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Foreword
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Mathematical Research KarRC RAS, Petrozavodsk, Russia, June 28-30,
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The emphasis of the seminar is on the following topics:

e networking games and management,

e optimal routing,

e price of anarchy,

e auctions,

e negotiations,

e learning and adaptive games, etc.

16 papers from Finland, Japan, Poland and Russia were submitted
and included into the volume.
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A game theoretical model of tax
auditing with using a statistical
information about taxpayers

V. M. Bure, S. Sh. Kumacheva

St.-Petersburg State University, Saint-Petersburg, Russia

At the heart of this model there is the hierarchical game ([5]), in
which tax authority and finite number of taxpayers are players. Due to
the tradition, founded by [2], [3], [6] we will consider the interaction of
the tax authority to each taxpayer due to the scheme principal-to-agent.

There are n taxpayers, each of them has an income iy, where k = 1, n.
Taxpayer k can declare his incomes level r;, and 7, < iy, for every k = 1, n.
Let ¢ be tax rate m — penalty rate; they are measured as the parts of some
amount of money. Tax auditing of the taxpayer k is made by the tax
authority with probability px, where k¥ = 1,n. The model is built in an
assumption that these probabilities are known by taxpayers. Audit is
supposed to reveal evasions always.

As a result of a tax audit, that revealed a tax evasion, the taxpayer
must pay the underpaid tax and the penalty; both of them depend on
the evasions level. Four kinds of penalties are known from papers [2],
[3]. In the simplest case, when the penalty is proportional to evasion, the
taxpayer k must pay: (t + 7)(ix — 7). The expected tax payment of the
taxpayer k is:

U = try -‘rpk(t + 7T>(’Lk —Tk),

where the first summand is always paid by the taxpayer (pre-audit pay-
ment), and the second - as the result of the tax auditing, made with
probability pr (post-audit payment). The expected payoff by of the tax-
payer k is:

© V. M. Bure, S. Sh. Kumacheva, 2009
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b = i — up = i — tr — pr(t + ) (ix — 7).

Every taxpayers aim is to maximize his payoff function by.

Let ¢ be the cost of one audit. The tax authoritys net income consists
of taxation (taxpayers payments corresponding to their declared income),
taxes on the evasion level and penalties (as the audit results) less total
audit cost. Being the sum of tax payments got from every taxpayer, the
expected tax authoritys net income can be calculated as the difference
between expected tax payments of n taxpayers and expected cost of audit
of n taxpayers:

n

R=Y Ry=Y (up—cx) =Y (trx+pi(t+m)(ix — i) + pro).
k=1

k=1 k=1

The tax authoritys aim is to maximize its expected income R.

A taxpayers strategy is to make a decision to evade or not to evade, i.e.
to declare ry, < i or rp = ix. A tax authoritys strategy is to choose the
optimal (in order to maximize the income) combination of the quantities
(t, pi, pr) — some optimal contract ([2], [3]).

This game is considered in assumption the players are risk neutral.
Therefore, making decision to evade or not (choosing the strategy), the
taxpayer compares the quantities tiy, (profit less taxes as a result of declar-
ing of the true income) and wuy (the expected loss as a result of auditing)
and then models the best answer on the tax authoritys expected actions
in every situation.

Much more difficult is to estimate the tax authoritys expected income:
it doesnt know the exact meaning of every taxpayers true income. Taking
in consideration this circumstance, several mathematical models ([1], [2],
[3], [6]) consider as an additional factor in choosing a strategy of the tax
authority the disposed information about taxpayers income distribution
or statistical information about each taxpayers income as a result of mon-
itoring. This model assumes the probability of taxpayers tax evasion is
beta-distributed. In analogy of a credit story a taxpayers jjtax story;,,
is considered — Bernoulli-distributed replicate sample, which characterize
a taxpayers behavior in the previous tax periods (tax authority has such
information as a rule). Then, using the feature of conjugate families of
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distribution, the tax authority can conclude, that the taxpayer k audit is
necessary and choose the appropriate probability

Taking into consideration the last feature we built and analyzed the
graphics of players payoff functions, depending on audit probabilities
br(pr) and Rk (pg). The optimal (in order to maximize the payoff func-
tions) strategies and equilibrium are found.
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Equilibria in Bayesian Splittable
Traffic Routing Game

Julia V. Chuyko

Institute of Applied Mathematical Research,
Karelian Research Centre RAS, Petrozavodsk, Russia

E-mail: julia@krc.karelia.ru

Consider Bayesian routing game I' = (n,m, f, T, p) in network with n
selfish users and m parallel links, where each user chooses his route trying
to minimize the expected delay of his own traffic he send. Delays are
based on player-specific capacities fi.(z) = a;ex. Each user has a set of
traffic types T; and a joined distribution p(t1, .. ., t,) of users’ traffic types
is known. Traffic amounts w;(t) we suppose to be encoded in 7. In the
model each user i knows only his traffic type ¢; that he is going to send and
joined type distribution, so he can find conditional distribution depending

on his traffic type p(t1,...,ti—1,tit1, .., taulti =1) = W, where

p(i,t) = > p(t1,...,t,) is a probability that user ¢ sends traf-
(t1,0tn) ET =t

fic of type t.

Strategies profiles in the game are x = {ﬂffe}ie[n],ten,ee[m] where xt¢

is i-th user’s traffic of type ¢ to send it throw link e. They must be
non-negative and > z!¢ = w;(t).

e€[m]
An  expected load of link e we can find as
Oc(x,p) = > plt1, . ytn) D xfe Since user doesn’t know traffic
(t1,estn)ET i€[n]

types that others send, he need to use conditional expected loads to de-

fine his costs depending his own behaviour. Conditional expected load of

link e is &.(x, (p|ty = 1)) = 6, %(z, (p|tr = t)) + 2L, where 5% (x, (p|ty, =

t)) = > P(t1y .o thot,thrt, - tnlts =1) > xk€is con-
(t1,eenstn)ET tp=t i€[n]\{k}

ditional expected load from other users than k.

©J. V. Chuyko, 2009
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So, conditional expected costs for user k sending traffic of type ¢ are

V) (T, p) = e[rr]1a>t<e>0 fre(de(z, (p|ty = t))) and his expected costs are
ec|m :flfk

PCy(x,p) = ; p(k, t)v (2, p). Note that each component of the sum
=

doesn’t depend on other traffic types of the user k.

