access

Channel is Selfish

Andrey Lukyanenko

Helsinki Institute for Information Technology, Helsinki, Finland

Igor Falko

Institute of Applied Mathematical Research of KarRC RAS,
Petrozavodsk, Russia

Andrei Gurtov

Helsinki Institute for Information Technology, Helsinki, Finland

Abstract

This paper studies behavior of players in a common exclusively-
shared channel using a backoff protocol for resolving collisions. We
show that when players have freedom to choose backoff parameters
(or time to send a next packet), they behave selfishly. The system
has an undesirable Nash equilibrium, where every player tries to
grasp as much channel as possible. Since the channel is exclusively
shared, no player would get a packet through (all packets will col-
lide). Although the result is seemingly obvious, we were unable to
find it in the literature. We also evaluate a simple incentive mech-
anism based on an arbiter model, which controls channel access by
jamming misbehaving players.

1 Introduction

The backoff protocol is a scheduling protocol for simultaneous access to
a multiple access channel where simultaneous transmissions collide. To
deal with collisions, a backoff protocol was introduced and adopted in

c©A. Lukyanenko, I. Falko, A. Gurtov, 2009
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such protocols as Aloha [2], Ethernet [13] and IEEE 802.11 (Wi-Fi) [1].
As an example, Aloha protocol uses a constant backoff protocol, while
IEEE 802.11 uses a truncated exponential binary backoff protocol.

Over past thirty years, the backoff protocol was analyzed by several
researchers [3, 7, 8, 5, 6, 4]. Furthermore, following the idea by Kwak et
al. [11] we analyzed general backoff protocols [12]. We studied optimality
of a general backoff function instead of a fixed function. The analysis
showed that the choice of the optimal protocol parameters depends on the
number of active stations in the network and may vary depending on the
load of the network. Hence, permitting the stations to choose the backoff
parameters depending on the channel load can increase throughput for
individual stations and the network itself.

On the other hand, recent studies on game-theoretic aspects of the
backoff protocols showed that the freedom to control backoff parameters
leads to selfish behavior of individual players (stations) [10].

In this paper we consider what if we give freedom to manipulate general
backoff parameters to each station in the network. In other words, if a
station is free to use the channel at any time, what the resulting behavior
would be?

Unlike in the backoff model, here we do not give the history of inter-
action to a station. Hence, the network model is a black box to the end
station. A station does not know had the packet collided before the game
is finished, stations know only the number of other stations (players) and
that every player in the network wants to selfishly maximize its through-
put. Unfortunately, we omit consideration of the previous history (backoff
counter) because it makes the model very complex otherwise. We believe
that the model still represents the choice of each player as with a general
backoff network without restrictions on behavior. Under these conditions,
we show that the game has undesirable Nash equilibrium.

Additionally, we modify the model using a known incentive mechanism
— a common network arbiter, which jams the channel if some player
transmits too much packets. We show that these incentives do not give
a unique Nash equilibrium solution, and one of the possible equilibrium
solutions still involves undesirable behavior.
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2 Analysis

2.1 Model

Consider the following game model. N players try to send packets through
a shared channel during time T . The whole time is divided into timeslots;
the length of each timeslot is 1, hence there are T slots of length 1, which
are synchronized and known to each player. During one timeslot player
can send one packet. At the beginning of each game, every player chooses
timeslots for sending packets. We assume that a player i decides to use
ki slots for transmission. Knowing the number of slots to be used, the
exact slots for transmission are chosen randomly and uniformly among
other possible. There are

(
T
ki

)
combinations to place ki elements on T

and probability for every combination is equal. For such a game we want
to find which strategy (a number of packets to send) a player will choose.

A similar problem was studied by Kolchin et al. in the book “Random
allocations” [9]. The difference is that the book did not consider a game
problem, but used the same ki for every player. Even for such problem,
it is hard to analyze the collision probability. In our case, the probability

that k1 and k2 will collide exactly in ∆ slots equals to
(k1

∆)(T−k1
k2−∆)

(T
k2)

.

2.2 Two-player game

Consider a particular case of the game above, when the number of players
is two. The first player decides to send packets in k1 slots, the second in k2

slots. As in [9] consider the following random variable µr be the number of
slots, during which r packets are sent (0 ≤ r ≤ N). In case of two-player
game, there are at most two packets in a slot from both players. Now, let
us calculate µ2. If we define as qi the event that two packets were sent
in slot i, then µ2 =

∑T
i=1 1{qi}, where 1{A} is an indicator function for

event A. Taking expectation from the equation we get Eµ2 = TP{qi},
and for a two-player game it is equal to Eµ2 = T k1

T
k2
T = k1k2

T .
That value is exactly the expected number of collided packets. The

expected number of successful packets for the first player is k1− k1k2
T and

for the second player is k2 − k1k2
T . Hence, we have the income function

H1(k1, k2) = k1(1− k2
T ) for the first player and H2(k1, k2) = k2(1− k2

T ) for
the second. It is clear that unless one of players chooses T as a strategy,
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the best income for another player is to choose T as a strategy. This is a
Nash equilibrium. Since we assumed that players behave similarly, we can
assume that the Nash equilibrium is (T, T ). Each of two players behaves
selfishly.