The objects of the research are equlibria: Wardrop Equilibrium, that
always exists and can be found using potential function, and its special
case Bayesian Wardrop Equilibrium, that can be more easily understood
by users, but its existence is an open question.
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CereBnle UTPbI 1 UI'PBI Ha CEeTdX

M. B. I'yoko, /1. A. HoBukos, A. I'. UYxaprumpsuim

Vupexnenne Poccufickoit akajgemMun HayK
WNuctrTyT npobsieM yupaBiaeHust
um. B.A. Tpanesuurkosa PAH, Mocksa

Urps1 u rpadbl. Mexay TaKuMy pa3BUTHLIMA PA3AETaMU TPUKIAI-
HOH MATEMATHKM, KAK TEOPUSA UIP W Teopusi rpadoB, CyIIECTBYET IJIy-
60oKast B3aUMOCBA3b. MOKHO NMPUBECTH MHOMKECTBO MPUMEPOB HCTOIB30-
BAHWs KOHCTPYKIWI W Pe3yJILTATOB TEOPHHU IPadOB B HIPOBBIX TIOCTAHOB-
Kax: JIEPEBO 3aJaeT CTPYKTYPY NPUHATHUSA PEIICHH B UTPE B PA3BEPHY TOH
dopwme [11]; rpad (BepiiuHbI - UTPOKH) 32/12€T CTPYKTYPY BO3MOMKHBIX KO-
anmuuuii [14]; Ha rpade B IUCKPETHOM BPEMEHU OCYIIECTBIISAETCS <UIPa 110~
UCKa» (BEpIIMHBI — TIO3ULUA UTPOKOB, PEOPa — BO3ZMOKHBIE ITYTH MEPEXO-
1oB) [10]; opuenTHPOBaHHBIH Tpad ONUCHIBAET, OT YbUX JeHCTBHIA 3aBHCAT
BLIMIPBINKU areHToB (i peasusyemoctu papHoBecus Hsma mocrarodno
cBaznoctu rpada), B Gosee obiiem ciaydae rpad OTpaXkKaer CTPYKTYPy
uH(MOPMUPOBAHHOCTH UTPOKOB [9] mitk CTPYKTYPY KOMMYHUKAIUIA MEXK Ty
numu [8]; rpad orpazkaer HocrosiHHbIE WM BpeMeHHble cBs3u (uHbop-
MAIMOHHBIE, TEXHOJOIMUECKUE, TOMYNHEHHOCTH U T.I.) MEKIY UIPOKAMU
[7]...

Ceresble urpbl. OTIETBHO CIEAYET YyIOMAHYTh TEOPHIO CETEBBIX TP
— OTHOCHTEJILHO MOJIO0H (pasBuBatonuiica ¢ koHua 70-x rogos XX Be-
Ka) pa3jie] TEOPUM UID, AKIEHTHPYIOIIWi BHUMaHUe Kak pa3 Ha ¢op-
MUDPOBAHWH CTPYKTYP — YCTOWYMBLIX CBA3CH MEXKIy UTPOKAMU — B YCJIO-
BUSIX HECOBIIAJIEHUS] MHTEPECOB U/MIN PA3NUIHON MHDOPMHPOBAHHOCTH
nocrenuux (cM. 0630ps [3] u [13]).

Komnenmuu penenns ceTeBbIX UTP YAAIHO COYETAIN B Ce6e 3TIEMEeHTBI
KOOIEPATHBHOTO M HEKOONIEPATUBHOTO TIOIXOI0B — CIENn(UKA 3312491 1103~
BOJIsLIIA PACCMATPUBATH TOJbKO LIAPHBIE B3aUMOILHCTBUA (<«KOAJIULUU»> U3
JIBYX UrpokoB) [13]. B To ke Bpemsi, MpUMeHEHNEe TAKUX WID B SKOHOMH-
YECKUX 33a9aX TTOKA3AJI0, YTO MEPEUUCICHA CBI3€H 3a9aCTyI0 HEJ0CTa-
TOYHO JIJIsi ONUCAHUS CATYAIAH — KazKAas CBA3b «OTATOIMIEHA» HAGOPOM

(© M. B. I'y6ko, /1. A. Hosukos, A. I'. Uxaprumsuiu, 2009
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YMCJIOBBIX l1IapamMerpoB (Haupumep, o6beMaMyU U LEHAMU 11€PEJABACMbIX
TOBAPOB B Urpax GOPMUPOBAHUS TOPTOBBIX cereil [4]), TaksKe sIBIISFOIINX-
Cs CJIEICTBHEM BBIOOpPA WIPOKOB. MOJENBIO CeTH MPU ITOM CTAHOBUTCS
B3BEIEHHDIH rpad, a CrIenu@UKOil CeTEBBIX UTP, OTANYIAIONIEHR UX OT <UD
BOODIIE» OCTAETCH TO, YTO BHIOOPHI U BBIUTPBIIIN UT'POKOB OIMUCHIBAIOTCS
XapaKTepUCTUKAMU [OIAPHBIX B3auMozeiicTBuil (cBa3eil) Mex Ly UIPOKa-
M.

Urper Ha ceTax. B nociennne rompr BCe Haille MOSBISIIOTCS COIED-
JKaTeJIbHbIE TTOCTAHOBKY 331849 ONMNCAHUS U UCCJIEIOBAHNUS TAKOTO B3aUMO-
JeHCTBIST MIPOKOB, YTO PE3YJIbTAT UX B3AUMOICHCTBYS (MU CBA3DL MEXK LY
BBIOMPAEMbIMU JeHCTBUAMY UM CTPATErMSMU M BBHIMIPBIIIAME) OIIPEIe-
JISTeTCsl TOM MM MHOM «ceTeBoii» (Teoperuko-rpadosoil) Mmoaenso. Takoro
poma urpsl OyeM Ha3bIBATH uzpamu wa cemax. llpuBegem nBa mpumepa.

«Koznumusenvie uzpvi» [6], B KOTOPBIX KOTHUTHBHAS KapTa [12] — B3Be-
[IEHHBIH OpUeHTUPOBaHHbI rpad (ero BepmnHaMu sABIAAIOTCH (HAKTOPDI,
3HAYEHUs KOTOPBIX M3MEPSIOTCS B HEIPEPLIBHOW WJH HEYETKOM MIKAJe, a
B3BeITeHHBIMA WK (DYHKIIMOHAJIBHBIME TYTAMU OMUCHIBAETCST B3AMMOBJIH-
sirve GaKTOPOB) — UCIO/IB3YETCS [l yUeTa NPUIMHHO-CIEACTBEHHBIX CBS-
3eil ¥ B3anMOBIMAHNS (DAKTOPOB, & TAKKe [T MOJSTUPOBAHNUST TUHAMUKHA
crmabodopmanu3yeMbix cucreM. Hampumep, OmmrcaB B3amMOCBA3b MEXKIY
daKTOpaMu B BHIE CUCTEMBI JUHEHHBIX nuddepeHnaabHbIX yPaBHEHMIT
BTOPOTO TIOPSIIKA W 3371aB HavaJIbHbIe 3HAUEHHUsT, MOYKHO aHAJIN3UPOBATH
IUHAMUKY (PAKTOPOB, «YCTAHOBUBINIUECH> 3HAUEHUS U T.I., PACCMATPHU-
Bas BCE 3TH ACMEKTHI C TOYKHU 3PEHUS JIUIl, 3aNHTEPECOBAHHBIX B TOM WJIU
WHOM PA3BUTUN CUTYAIUH, WIH UCCTIETyd HECOBIAIEHUE e PA3THIHBIX
cyobexkTon. Mmest Momenb CBA3M MeXay (paxTopamMu MOXKHO PacCMaTPH-
BaTh UI'POBYIO MMOCTAHOBKY — IIyCTh UI'POKU MMEIOT BO3MOXKHOCTH BJIMATH
Ha HAYAJIbHBIE 3HAUEHUsT (DAKTOPOB (HAITPUMED, JJIsl KayKJIO0r0 UIPOKa, 3a-
JIAHO MHOZKECTBO <«KOHTPOJIMDYEMBIX» UM (DAKTOPOB), & MX BBIUTPBIIIN
3aBUCAT OT «YCTAHOBUBINUXCHA» 3HadeHmil (hakrTopos. llpumep auneitHoi
UIPbI TAKOI'O POJIA PACCMOTPEH B [6].