2.3 N-player game

Now, consider an N-player game. It can be reduced to a two-player game,
if we consider the first player as one player, and the rest of players as
another player. Hence, if we define ∆ as the number of slots taken by the
rest of the players, then the income for the first player will be

H1(k1, k2, . . . , kN ) =

T∑

∆=0

k1(1− ∆
T

)P{k2, . . . , kN occupies ∆} = k1(1− E∆
T

).

Consider again, µr. Now we need to find µ0, the number of free slots
for players ¯2, N . Let qi be an event that slot i is unoccupied by players

¯2, N . Then µ0 =
∑T

i=1 1{qi}. The expectation of this value is Eµ0 =
TP{qi} = T

∏N
i=2(1 − ki

T ). Thus, the expected number of free slots is
T (1−∏N

i=2(1− ki

T )), and hence the income function for the first player is
H1(k1, k2, . . . , kN ) = k1

∏N
i=2(1− ki

T ). The income for player j is

Hj(k1, k2, . . . , kN ) = kj

N∏

i=1,i6=j

(1− ki

T
).

From here, we again see that unless one of the other players chooses T
as a strategy, any player is forced to choose T . Because of similarity and
as players cannot know what other players choose, the expected Nash
equilibrium for the game will be (T, . . . , T ). Hence, the N-player game
leads to selfish behavior.

2.4 On optimality and improvement of the game

Using the equilibrium derived above, every player receives zero income.
Consider the case when players behave equally. Every player chooses k
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as the strategy; let us find the maximum possible profit for a player. We
need to find optimal points for function k

∏N
i=1,i6=j(1− k

T ). The derivative
for this function is equal to (1 − k

T )N−2(1 − Nk
T ). The optimal point is

k = T
N , and the income (if all players choose that as an optimal point)

is T
n (1 − 1

n )n−1 ≈ T
n e−1. That means that at most T

e of the channel is
divided equally (utilization e−1 of the channel is a well-known theoretical
limit for shared channels). Now, to get that optimal behavior as a Nash
equilibrium for all N players we need to change the income function to
the following form Hj(k1, k2, . . . , kN ) = kj

∏N
i=1,i6=j(1 − ki

T )1{kj ≤ T
N }.

It means that we give nothing to a player who tries to use more than
T
N of the channel. Unfortunately, this is hard to implement in practice.
A known way is to add an arbiter station that jams the channel if some
player uses more than it should. In that case, the income function will
get the following form

Hj(k1, . . . , kN ) =





kj

N∏

i=1,i6=j

(1− ki

T
) kj <

T

N
,

T

N

N∏

i=1,i6=j

(1− ki

T
) kj ≥ T

N
.

Unfortunately this equation does not restrict ( T
N , . . . , T

N ) to be the
only Nash equilibrium. A player i can choose any value between T

N and
T .
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We consider the stream of tasks in Poisson manner with intensivity λ
in some information system. The service time is fixed and equal τ . The
priority for the service here is an offer which waits the maximal time.

There is a spumer who produces the sequence of the tasks with time
interval θ and attackes the system. It yields that the waiting time of the
users increases. The objective of the system is to minimize the expected
delay of the users and the objective of the spumer is opposite. We find
the expected delay H(τ, θ) which depends on the parameters τ and θ and
construct the equilibrium in this game.
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The following two-sided best-choice game is considered. There is sys-
tem with two groups of objects: computers and users. Every user has
a computational task. Computers can be ordered by power and tasks
can be ordered by computational complexity. Each user wants the most
powerful computer to solve his task. Each computer tries to get the most
computational complex task. At every stage each task randomly assigns
to the computer. If the computer is satisfied by the task’s complexity and
the user is satisfied by the computer’s power the computer solving the
task. Otherwise they try to find the suitable pair at the next stage. This
problem belongs to the class os two-sided best-choice games that appears
in different areas of biology, sociology, market models, etc. ([1],[2])

We present the multistage game with n + 1 stages in which objects
(players) from different groups randomly meet each other at each stage.
Denote x the quality of computer (power) and y the quality of task (com-
putational complexity). The initial distributions of qualities are both
uniform on [0, 1]. If they accept each other, they create a pair and leave
the game. The aim of each player is to maximize the quality of selected
object. At the last stage n + 1 the objects who don’t create the pair
receive zero.

In the paper we analyze the optimal strategies in the two-sided best-
choice problem and derive the explicit formulas for optimal thresholds.

All players from each group use the same strategy with thresholds
z1, z2, ..., zn. The distribution of players by quality is changing from stage

1The work is supported by Russian Fund for Basic Research, project 08-01-98801-
r-sever-a.
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to stage. At the beginning the distribution is uniform. The number of
the players in the each group is equal to N0 = 1. After the i-th stage the
number of the players in the each group is equal to

Ni = 2zi − z2
i

Ni−1
, i = 1, ..., n. (1)

The distribution of players by quality after the i-th stage has the
density of the following form:

fi(x) =





1
Ni

, 0 ≤ x < zi,∏i−1
j=k

zj+1
Nj

1
Ni

, zk+1 ≤ x < zk, k = i− 1, ..., 1,∏i−1
j=0

zj+1
Nj

1
Ni

, z1 ≤ x ≤ 1,

where i = 1, ..., n.
Theorem 1.
Nash equilibrium in the (n + 1)-stage two-sided best-choice game is

determined by the sequence of thresholds zi, i = 1, ..., n, which satisfy the
recurrence relation

zi = aizi−1 i = 2, ..., n,

z1 =
1
a1

(
1−

√
1− a2

1

)
,

where coefficients ai satisfy the equations

ai =
2

3− a2
i+1

, i = 1, ..., n− 1, (2)

and an = 2/3.
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A system of the real estate development optimization and game theo-
retic models is described in this paper.

A basic role in the proposed system is played by aggregate models of
a real estate development company. They are static optimization models
aimed at the definition of optimal prices with constraints on the solvent
demand.

A natural generalization of the basic model is possible in two direc-
tions: “horizontally” and “vertically”. First, an interaction of real estate
development companies as equal economic agents may be considered. In
turn, two model approaches are possible in this case. If we consider com-
petitive relations of development companies without formation of coali-
tions then non-cooperative games of n players in normal form arise. If a
cooperation is admissible (common resources, mergers and acquisitions of
development companies) then we get cooperative games.

Second, development companies have economic relations with organi-
zations of other types. These relations are hierarchical as a rule, and a
development company can be both a Leader (in relations with its sup-
pliers) and a Follower (in relations with its investors, credit institutions,
administration agencies). Respectively, hierarchical game theoretic mod-
els arise. An aggregate optimization model of a real estate development
company has a form

c©G. A. Ougolnitsky, 2009
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u =
N∑

j=1

[αj (pj) pj − cj ] Sj − C → max (1)

N∑

j=1

αj (pj) Sj ≤ Smax, 0 ≤ pj ≤ pmax
j , j = 1, . . . , N (2)

where j is an index of a real estate development project;
N is a number of projects realized by the company in the current year;
u is an annual profit of the company;
Sj is an annual volume of construction works in the j-th project (m2);
cj is a cost price in the j-th project;
pj is a sale (rent) price of 1m2 in the j-th project;
αj (pj) is a share of the sold (rented) m2 in the total amount Sj ;
C are constant expenditures of the company;
Smax is the maximal solvent demand of the company target consumer
group (m2);
pmax

j is maximal possible (“real”) sale/rent price of 1 m2 in the j-th
project.

Without loss of generality it is more convenient to consider the model
(1)–(2) for one project, i. e.

u = [α (p) p− c] S − C → max (3)
α (p) S ≤ Smax, 0 ≤ p ≤ pmax (4)

where all variables relate to the one project.
The key role in the model (3)–(4) belongs to the variable α (p) which

describes a dependence of a share of the sold (rented) m2 on the sale (rent)
price. A parametrization of the function α (p) is based on the following
assumptions:

• α (p) is a decreasing price function;

• let be αmin ≤ α (p) ≤ αmax, then α (0) = αmax, α (pmax) = αmin.

Two classes of functions α (p) were chosen for the structural identifi-
cation:
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• a linear function α(1) (p) = a p + b (a < 0);

• an exponential function α(2) (p) = a exp (−b p) (a > 0, b > 0).

Using the assumptions made above we get:

α(1) (p) = p (αmin − αmax) /pmax + αmax; (5)
α(2) (p) = αmax exp (− (p/pmax) [ln αmin − lnαmax]) . (6)

Solving the optimization problem (3)–(4) by Lagrange method we get
for the parameterizations (5) and (6) respectively:

p(1) =

{
pmax (Smax−αmax S)

S (αmin−αmax) , Smax ≤ αmax S

pmax, Smax > αmax S
(7)

p(2) =

{
pmax (ln Smax−ln αmax S)

S (ln αmin−ln αmax) , Smax ≤ αmax S

pmax, Smax > αmax S
(8)

Thus, for both parameterizations the optimal solution depends on
whether the inequality Smax ≤ αmax S is true. If the solvent demand
is less than the supply value then the optimal price is calculated as a
certain function of the model parameters. Otherwise, the company may
declare an arbitrary big price restricted by common sense only.

Let on a territory there are n real estate development companies des-
ignated by the index i = 1, . . . , n. Then a competitive interaction of the
companies is described as a non-cooperative n-players game in normal
form

G = 〈{1, . . . , n} , {X1, . . . , Xn} , {u1, . . . , un}〉 (9)

where payoff functions ui are given by the formula (1), and sets of admis-
sible strategies Xi are given by the constraints of a type (2). During the
investigation of the game theoretic model (9) the following assumptions
were studied:

1. αi = αi (p) , 0 ≤ pi ≤ pmax
i , i = 1, . . . , n,

where pmax
i is a maximal admissible sale/rent price fixed by the i-th

company for the common sense considerations independently from
others;



Real Estate Development 63

2. αi = αi

(
prel

i

)
, prel

i = pi/pmax, pmax = max {p1, . . . , pn} ;

3. Xi is defined by constraints αi Si ≤ Smax
i for each company i =

1, . . . , n independently;

4. Xi is defined by common constraints
∑

αi Si ≤ Smax for the whole
solvent demand on the territory.