«Hepo na coyuaavror cemars [2], B KOTOPHIX BEPIIHHAMH SBIISIOTCS
AreHTbl — YYaCTHUKHU COIIMAJIbHON CeTH, a B3BEIIEHHbIE AYT'U OTPAXKAIOT
CTeleHn UX «J0Bepusy aApyr Apyry. Muenue xaxaoro arenra GopMupy-
ercs 110/l BJIUAHUEM ero Ha4aJIbHOI'O MHEHUs UM MHEHUI JIDYI'UuX areHToB C
YUETOM UX JIOBEPUsl APYT APYrY (IMHAMHUKA MHEHUH OMUCHLIBAETCS CHUCTE-
MOl uHeHHbIX Aud depeHImaibHbIX ypaBHEHUH IepBOro mopsiaka). Ilo-
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MUMO Ar€HTOB, B MOJEJUA CyIIECTBYIOT UI'DOKU, KOTOPbIE MOLYT BJIAATH
Ha areHTOB M WX B3auMojelcTBre. 3Has CBSI3b MEXK/IYy HAYAJIbHBIMU MHe-
HUSIMH, & TAK¥XKe CTPYKTYPOIl COIMUATBHOM CETH, U UTOTOBBIMU MHEHUSIMHU,
MOXKHO CTaBUTH W PEIIaTh 337349y (GOPMUPOBAHUSA WTPOKAMHU TAKUX Ha-
YaJbHbIX MHEHUI y AreHTOB U TaKUX CBA3el MeXK/y HUMH (BKJIIOYas Kak
CTPYKTYDY, TAK U CTeleHH JOoBepusi), Koropbie Obuin Obl paBHoBecueM (B
TOM WJIM WHOM CMBICJIE) COOTBETCTBYIOIIEH UTDHL.

Ob6uuM 11 TPUBEIEHHBIX JIBYX MPUMEPOB, Ja U, TOKAJIYH U JIJIsT APY-
TUX WTP Ha CeTax, sBasgercs ciaenyioiiee. CBI3b MeXKIy AHCTBUIMHU UT-
POKOB ¥ PE3YJILTATOM, KOTOPBIH OlIpe/iesisieT UX BhIUTPBIIIN, OMUCHIBACTCS
B PaMKax JIOCTATOYHO ITPOCTON CeTH JUHAMUYEcKOi cucremoii. Jlasbine
BCE CBOJIWTCS K AHAIN3Y CBONUCTB AUMHAMUYECKON CHCTEMbI, & 3aTeM — K
TOW MJIM WHOW KJIACCUYECKON TeOPEeTUKO-UI'POBOIL 1mocTaHoBKe (B 0bIiem
cilydae — K JIUHAMUYECKOH urpe [6]).

BsauMmocBa3b MexKAy UTpaMM Ha CeTAX U ceTeBLIMM Urpamm’.
Paznumume mexky cereBbIMU UIPAMH M UI'PAMH HA CETAX COCTOUT B TOM,
YTO B MEPBBIX TIPEIMETOM BHIOOPA WI'POKOB SIBISIOTCS TT€peMeHHBIe, OT-
HOCAIIINECH K NapHOMY B3aMMOJEHCTBUIO MeXKly UI'DOKAMU, a B UI'pax Ha
CeTsx — NepeMeHHbIe, OIUChIBAIOIINE BEPIIMHLL CeTd (3HaueHust (haKTOPOB
B WrpaxX HAa KOTHUTHBHBIX KAPTaX, MHEHUA Ar€HTOB — B UI'PAX HA COIH-
ANBHBIX ceTsX...). OQHAKO CUuTas «BEPIIUHHBIE» IIEPEMEHHBIE OTHOCHI-
MIUMUCS K TETIIM B3BENeHHOro rpada, 3TH MOJean MOKHO GopMaThHO
obbeunuTh. [loTh3a e 0T TAKOro OObLeIMHEHUSI BEJUKA, MOCKOJIbKY BO
MHOrUX urpax ¢hopMUpOBaHus cerell (Hanpumep, B Mojessax uHGOpMa-
[MOHHBIX KOMMYHUKAIMII B MHOrOareHTHbIX cucremax [1]) miua pacdera
BBIUTDBITIEHl UTPOKOB TPEOYEeTCs MPUBIEKATH MOJENb CETEBON ITUHAMUKHA,
KakK U B urpax #a cergax. Obbeunenne MoJiesieil MpuBeIeT K ABYXITAIHON
Wrpe, Ha TIEPBOM 3Tare KOTOPOil Urpoku (hOPMHUPYIOT ceTb, a Ha BTOPOM
JTarne UCHOoJAL3YI0T ChOPMUPOBAHHYIO CeTh JJIs Tepeiadn HHMOPMAINH,
DPECYDCOB U T.JI. B COOTBETCTBUU C KOHIIEIIUEH UID HA CETHX.

B joksiazie Takyke paccMaTpPUBAIOTCS ITOT U JIPYTHE BO3MOMKHBIE CIIO-
coDbI 00bEIVMHEHNS [BYX ONUCAHHBIX KJACCOB WD, MPUBOIUTCS OOINast

I Tepuun «ceTesbie urpsl» (network games) Bce walme 3aMeIaeTCss TEPMHHOM «HT-
per hopmuposanus cereits (network formation game), Gosee COOTBETCTBYOIUM CyTH
WUIDBI, Pe3YIBTATOM KOTOPOH SBJISIETCSI CETh, CBA3BIBAIOINIAS UTPOKOB. DTa TEHAEHIHS
uMeeT CBOe OOOCHOBAHEE — CETEBBIE UIPHI MOT'YT PACCMATPHBATLCS KAK BKJIIOUAIONINE
B cebs Urpsl GOPMUPOBAHUS CeTell M UI'DBL HA CeTHdX, IPHYeM B IOCIEeJHHX CeTh (PpuK-
CHpOBaHa.
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ITOCTAHOBKA 33341 yIIpaBjeHus: (GOPMUPOBAHUEM ceTell, (POPMYyIupyeTcs
Pl collepzKaTebHBIX MOJesiell M OMUCHIBAIOTCA PE3YJIbTaThl UX MCCIIEI0-
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TeOpeTI/IKO—I/II‘pOBbIe 3a1a91
yYiipaBJjieHUuA B JIMHEMHbIX ConaJiIbHbIX
ceTdx

J.A. T'y6anos, A.I". Uxaprumsuiu

Vupexaenne Poccuiickoit akageMun HayK
WNucturyTt mpodiaem ynpasBieHus
uM. B.A. Tpanesnuxkosa PAH, Mocksa

Commasbable cetn. ConuanbHas ceTb — 3TO rpad, BEPIIHHAMH KO-
TOPOTO SBJSIOTCS WHAWBUIAYYMBI, & PeOpaMU — CONMATbHBIE OTHOIIEHUST
Mexk Ty HuMu. COIMaIbHBIE CETH CYIECTBOBAJIN BCEI/IA B UETOBEYECKOM
olIIiecTBe, X MOJETH UCIOMB3YIOTCA, HAPUMED, B PA3TUIHBIX HAITPAB-
JleHuax dkoHoMudeckoro anasnumsa (cm. [1]). C passuruem Hurepnera n
TAK HA3BIBAEMBIX OHJIAMHOBBIX COMANBHBIX ceTeil (Takux Kak Livejournal
— www.livejournal.com, Xabpaxabp — habrahabr.ru u np.) ux posb, no-
BUINMOMY, OyZeT BO3PaCTATh.

N3 coumnanbuoil ncuxosoruu (cMm., Hanp., [2]) W3BeCTHO, Y4TO MHEHUE
HHAMBHIYYMa B COIMAJBHON CeTH B 3HAYUTENBHON MeEpDe OIpenessaeTca
MHEHWEM BJIMSATEILHBIX JIJIsT HEro cocesiedl. 3Hast 3T0, HEKTO 3a TpeeaaMu
CeTH WM BHYTDHU Hee JJisi TOCTHKEHWsT CBOUX IENefl MOMKET TOTBITATh-
Cs1 I3MEHNTb MHEHUS HeGOBITOTO MHOKECTBA KJTIOYEBBIX TTOIh30BATETeH
B TIOMYJISAPHBIX OHJAHHOBBIX CONMMAIBHBIX CETAX, MOCPEICTBOM KOTOPBIX
IPOM30IAET pacIpoCTPpaHEHNEe MHEHN 10 Beei ceru. IIpeamerom JamHOTO
JIOKJIATA STBJSIETCS (DOPMUPOBAHNE MHEHWH B COIMAJBHONW CETH, MOIEIH-
pyeMoe Ipu MOMOIIY MapKOBCKUX Merel (0 MApPKOBCKUX HENsX CM., HAID.,

. VIII [3]).
HenocpencTBeHHOEe M KOCBeHHOE BJiiugHUE. [IycTh 371€MEHTHI 13
muoxkectsa N = 1,...,n — arentsl — 00pa3yoT couuanbHyio cerb. O60-

3HAMMM HEOTPULATE/bHBIM YUCJAOM t;; CTELeHb JOBEPUs {-I0 AreHTa j-My
(cTerneHp BIAMSHUS j-TO areHTa Ha 4-T0). 37eCh U Jlajee Mbl HyIeM rOBO-
PHUTh KaK O BIHsHHW, TaK ¥ O JOBEpUH. ByJeM cumTarh, 9TO 5TH JBa

© J.A. I'ybanos, A.T. Uxaprumsuiu, 2009
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[OHSATHUSI COOTHOCATCS CJIEAYIOMUM 00Pa30M: BbIPAKEHHUE «CTEIEHDb JJOBE-
pHs I-TO areHTa j-My paBHa t;;j» TOXKJIECTBEHHO II0 CMBICIY BbIDaXKeHUIO
«CTeleHb BIUSHUS j-TO areHTa Ha (-ro paBHa t;;». Marpumy t = (t;;)
OyJeM Ha3bIBATH MATPUIEH HEOCPeICTBEHHOIO NOBepus (BJIUSHUA).

JloBepre B COIUAJLHON CeTH MOYKHO HAVIATHO M300paykaTh B BHUIE
CTPEJIOK C BECAMHU, COEJMHSIIONIUX BEPIIHUHBI (HAIIPUMED, CTPEIKA OT i-
ro arelTa K j-My C BecoM l;; O3Hadaer, 9YTO COOTBETCTBYIOUIYIO CTeIeHb
nosepus). Bynem cuurarh BBIIOJIHEHHBIM YCIOBHE HOPMHUPOBKH: CyMMa
BECOB BCEX MCXOUMAIIUX CTPEJOK Kaxk/J0oro areHra pasHa 1 (rem cambim,
MAaTPHIA ¢ SIBJISIETCS CTOXACTHIECKOH ).

Ecuu i-it arenT nosepser j-Mmy, a j-ii gopepser k-Mmy, TO 3TO O3HAYAET
crenytomiee: k-ii areHT KOCBEHHO BJAUSET HA -TO (XOTS -l MOXKET Jaike
HE 3HATDH O €ro CYIIECTBOBAHUM). DTO COOOparKeHUe MOOYXKIAET K MOUCKY
OTBETa Ha BOMPOC O TOM, KTO B UTOTe (DOPMUPYET MHEHUE B COIUATHHON
CeTH.

CrpyKTypa pe3yapTupyoinux Bausaui. [Iycts v Kaxmoro ares-
Ta B HEKW HAYATbHBIN MOMEHT BPEMEHU NMEEeTCd MHEHHE IO HEKOTOPOMY
BOIIPOCY, MHEHUE 1-T'0 areHTa OTPAYKAELT BEIIeCTBeHHOe dncyo b;. Muenne
BCEX ArEHTOB CETH OTPAXKAET BEKTOP-CTOJIOEN MHEHUH b pa3sMepHOCTH M.
AreHTBI B CONMUANILHOM CETH B3aUMOIEHCTBYIOT, OOMEHUBASICH MHEHUSIMH.
DTOT 0OMEH TPUBOAUT K TOMY, 9TO MHEHUE KAaXKJIOTO areHTa MEHSIeTCS B
COOTBETCTBUHU C MHEHHSAMHU AreHTOB, KOTOPBHIM JaHHLIA areHT JIOBEpsIeT.
Bynem caunrarh 310 M3MeHeHve TUHEHHBIM: MHEHUE Ar€HTA B CJIEYONIUL
MOMEHT BPEMEHU ABJAE€TCA B3BEIICHHON CyMMOW MHEHHWI areHTOB, KOTO-
PBIM OH JIOBepsieT (BecaMu sIBJISIOTCH CTEMeHu aosepus t;;). Ormernm,
9TO Ar€HT MOXKET JOBEPsiTh, B TOM YHCJE, U caMoMmy cebe: t;; > 0.