In all four cases of possible combinations of the values αi and Xi a
qualitative character of the optimal solutions (7) and (8) does not change.

As the solutions (7) and (8) are dominant strategies of the player i
then vectors

p(1) =
(
p
(1)
1 , . . . , p(1)

n

)
, p(2) =

(
p
(2)
1 , . . . , p(2)

n

)
(10)

could be treated as equilibriums in dominant strategies in the game (9).
But it is necessary to notice that the players’ behavior is completely isola-
tive only in the case αi = αi (pi) , αi Si ≤ Smax

i . In other three cases to
find a dominant strategy each player must know the values of parameters
of other players. That’s why the solutions (10) are better to consider as
Nash equilibriums which allow an informational exchange between play-
ers.

Now let on a territory there are n real estate development companies
i = 1, . . . , n which can exchange information, join resources and realize
common projects. Denote Ai an amount of own resources of the i-th
development company.

Then we can formalize a cooperative interaction of development com-
panies as a weighted majority game (Amin; A1, . . . , An), i. e. the charac-
teristic function is

v (S) =

{
1,

∑
i∈S

Ai ≥ Amin,

0, otherwise.
(11)

Thus, a coalition is winning if and only if a summary amount of own
resources of its members is not less than Amin. The threshold value Amin

can be treated as, for example, a necessary deposit for a tender or credit.
The following special cases of the game (11) can be selected:



64 G. A. Ougolnitsky

1. a dictator game ∃ i ∈ {1, . . . , n} : Ai ≥ Amin, ∀j 6= i Aj < Amin.

In this case the game is unessential, v (S) = 1 ⇔ i ∈ S, the only
imputation (0, . . . , 0, 1, 0, . . . , 0) (xi = 1) exists which forms C-core,
is the only Neumann-Morgenstern solution and the Shapley value;

2. a symmetrical game of the k-th order

v (S) =
{

1, s ≥ k,
0, otherwise. s = |S| , 1 ≤ k ≤ n.

In this case the C-core is empty, the Shapley value has a form
(1/n, . . . , 1/n), an example of the Neumann-Morgenstern solution
is given by a discriminative solution
{(xi 1, . . . , xi k, 0, . . . , 0) : xi 1 ≥ 0, . . . , xi k ≥ 0; xi 1 + . . . + xi k = 1}.

An interaction of real estate development companies with a bank (let’s
suppose for simplicity that there is only one bank on the territory) is
described by the following rules.

Stage 1: preparation of the credit applications by development com-
panies.

This stage includes for each company i = 1, . . . , n:

• forming of the concepts for projects j = 1, . . . , ni;

• working out of schedules of the project works, construction works,
financing for each project;

• evaluating of own resources and cost price per 1 m2 for each project;

• exposing the credit needs and application to the bank with the re-
quest

K0
i =

ni∑

j=1

K0
ij .

Stage 2: decision making by the bank. At this stage the bank:

• analyzes the requests K0
1 , . . . , K0

n;

• evaluates of the credit risks ri for each request;
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• defines a rate of interest si = si (ri);

• makes a decision about credits K1, . . . ,Kn and rates of interest
s1, . . . , sn;

• informs development companies about the decision.

Stage 3: decision making by a development company.
At this stage each development company i = 1, . . . , n:

• specifies real amounts of the construction works and respective sched-
ules based on given credit resources Ki and rate of interest si;

• calculates the optimal price for development objects by solving the
optimization problem (3)–(4).

The following assumptions are made to build a model of decision mak-
ing by the bank:

• the credit risk is defined by the formula

ri = Ki/Ai, i = 1, . . . , n, (12)

where Ai are own resources of the i-th company, Ki are credit re-
sources assigned by the bank. Then a condition of credit apportion-
ment is an inequality ri ≤ rmax, where rmax is a banking normative
of admissible risk;

• the interest rate is an increasing linear function of the risk: si =
a ri + b = a Ki/Ai + b = ai Ki + b, i = 1, . . . , n. Let’s consider that

0 < smin ≤ si ≤ smax < 1, rmin ≤ ri ≤ rmax, s (rmin) = smin,

s (rmax) = smax.

Then we get

ai =
smax − smin

Ai (rmax − rmin)
, b =

smin rmax − smax rmin

rmax − rmin
, i = 1, . . . , n.

(13)
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Considering the assumptions made above the model of decision making
by the bank at the stage 2 is an optimization problem

u0 =
n∑

i=1

si Ki =
n∑

i=1

(ai Ki + b) Ki → max (14)

n∑

i=1

Ki ≤ K, 0 ≤ Ki ≤ Li, j = 1, . . . , n (15)

where K is a whole capital of the bank in the current year,
Li = min

{
K0

i , Ai rmax
}
. Solving the problem (14)–(15) by Lagrange

method we find the optimal values

K∗
i = min {Li, Mi} , Mi = K/

(
ai

∑
a−1

i

)
; (16)

s∗i = (smax−smin) K∗
i +Ai(smin rmax−smax rmin)

Ai(rmax−rmin) ,

i = 1, . . . , n.
(17)

The model of decision making by an i-th development company at the
stage 3 has a form (3)–(4) with an additional constraint

ci Si ≤ Ai − Ci + (1− s∗i ) K∗
i , (18)

from what we get a final value of the optimal construction works amount

S∗i = [Ai − Ci + (1− s∗i ) K∗
i ] /ci, (19)

which has to be substituted instead of S in the formulas (7)–(8) to calcu-
late the optimal prices.

Let’s consider a case n = 1. The rules described above define a hier-
archical game “Bank–Developer” in the form:

u0 (K1) = a1 K2
1 + bK1 → max (20)

0 ≤ K1 ≤ min
{
K, K0

1 , A1 rmax
}

(21)

u1 (K1, p1) = [α1 (p1) p1 − c1] [A1 − C1 + (1− s1) K1] /c1 → max (22)

0 ≤ α1 (p1) [A1 − C1 + (1− s1) K1] /c1 ≤ Smax
1 , 0 ≤ p1 ≤ pmax

1 . (23)
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The outcome (K∗
1 , p∗1), where K∗

1 is calculated by the formula (16),
and p∗1 by one of the formulas (7) or (8) after substitution of the values
s∗i and S∗i by formulas (17) and (19) respectively, is a formal Stackelberg
equilibrium in the game (20)–(23). But this game is degenerate because
Bank’s payoff function does not depend on p1 and the Bank chooses the
solution K∗

1 by solving the optimization problem (14)–(15) and is not
interested in Developer’s optimal reaction.
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Multi-Player Network Game1
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Institute of Applied Mathematical Research,
Karelian Research Centre RAS, Petrozavodsk, Russia

Abstract

In this work we present some game-theoretic models based on
player rating. We used goodness variables to encourage good behav-
ior of network players. We derive Nash equilibria for finite planning
horizon in all our models. The numerical modelling and the results
comparison are given.

1. Model with goodness function
We consider game-theoretic model based on player rating. In [2] it

was introduced a goodness function which represents player’s behavior
history as a value from (0, 1). This function presents a rating of a player
and central server takes it into consideration in the serving process.

In our model we have two players. The system starts executing at
time moment 0 and stops at T . Each player interacts only with central
server and demands some service from it. Every player has a goodness
variable xi(t) ∈ (0, 1), xi(0) = xi

0. The central server gives a player i
a service value proportional to his goodness value. A player can get at
most twice more what the server suggests. Hence the players’ controls
u1(t), u2(t) ∈ (0, 2] correspond to the factor of what server suggests to
take.

Goodness variables depend on players’ behavior and change according
to the following rule:





x′1(t) = x1(t)(1− x1(t))
(1

2
− u1(t)

u1(t) + u2(t)

)
, x1(0) = x1

0 ,

x′2(t) = x2(t)(1− x2(t))
(1

2
− u2(t)

u1(t) + u2(t)

)
, x2(0) = x2

0 ,

1The research was supported by the Russian Fund for Basic Research, project 08-
01-98801-r-sever-a
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where 0 ≤ u1, u2 ≤ 2 – players’ demands, 0 < x1, x2 < 1 – players’
goodness variables.

We can notice that player’s i goodness value has a strong connection
with player’s j control. The player’s i rating decreases at time moment t
only if uj(t) < ui(t), i.e. player’s j behavior at this time moment is better
for the central server.

Players’ net revenues over finite time horizon are:

J1 =
∫ T

0

x1(t)u1(t) dt , J2 =
∫ T

0

x2(t)u2(t) dt .

Players act non-cooperatively and wish to maximize their payoffs. We
find Nash equilibrium using Pontryagin maximum principle.
2. Model with relative goodness function

We change the model in the sense that now players determine the
goodness values for each other. Let xij ∈ (0, 1) be the relative goodness
function, i.e. player i defines a rating of player j. Of course xii = 1,
i = 1, 2, because player i thinks good about himself. Again the central
server gives a player i a service value proportional to his relative goodness
value.

Players’ payoffs are:

J1 =
∫ T

0

u1(t)
x21(t)

x21(t) + 1
dt , J2 =

∫ T

0

u2(t)
x12(t)

x12(t) + 1
dt ,

where 0 ≤ u1, u2 ≤ 2 – players’ demands, 0 < x12, x21 < 1 – players’
relative goodness variables.

Relative goodness variables change according to the following rule:




x′12(t) = x12(t)(1− x12(t))
(1

2
− u2(t)

u1(t) + u2(t)

)
, x12(0) = x2

0 ,

x′21(t) = x21(t)(1− x21(t))
(1

2
− u1(t)

u1(t) + u2(t)

)
, x21(0) = x1

0 .

For this model we also determine Nash equilibrium. Also we extend
this model for the game with three players.
3. Combined model

The last model we consider here is the combination of first two. Now
we have two goodness variables for each player: xi ∈ (0, 1) – central
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server’s rating of player i and xji ∈ (0, 1) – rating of player i which gives
him player j, i, j = 1, 2.

Here players’ net revenues are:

J1 =
∫ T

0

u1(t)
(
x1(t) +

x21(t)
x21(t) + 1

)
dt ,

J2 =
∫ T

0

u2(t)
(
x2(t) +

x12(t)
x12(t) + 1

)
dt ,

where 0 ≤ u1, u2 ≤ 2 – players’ demands, 0 < x1, x2 < 1 – players’
goodness variables, 0 < x12, x21 < 1 – players’ relative goodness variables.