Herpyano ybemurbcsi, 970 B BEKTOPHON 3aIIMCH M3MEHEHHOE MHEHWE
areHTOB CTAHOBUTCS PABHBIM MTPOW3BEICHUIO MATPHUITHI HETIOCPEICTBEHHO-
o J0BEpHUsi HA BEKTOP HAYAJIbHBIX MHeHuil: t,. Ecim obMen MHeHuWsiMu
TIPOIOIFKAETCS U Jajiee, TO BEKTOP MHEHUH areHTOM CTAHOBHUTCS PABHBIM
t2b,t3b u .1,

Enu B3anMopeficTBue areHTOB MPOAOIZKAETCA TOCTATOYHO TOJTO, TO
WX MHEHUS CTAOUIN3UPYIOTCA — CXOAATCH K PE3YABTUPYIONIEMY MHEHUIO

B =Tb,

rjie b — BekTOp HaYaJbHBIX MHEHHU#, 1 — MaTpUIA PE3yJbTUPYIOMIEro
Biugnus, t" — T npu n — 0o (06 yCIOBUAX CYIIECTBOBAHUS ITPEIEIIA CM.
Huwke), B — BEKTOp UTOrOBBIX MHEHUIA.
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MHOKeCTBO AreHTOB, IPSIMO MJIM KOCBEHHO BJMAIOIIUX JAPYT HA JAPYTa,
OyIeM Ha3bIBATH TPYIIOH.

Onpedeaenue. Ipynna — MHOXKECTBO AreHTOB, KayKIbIl W3 KOTOPBIX
BJsier (LIPAMO M/IM KOCBEHHO) Ha JII000Ir0o areHTa 13 9TOr0 MHOXKECTBA.

CupaBeyUBBI CIEAYIOMIAE YTBEPKICHUS .

Ymsepotcdenue 1. Kaxkaptii arenT Ju00 BXOIUT POBHO B OJHY TPYIIIY,
b0 He BXOIWUT HU B OJIHY.

Ymeeporcdenue 2 (docmamounoe ycaosue cmabuauzoyuu muernud). Ec-
JIM B KAaXKJIOW I'PYIIE CyHIECTBYeT XOTd Obl OJMH AreHT %, JJjis KOTOPOro
ti; > 0, TO MHEHUS CTAOUIH3UPYIOTCS.

Taxum 0OpazoM, HAPSATY C Ar€HTAMU, BXOIAIIUME B TY WU UHYIO TPYII-
11y, B CeTHu CYIECTBYIOT CIYTHHUKH — areHTbl, He BXOJAIIUNA HU B OIHY

Ipymnmy.

Oka3pIBaeTCd, 4TO CTPYKTYPA DPE3yIbTUPYIOIMX BJIUAHUH (B Ciydae
crabuin3anuu MHEHUI1) yerpoeHa cieyomuM obpaszom:

1) B KaxKIOi TpYIle UTOrOBbIE MHEHWs JIEMEHTOB COBIAJAIOT, T.€.
KasKJIast TPYTINa uMeeT obmee MHeHne (KOTOPOE MOYKHO CIMTATH MHEHHEM
[DYIIIIbL);

2) UTOrOBBIE MHEHHUS CIIY THUKOB OIIPEJIEJISIIOTCS TOJbKO MHEHUSIMHU MPYIIIL,
T.e. Ha4aJbHbIe MHEHUHA CIIyTHUKOB HE OKAa3bIBAIOT HUKAKOI'O BIUAHUA HA
PE3YIBTUPYIONINE MHEHUA KAKAX-THO0 areHTOB.

praBJIeHI/Ie n urpa s COI_[I/IaJIbHOﬁ cern. [lomumo areuToB, y49acT-
HUKaMU MOJEIN MOTYT ABJATHCA APYrue Cy6’beKTbI7 TeM HJIN WHBIM 06pa—
30M 3aMHTEPECOBAHHBIC B OKAa3aHHUH BJIHNAHUA Ha PE3YJIbTHUPYIOIINE MHE-
HHSA areHTOB — Oy/ieM Ha3bIBAaTh WX HUIPoKamu. Kcam urpok ogumu (B 9TOM
CJIydae ero MOKHO PAcCMAaTPUBATh KaK HEKWIl yIPABIAIONINIT OpraH, BO3-
JCHCTBYIOIHNA HA CeTb), TO BO3MOXKHQ IIOCTAHOBKA 330391 yIPABJIEHUS:
myTeM BOS,ELGIL/’ICTBI/IH Ha Ha4YaJIbHBbIC MHEHUA aIr'€HTOB rELO6I/ITbC${ BBIT'OJHBIX
IEHTPY PE3yAbTUPYIOMNX MHeHui. Kcaun urpoKoB HECKOIBKO, W KaXK IbIi
73 HUX MOKET BO3JEfICTBOBATH HA AreHTOB, TO CUTYAIINs JOIYCKaeT hop-
MaJIM3allUiO U UCCJIE0OBAHNE B TEPDMHUHAX T€OPUN UI'D: Ka)K,D;bH'?'I U3 UIr'poKoOB
CTPEMHUTBHCST MAKCUMU3UPOBATH CBOIO 1EJIEBYIO (DYHKITHIO, OIPE/IETIEHHYIO
Ha MHOXKECTBE PE3YyJIbTUPYIONINX MHEHUIII areHTOB.
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Index of riskiness for finit game

Anton S. Gurevich

The purpouse of this work is spreading of ”measure of riskinnes”, pro-
posed by Foster & Hart for gambles, to the random variable and finite
games.

1 Foster & Hart measure of riskiness

Everything contained in this section was presented in articles [1] and [2].

Definition 1 Gamble is the random wvariable g € R, satisfying the fol-
lowing conditions, E(g) > 0, P(g <0) > 0.

Definition 2 L(g) = —min(g) is the mazimal loss of g. L(g) > 0.

Definition 3 Real number R(g) > 0, uniquely determined by the equation
E [log(l + #g)) =0, on [L(g); 00) is measure of riskiness for gamble g.

Now suppouse g and h are gambles.
Axiom 1 If g and h have the same distribution then Q(g) = Q(h).
Axiom 2 If g < h and g # h then Q(g) > Q(h).
Axiom 3 Q(\g) = AQ(g) for every A > 0.
Axiom 4 Q(g)+g > 0.

Axiom 5 If for every value z of g either hg—, =0 or h)g—, is a gamble

with Q(h|g=) = Q(g) + z, then Q(g + h) = Q(g).

Theorem 1 The minimal function that satisfies axioms 1-5 is the mea-
sure of riskiness R.