Goodness variables change according to




x′1(t) = x1(t)(1− x1(t))(1− u1(t)) , x1(0) = x1
0 ,

x′2(t) = x2(t)(1− x2(t))(1− u2(t)) , x2(0) = x2
0 ,

x′12(t) = x12(t)(1− x12(t))
(1

2
− u2(t)

u1(t) + u2(t)

)
, x12(0) = x12

0 ,

x′21(t) = x21(t)(1− x21(t))
(1

2
− u1(t)

u1(t) + u2(t)

)
, x21(0) = x21

0 .

Numerical modelling was carried out for all presented models and we
compare player’s controls and payoffs.
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detections

Wojciech Sarnowski and Krzysztof Szajowski
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Technology, Poland

The paper deals with an on-line detection disorder problem (see
Shiryaev [4]) under probability maximizing of abrupt changes localiza-
tion approach to the sequences which are not necessarily i.i.d. before and
after the disruption moment. Some problems with such generalization
have been touched by Moustakides [2]. The considerations are inspired
by the problem regarding how can we protect ourselves against a second
fault in a technological system after the occurrence of an initial fault (see
Szajowski[5]). At two random moments ζ, η, where ζ < η, the distribution
of observed sequence changes. It is known before ζ and after η. Between
these instants is unknown to the statistician and chosen randomly by ”na-
ture” from a set of distributions (see e.g. Bojdecki et al. [1], Sarnowski &
Szajowski [3]). The stopping rule which stops between disorder moments
ζ and η with maximal probability is identified.
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The state inspections play an important role in the modern economy.
There are two main directions of their activity. The first one is collection
of payments to the state budget. The tax inspections and the customs
control the payment’s values and check exemptions from payments for
different economic agents. The agency should prevent tax or customs
evasion but not interfere with the agents eligible for exemption from the
payment. The second direction is concerned with prevention of the law
infringement. Police, sanitary, firework inspection and others deal with
this task. The efficiency of an inspection should be measured by the social
welfare increase proceeding from its activity.

For many countries in transition, in particular for Russia, corruption
is the most important problem in inspections’ organization. Bribery is
one form of corruption that is the most difficult to reveal. There exists a
wide literature that discusses problems of optimal inspection organization
(in particular for tax inspection) and the problem of corruption. The first
type of models (see Srinivasan (1973)) studies the interaction between the
tax authority and a group of taxpayers, whose income is random, without
taking into account the possibility of corruption. It is assumed that at the
end of the accounting period each taxpayer declares his/her income to the
tax inspectors. The reported income is taxed according to the given tax
rates. However, a taxpayer may try to hide some part of income by under-
reporting. If the taxpayer is audited, the inspector will inevitably uncover
the true level of income. The detected tax evader is fined and made to
pay the evaded tax. Further, it is assumed that auditing is costly and that

1The research was supported by Grant of the President of the Russian Federation
#693.2008.1 and by Grant of Russian Foundation for Basic Research for project #08-
01-00249.
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the central authority is interested in maximizing net tax revenue (i.e. the
sum of taxes and penalties minus expenditures on audits) given the tax
rates, fines and the costs of auditing. In the case of a homogeneous group
of taxpayers, the only taxpayer-specific information available to the tax
authority is the declared incomes. Thus, the authority must determine
the probability of audit, using these declarations. The purpose of this
model is to find the optimal auditing rule given the tax rates and income
distribution.

Chander, Wilde (1992) and Vasin, Panova (2000) extend the previous
model by taking corruption into account. The model assumes that a tax
inspector, which has discovered an instance of tax evasion, may bargain
with the detected evader over the size of a bribe given in exchange for
not revealing the evasion. In order to prevent this kind of corruption,
the authority chooses to review some of the inspectors’ audits and fires
those inspectors who have not reported tax evasion. Thus, the authority’s
problem is to choose the frequencies of both levels of audit - the audit
of taxpayers by inspectors and the review of audits from the center as
well as inspectors salary. There are two variants of the optimal strategy
depending on parameters of the model:

1. If the ratio of the audit cost to the cost of reviewing is above some
threshold then the optimal strategy includes threshold probabilities
of auditing and reviewing that make corruption and tax evasion
unprofitable.

2. If the ratio is below this threshold level then it is optimal to cancel
reviewing and increase the auditing probability to such value that
tax evasion turns out to be unprofitable in spite of the possibility
for bribing.

However, realization of these variants meets the following difficulties:

1. The first variant assumes that there is a possibility to hire sufficient
number of honest collaborators for reviewing, but actually the cen-
ter typically has very few reliable collaborators and their time is a
very expensive resource. Thus, this variant may be impossible or
inefficient.



Organization of the state inspections and suppression of corruption 75

2. As to the second variant, the lack of control creates incentives for
cooperation among inspectors in order to reduce the actual auditing
probability to such value that maximizes the total amount of bribes.

An alternative approach is to form a controlling hierarchy that sup-
presses corruption at all levels. Consider a country where a benevolent
leader aims to organize an efficient tax collection. There are N firms,
each gets high or low income with probabilities h and 1− h respectively.
The additional tax from the high income is T and the penalty for evasion
is F . For the inspection, the leader can use a small number M of reli-
able collaborators and also employ any number of rational inspectors who
maximize their expected incomes with account of possible salaries, bribes
and penalties. Salary sM (per one audit or review) permits to employ
a sufficient number of such inspectors, and c̃ is the cost of one audit by
a reliable collaborator. Consider a strategy of the tax inspection orga-
nization. It includes probability p0 of primary audit for any low-income
declaration. In order to prevent bribing of a primary auditor, any report
confirming low income is under reviewing (first-level audit) with proba-
bility p1. And so on, any i-level audit confirming the low income is under
reviewing (i + 1-level audit) with probability pi+1 until the upper level
k where honest collaborators work. A salary of an i-level inspector is
si ≥ sM . Each revealed inspector which has not reported tax evasion is
fired and gets after that alternative salary salt. This value is uncertain:
we assume that salt ∈ (sM − ∆, sM ). Thus, a government strategy in-
cludes the number k + 1 of audit levels, auditing probabilities p0, . . . , pk

and salaries s0, . . . , sk at each level.
A formal problem is to find the optimal strategy that provides honest

behavior of all agents and maximizes net tax revenue under this condition.
Note that, for risk-neutral inspector, firing as equivalent to monetary fine
F̃ = (s − salt)α, α = δ/(1 − δ), where δ is a discount coefficient. Let
di = si − sM denote the increment of the salary at level i above the
maximum alternative salary.

Proposition 1 Assume that auditors at level i check honestly. Then mu-
tually beneficial collusion between i − 2-level inspector and his auditor is

impossible if and only if pi ≥
di−2 + ∆

di−2 + di−1 + ∆
for i = 2, . . . , k. Tax eva-

sion is unprofitable if and only if p0 ≥ T/F and collusion between taxpayer
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and his auditor is impossible if and only if p1 ≥
F

F + d0α
. (*)

Proposition 2 The subgame perfect equilibrium corresponding to the hon-
est behavior in the interaction of inspectors and taxpayers exists if and
only if the government strategy meets the inequalities in the previous
proposition. The net tax revenue at such equilibrium is as follows:

R(k,
−→
d ) = hT − p0(1− h)·

·(sM + d0 + p1(sM + d1 + p2(· · ·+ pk−1(sM + dk−1 + pk c̃) . . . ).

Consider the following example. The additional tax from the high
income is 10 000 and the penalty for evasion is 80 000. The number of
taxpayers is 100 000, the probability to get high income is h = 0,5. Reli-
able collaborators get 100 000 per one check. Salary sM equals 150 and
∆ equals 100, so salt ∈ (50, 150). Each auditor can make 60 inspections
or revisions per year. So his alternative salary per year lies between 3 000
and 9 000. Let a discount coefficient δ equal 0,1.

The following table shows the net tax revenue and auditing expenses
for optimal salaries, probabilities and different number of auditing levels.

Number of Net tax revenue Auditing expenses Number of employed
auditing levels honest collaborators

2 181 940 000 318 060 000 1863
3 459 222 000 40 778 000 200
4 480 532 000 19 468 000 62
5 488 653 000 11 347 000 25
6 491 774 000 8 226 000 12
7 493 424 000 6 576 000 6
8 494 215 000 5 785 000 4
9 494 695 000 5 305 000 2
10 494 947 000 5 053 000 2

According to this data, the 6-level inspection organization cuts down
auditing expenses 40 times with respect to the base model with 2 levels.
Moreover, the necessary number of honest collaborators also decreases by
150 times. So even a small number of honest collaborators can provide
an efficient tax audit.
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Abstract

Sufficient conditions for strong equilibrium to exist in a differ-
ential game with stochastic controllable dynamics are formulated.
An example is proposed, where linear-quadratic game was solved
by reducing it to the optimal control problem.

1 Problem statement

Consider stochastic differential game with many players Γ(x0, T − t0).
Initial state is x0 and the duration is T − t0, where t0, T — moments
of beginning and ending of the game. Denote a set of players as N =
{1, . . . , i, . . . n}, n ≥ 2. Stochastic dynamic is:

dx(τ) = f(τ, x(τ), u1(τ), . . . , un(τ))dt + σ(τ, x(τ), u1(τ), . . . , un(τ))dz(τ),
(1)

where x(t0) = x0, z(τ) is a state of Brownian motion [1, 2, 3], x(τ) ∈ R
is a game state variable, ui(τ) — player’s i ∈ N control at the moment τ,
ui ∈ Ui ⊂ R,

∏
i∈N

Ui = UN ⊂ Rn.

Suppose that functions f(τ, x(τ), u1(τ), . . . , un(τ)),
σ(τ, x(τ), u1(τ), . . . , un(τ)) are continuously differential on [t0, T ] × R ×

c©N. A. Zenkevich, A. V. Zyatchin, 2009
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UN . Let the object of every player i ∈ N is a maximization of expected
value of the functional [4,5]:

max
ui

Et0




T∫

t0

gi(τ, x(τ), u1(τ), . . . , ui(τ), . . . un(τ))dτ + qi(x(T ))


 , i ∈ N

(2)
where gi(τ, x(τ), u1(τ), . . . , ui(τ), . . . un(τ)) and qi(x(T )) — continuous
functions.