© A. S. Gurevich, 2009
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2 Spreaded index of riskines

To have the opportunity to work with random variable, we have to define
spreaded index of riskines.

Definition 4

+oo  for E(g) <0,Plg <0] >0,
R*(9) =< R(g) for E(g)>0,Plg<0]>0,

0 for Plg < 0] = 0.

o o

is the spreaded index of riskiness
Axiom 6 If g < h and g # h, then Q(g) > Q(h).
Axiom 7 P[Q(g)+¢>0]=1.

Theorem 2 Spreaded index of rickiness R satisfies axioms 1,3,5-7.

3 Index of riskines for finite game

Now introduce a model of games of many players. Let us have a set
of players I = {1,...,n}, also have infinite sequence of finite games
G1,G2,G3,.... In every moment ¢ € N players are offered a finite game
Gy = (I,LY', K"), Y = {Y3,...,Y,} — set of strategies for each player, K =
{Ki,...,K,} — gain functions of players. Let every player i offers game
Gi‘i = (LLYL, MKY), A\ > 0. Let A\ = min;en(A;) will be selected and
G} = (I,Y, AK) will be played. Though the Nash equilibrium situation
Z(G?}) will be realized, and player i gain F;(\,t) = AK;(Z(G?)). Players
also have wealth W;(¢), W;(1) > 0, dynamics: W;(t+1) = W;(t)+F;(\, t).
W(t) = (Wl(t)7 WQ(t)’ ) Wn(t)r)

Let the goal of players is avoiding bankruptcy: W;(¢) > 0 for any
t € N, and

P Llirgo Wit) = o} =0.

Definition 5 Global strategy S is unambiguous mapping from set of all
pairs (W, G) to [0, +00)
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Definition 6 Strategy S* guarantees no-bankruptcy if it yields avoiding
bankruptcy with probability 1 for every process G and every initial wealth
W >0

Definition 7 R T(G) = RT(F;(1)) is index of riskiness for finit game
G for player i.

Theorem 3 For any finite game Gy, any wealth W;(t) and any player i
exist unique number A;(Gy, W;(t)) such that strategy S* guarantees no-
bankruptcy if and only if S*(W;(t), Gt) < Ai(Gy, Wi(t)). Where

“+o0 for P[F}(1) < 0] =0,
MG Wi(t) = { gy Jor B(F{(1)) > 0, PIF!(1) < 0] > 0,
0 for E(F!(1)) <0,P[F!(1) < 0] >0

Let W(t) =W*=(1,...,1). Then

AN(G) = Mi(G, W (L)) = W for E(F;(1)) > 0, P[F;(1) < 0] > 0,
0 )

Definition 8 Player j such that A} (G) = A*(G), is minimizes player in
finite game G.

Definition 9 RT1(G) = R (F;(1)), where j — minimizes player is index
of riskiness for finit game G.

Index of riskiness for finit game has the following properties.

Proposition 1 If W(t) = kW™, then

+o0 for P[F;(1) < 0] =0,
AH(G) = M(G W (1) =1 mreeay  Jor B(Fi(1)) > 0, P[F;(1) < 0] > 0,
0 for E(F;(1)) <0, P[F;(1) < 0] >0
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Proposition 2 For every finite game R*H(G*) = AR (G).

Proposition 3 If &' = (N,Y,K'), G' = (N,Y,K"), where K' = K" +
C,C >0, then R"*(G) < RT(G).
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Random priority zero-sum best
choice game with disorder

Evgeny E. Ivashko
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Abstract

A zero-sum version of the best-choice game with disorder is con-
sidered. Two players observe sequentially iid random variables with
a known continuous distribution. In random time the distribution
of observation is changed. The random variables cannot be per-
fectly observed. Players may use different values of levels in every
step. After each sampling players take a decision for acceptance or
rejection of the observation. If both want to accept the same obser-
vation then a random assignment mechanism is used. The aim of
the players is to choose the observation more than opponent’s one.

In the paper we consider the best-choice game with disorder and im-
perfect observation. Two players (I and II) observe sequentially n iid
random variables &1, ..., &0_1,&p, ..., &, with a known continuous distribu-
tion Fy(z). In random time 6 the distribution of observation is changed
to continuous distribution Fy(z) (the disorder is happened). The moment
of the cnanging the distribution has a geometric distribution, i.e. at ev-
ery step the probability of disorder is 1 — a.. Players know parameters «,
Fi(x), F>(x) but the exact moment 6 is unknown.

Players may use different values of levels x; and y; (for player I and
player II respectively) in every step ¢ € [1,n]. After each sampling players
take a decision for acceptance or rejection of the observation. If both want
to accept the same observation then a random assignment mechanism is

©E. E. Ivashko, 2009
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used: player I gets the observation with probability p and player II — with
probability 1 —p. Each player can choose at most one observation. When
some player accepts the observation at time k, then the other one will
investigate the sequence of future realizations having an opportunity to
accept one of them.

The aim of the players is to choose the observation more than opponent
one. A class of suitable strategies and a gain function for the problem is
constructed. The asymptotic behavior of the solution is also studied.
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Generating Functions for Indexes of
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Abstract
In this work we present some models of voting game. We used
generating functions for finding indexes of power. We present gen-

erating functions for Holler index, Digan-Packel index and Hoede-
Bakker index.

We consider a weighted voting game with n players and a quota gq.
Each player is a party with w votes. A generating function can be obtained
for each player. Using the generating function one can find values of
Banzhaf index, Shapley-Shubik index, Holler index, Digan-Packel index.
The generating functions for Banzhaf index were described by Brams and
Affuso [1], and for Shapley-Shubik index - in the Cantor’s work [4].

In our work we present Holler index and Deegan-Packel index in terms
of generating functions.

Holler index in weighted voting game < N,v > is a vector h(v) =
(h1(v), ..., hn(v)), where the index of the player i is equal

m;(v)

> mi(v)’

1EN

hi(v) = 1=1.,n,

where m;(v) - number of the minimal winning coalitions, containing .
Digan-Packel index in weighted voting game < N,v > is a vector
dp(v) = (dp1(v), ..., dpyp(v)), where the index of the player i is equal

1 1
dp;(v) = - Z —, i=1.,n,

S
SeM:eS

(© A. M. Kalugina, 2009
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where M - set of all minimal winning coalitions, m - general number of the
minimal winning coalitions and s - number of the members of a coalition
S.

Let < q;w;...,w, > - weighted voting game.

1) Number of the minimal winning coalitions m;(v) in Holler index
can be presented as

q—1
m;(v) = Z {S: Z wj =k,wig > k—q+w; +1},
k=q—w; JES,jFi
where ig : w;g = l 1211171,5 “wy, and the generating function looks like:
€95,l#1

Gilw) = [1(1 + 7).

J#i

2) Number of the minimal winning coalitions m is equal

qtwig—1
m = z {S:ij:k},
k=q JjES

where g : w4 = Ilmg w; and the generating function looks like:
€

G(z) =[] @ +~ya).
iEN

3) Deegan-Packel index can be presented as

1 = Al(k,s) .
dpl(’l)) = E . Z Hil, 1= 1...,n,

k=q—w;

where m - number of the minimal winning coalitions,

Al(k,s) ={S: > w;=k,|S| =swyy >k—q+w; + 1}, for which
JES,j#i

the generating function looks like:

Gi(mv Z) = H(l + Zvjij)a
J#i
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where the symbol v; is the "label” of the player j.

These indexes do not take into account influence of the players against
each other. For that purpose Hoede-Bakker index can be used. In our
work we present Hoede-Bakker index in terms of generating functions.

Let n players can to either approve (accept) or reject (not accept)
some decision. Let N = {1,...,n} be the set of all players. Assume that
each player has a preference to vote ”yes” (denote it by 1) or to vote "no”
(denote it by 0). Let p be the vector of preferences, which consists of
components, 1 and 0, and specifies preferences of the players, and let P
be the set of all vectors of preferences. |P| = 2™. The initial decision
of the player is his preference. Assume that some players can influence
others during the game, wherefore the final decision of the player may
differ from his initial decision.

As the result, each vector of preferences p € P transforms into the
vector of decision b, which also consists of n components (0 and 1), and
shows the final decisions of the players.

We apply the algorithm of Hoede and Bakker, but to the linear oper-
ator B.

b=B-p,

where B = (B,), -1 is the matrix of influence.

0,if k£ does not influence j,
Bjk =

1,if k influences j.

5. = 0,if j is under anybody’s influence,
7 1,if j otherwise.

Assume that the set of all players N = {1,...,n} can be split into 3
disjoint subsets: the set of players having influence on other players - B;
the set of players liable to influence - S; the set of independent players -
I

Let’s present Hoede-Bakker index in the terms of generating function.
Then, Hoede-Bakker index is

Tk
on—2

HB, = —1,

where 7, = > «; and R,(Cl)(:c) =vix I Az I (+vz ] 'yéx)
J=q mEN\S IEN\S,I#k jESs
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Here, R,(Cl) (z) - generating function for Hoede-Bakker index. The sym-
bol 7; is the "label” of the player j. The labels have no numerical value,
and fulfill the information function. The notation ; means the player k
is not under any influence. The notation 7;? means the player k influences

the player 7. 1-vx =7, 1- ’Y]k = ’Yf
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1 Introduction

Empirical studies have shown that in a wide variety of oligopolistic indus-
tries, there are many instances of price leadership, i.e., one dominant firm
or group of firms announces a new price in the industry and the remain-
ing firms immediately follow the price. 2 This type of collusive behavior
was pointed out in traditional works such as [12] and [6], and has been
modeled by theoretical economists for a number of years (see, 7], [10], [4],
and [14]).

The model of a finite economy with a dominant cartel and many fringe
firms by [2] is one of the most seminal work in literature because they not
only provide a theoretical model to predict the market but also analyze
stability of the cartel. In their model, the dominant cartel acts as a leader
by determining the market price, while, given the price set by the cartel,
the fringe firms behave as the price taker (the fringe is called a competitive
fringe). They also show that the stable cartel (to be precise, the stable
size of the cartel) always exists if the number of firms is finite.

[3] states that stability criteria used by [2] rely on a myopic view of
firms and are inconsistent with the farsighted view of the firms implicitly
assumed in their model. (Details of her discussion are given in the next
section.) Diamantoudi reconsiders cartel stability of the price leadership
model from the viewpoint of firms’ foresight and shows that the set of
stable cartel sizes uniquely exists.

The purpose of this paper is along the same lines as that of [3]. That
is, we analyze the stability of cartels in the price leadership model when
each firm has the ability to foresee the final outcome induced by its current
action. We adopt [15] stable set as our stability concept since it enables
us to capture the foresight of the firm.

Although we adopt the same stability concept as that of Diamantoudi,
there is a critical difference between her and our approach. d’Aspremont
et al. as well as Diamantoudi identify a cartel by its size. In other words,
two distinct cartels, which are composed of the different members, are
classified into the same cartel if their sizes are equal. In contrast, we
identify a cartel by its constituent members. This modification enables

2 An example of the market where a dominant group of agents is seen as a price leader
is an international oil market, where OPEC sets prices and non-OPEC members follow
them.
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us to suitably describe individual incentives to form a cartel.

More precisely, given a set of firms in the market N = {1,...,n},
while Diamantoudi defines the dominance relation over a set of the cartel’s
sizes, i.e., {0,1,...,n}, we define our dominance relation over 2% := {C :

C C N}. The effort to capture the individual incentives in a suitable
manner is successful. Although Diamantoudi shows the existence and
the uniqueness of the stable set according to her dominance relation, the
shape of the stable set remains open. In contrast, in our study, the stable
set always exists and the shape of the stable set is revealed.

The remaining part of the paper is organized as follows. In section
2, we provide a simple example by [3], which shows that the arguments
for cartel stability by [2] contains some inconsistencies and explains her
way to resolve this inconsistency. Then, we illustrate that the validity
of her discussion is in question if we identify a cartel by its constituent
members. In section 3, we explain the model of price leadership cartel
and our stability concept. Section 4 gives our results and their proofs,
and we conclude in section 5.

2 Stabilities in the literature

In this section, we provide an example by [3] to demonstrate inconsisten-
cies in the stability concept adopted by [2] with an implicit assumption
on firms’ farsighted perspective in the price leadership model. Then, we
explain that Diamantoudi’s approach to capture a farsighted view of firms
is useful to resolve these inconsistencies. This approach, however, has a
limitation since she identifies a cartel by its size. Finally, we illustrate
that the validity of her discussion is in question if we identify a cartel by
its constituent members.

Consider a market composed of five identical firms producing homo-
geneous output. Let N = {1,...,5} denote a set of five firms. If k firms
form a dominant cartel of size k, the remaining firms constitute a fringe.
When there is a size k cartel, the profits of a firm in the cartel and in
a fringe are denoted by g(k) and f(k), respectively. Table 1 shows the
relationship between the profits per firm and the size of cartel for some
parameters selection. 3

3Here, we consider a market with a linear demand function d(p) = 100 — p and
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Perfect competition k£ =0 / f(0) =222
k=1 g(1) =223 [/ f(1)=224
k=2 g(2) =226 | / f(2) =230

[ k=3 [ 9B)=231 [ f(3)=241 ]
k=4 g(4) =239 /| f(4) =258 |
Full cooperation k=5 | g(5) =250

Table 1: The relationship between the profits and the cartel size (cited
from [3])

Let C denote a size k cartel and F}, be a fringe of cartel Cj. According
to [2], Ck is stable if no firm has an incentive to enter or exit it. That
is, Cy is stable if both (1) g(k) = f(k — 1) and (2) f(k) 2 g(k + 1) hold.
If £ = 0, condition (1) holds automatically, and if & = n, condition (2)
holds.