Consider games with perfect information [5]. We will find a solution
in the class of feed-back strategies. A feed-back strategy ϕi(τ, x(τ)) of
player i has following program realization: ui(τ) = ϕi(τ, x(τ)), ui(τ) ∈ Ui,
τ ∈ [t0, T ]. Let S ⊂ N is an arbitrary coalition in the game Γ(x0). Denote
strategy of coalition S as ϕS(τ, x) = (ϕi(τ, x))i∈S ∈ ∏

i∈S

Ui = US ⊂ Rs,

τ ∈ [t0, T ], s = |S|. Let ϕ(τ, x) = (ϕ1(τ, x), . . . ϕn(τ, x)) is a situation in
feed-back strategy. A payoff of the coalition S is a sum of payoffs:

JS(x0, ϕ(τ, x)) =
∑

i∈S

Ji(x0, ϕ(τ, x)) =

Et0




T∫

t0

gS(τ, x(τ), ϕ(τ, x))dτ + qS(x(T ))


 ,

where gS(τ, x(τ), ϕ(τ, x)) =
∑
i∈S

gi(τ, x(τ), ϕ(τ, x)).

We use strong equilibrium optimality principle as a solution of the
game Γ(x0, T − t0) [6, 7].

Definition 1 A couple {ϕ∗1(τ, x), ϕ∗2(τ, x), . . . , ϕ∗n(τ, x)} , τ ∈ [t0, T ] we
will call Strong equilibrium in the game Γ(x0, T − t0), if for any coalition
S ⊂ N, S 6= ∅ and strategy ϕS(τ, x) ∈ US the following inequalities take
place:

Et0




T∫

t0

gS(τ, x∗(τ), ϕ∗S(τ, x), ϕ∗N/S(τ, x))dτ + qS(x∗(T ))


 ≥
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≥ Et0




T∫

t0

gS(τ, x[S](τ), uS(τ), ϕ∗N/S(τ, x[S]))dτ + qS(x[S](T ))


 ,

where

dx∗(τ) = f(τ, x∗(τ), ϕ∗S(τ, x), ϕ∗N/S(τ, x))dτ

+ σ(τ, x∗(τ), ϕ∗S(τ, x), ϕ∗N/S(τ, x))dz(τ),

x∗(t0) = x0.

dx[S](τ) = f(τ, x[S](τ), ϕS(τ, x[S]), ϕ∗N/S(τ, x[S]))dτ

+ σ(τ, x[S](τ), ϕ[S]
S (τ, x[S]), ϕ∗N/S(τ, x[S]))dz(τ),

x[S](t0) = x0.

2 The results

Theorem 1 Suppose that for any coalition S ⊂ N, S 6= ∅ there exist dou-
ble continuous-differentiable functions V [S](t, x) and a couple
{ϕ∗i (t, x(t)) ∈ Ui, i ∈ N} , satisfying the following system of
Bellman-Isaaks equations:

V
[S]
t (t, x[S]) + max

uS

{
1
2
σ2

(
t, x[S], uS(t), ϕ∗N/S(t, x[S])

)
V [S]

xx

(
t, x[S](t)

)
+

+f
(
t, x[S], uS(t), ϕ∗N/S(t, x[S])

)
V [S]

x

(
t, x[S]

)
+

+ gS

(
t, x[S], uS(t), ϕ∗N/S(t, x[S])

)}
=

= V
[S]
t (t, x∗) +

1
2
σ2 (t, x∗, ϕ∗(t, x∗)) V [S]

xx (t, x∗)+

+f (t, x∗, ϕ∗(t, x∗)) V [S]
x

(
t, x[S]

)
+ gS (t, x∗, ϕ∗(t, x∗)) = 0
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with dynamics

dx∗(t) = f (t, x∗, ϕ∗(t, x∗)) dt + σ (t, x∗, ϕ∗(t, x∗)) dz,

x∗(t0) = x0, uS(t) ∈ US , V [S](T, x[S]) = qS(x[S](T )).

then for any initial conditions [t0, x0] the couple {ϕ∗i (t, x(t)) ∈ Ui, i ∈ N}
constitutes strong equilibrium in (1)-(2).

Consider an example of linear-quadratic stochastic game, where the
solution was found by reducing an original statement to optimal control
problem.

Example. Consider a differential game with dynamics

dx(t) =

(
ax +

3∑

i=1

biui

)
dt + σxdz, x(t0) = x0, (3)

where ui ∈ R; a, bi, σ — are known parameters, i ∈ N.
The objective function of player i ∈ N = {1, 2, 3} is

Ji(x0, u) =

Et0

[
T∫

t0

(
ri(t)−

3∑
i=1

hiu
2
i + x

3∑
i=1

ui − x2

4

[
1
h1

+ 1
h2

+ 1
h3

])
dt + hx(T )

]

where ri(t) — continuous on [t0, T ] function. A payoff of the coalition S
is a sum of players’ i ∈ S payoffs. Then in the game (3)-(4) there exists
strong equilibrium.
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