When condition (1) is not satisfied, a firm in Cj has an incentive to
exit the cartel because in doing so, it can gain a profit f(k — 1) higher
than in the current situation g(k). If condition (2) does not hold, a firm in
a fringe would join the cartel to gain a profit of g(k 4 1), which is greater
than its current profit f(k). Thus, when either condition (1) or (2) does
not hold, C}, is considered as an “unstable” cartel. Meanwhile when both
conditions hold, then C} is considered as a “stable” cartel.

In other words, [2] defines the following dominance relation and uses
the core as the stability notion. A cartel Cy a-dominates a cartel Cj if
either (a.1) or (a.2) holds:

(a.1l) k=h+1and g(k+1) > f(k).
(a.2) k=h—1and f(k—1) > g(k).

A cartel Cy is stable if and only if it is an element of the core, the set of
the cartels which are not dominated by any other cartel according to the
above dominance relation.

Following [2], C3 is a unique stable cartel in the example described
in Table 1. Although Cj is preferred over C3 by all the firms (g(5) >

identical quadratic cost function of the firms ¢;(g;) = 5qi2. For details of the model,
see subsection 3.1.
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f(3) > ¢(3)), it is not stable since a firm in Cs wants to exit and gain
f(4) = 258 > 250 = ¢(5). There is a myopic view behind the argument
that C5 is not stable because firm 4, which decides to deviate from Cj,
does not consider the further exits of the other firms from Cj in spite
of C4 being dominated by C5 according to the dominance relation). The
important point is that when firm ¢ compares the current profit g(5) = 250
with f(4) = 258 — the one after its deviation — it is implicitly assumed
that it foresees that after its deviation, the remaining cartel readjusts a
price that suitably responds to the new circumstances, which include the
four firms cartel and one fringe firm. From this viewpoint, firm ¢ has a
farsighted view. Therefore, stability criteria based on a myopic view are
inconsistent with the firm’s foresight, which is implicitly assumed in the
model.

Therefore we need to reconsider the stability of cartel from the view-
point of firms’ farsighted perspective. The firm’s farsighted perspective
is summarized as the following two type of behaviors. The first is that a
firm decides to move from the current situation even if it gains less profit
in the immediate aftermath of its move, when it expects that after its
move, another firm, and a third firm would move and so on, and it would
enjoy the more profit in the end than the current profit. The second is
that a firm decides to refrain from move from the current situation even if
it gains more profit immediately after its move, when it expects that after
its move, a sequence of moves of firms would occur and it would obtain
less profit in the end than the current situation.

[3] captures the first type of the behavior by modifying the dominance
relation as follows. A cartel C) d-dominates a cartel Cp,k # h if either
(d.1) or (d.2) holds:

(d.1) If k < h, for any [ (k <1 = h), f(k) > g(I) holds.
(d.2) If k> h, for any I (h <1 < h), g(k) > f(I) holds.

Thus, for each step of the dominance path, a firm enters (detach from) a
cartel if after its move, it expects that a sequence of entries to (exits from)
the cartel would occur and it compares the current profit with the profit
in the final situation. The definition of the dominance relation results
from the critique of [5] and the idea of [1].

The second type of the farsighted behavior is expressed by using the
[15] stable set as the stability notion, instead of the core. The second type
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of the behavior means that even if Cj, d-dominates C}, the firm that is
the first mover in this dominance relation, refrains from move when there
is no rationale for Cj, being “stable”. As mentioned in [2)’s arguments,
the core does not take into account the stability of the ending point of the
dominance path. Following [2], C5 is not stable because it is dominated
by the “unstable” Cy, which is dominated by the stable Cs.

Thus, taking into account the stability of the ending point of the dom-
inance path corresponds to the second type of the farsighted behavior of
the firm. This point is well captured by the stable set. * The stable set is
a set of outcomes satisfying two stability notions: external stability and
internal stability.

Let A and >> be a set of outcomes and the dominance relation defined
over A. Then, subset K of A is a stable set if it satisfies

(i) for each a € A\ K, there exists b € K such that b >> a, and
(externally stable)

(ii) for each a € K, there does not exist b € K such that b > a.
(internally stable)

The external stability means that any outcome outside the stable set is
attracted into the set, and thus, the outcome does not “prevail” in this
society. On the other hand, the internal stability gives the rationale to
this attraction such that the end point of this attraction is also “stable”.
When the dominance relation is extended to the farsighted version, even
if an individual (or a group of individuals) deviates from an outcome a
in the stable set and can induce outcome b, b is dominated by outcome
¢ in the stable set (the external stability), and thus, he refrains from the
deviation since ¢ is not profitable to a for him (the internal stability).

[3] shows that the stable set according to the dominance relation is
{C53,C5}. A cartel C5 is considered to be stable since Cy4, which d-
dominates C5, is d-dominated by C3, which is also considered as sta-
ble cartel and C3 does not d-dominated Cs. On the other hand, Cj
d-dominates Cy, C1, Cy and Cy, and C5 does not d-dominates C's. Thus,
{C5,C5} is a stable set.

Although [3]’s discussion mentioned above is persuasive, there is an
inadequacy in her discussion. To see this, let reconsider the stability of

4 Another way to capture this point is to use the credible core by [9].
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a cartel C3. The stability that the stable set assumes is that even if the
deviation from an outcome in the stable set to an outcome outside the
set exists, the outcome outside the set is attracted into other outcome in
the set (externally stable) and the first deviant firm never gain from this
sequence of deviation (internally stable), and thus farsighted individual
refrains from the first deviation. Is this appropriate to stability of C3?
If a firm detaches from C3, Cs, a cartel after its exit, is dominated by
Cs and thus, Cs prevails. It appears true, but actually doubtful because
there is no reason that the first deviant firm from C5 to C and the second
from C5 to C3 is the same firm.

Now we identify cartel by its members and let C5 = {1,2,3} and
C% = {2,3,4} denote two distinct size 3 cartels. Consider a path from
C3 to C4 such that first firm 1 exits and then firm 4 in a fringe joins the
cartel. Since firm 1 prefers the profit f(3) = 241 in C4 to g(3) = 231, and
firm 4 prefers the profit ¢(3) = 231 in C} to the profit f(2) = 230, which
firm 4 obtains when there is a cartel Cy = {2, 3}, a dominance path from
C3 to CY seems to exist.

Cy={1,2,3) =0, 0y ={2,3) >, ¢t = {2,3,4).

This inadequacy is due to the fact that [3] considers the stability of
cartel sizes, not cartel. In other words, [3] (as well as [2]) identifies cartel
by its size and two distinct cartels with equal size are considered as the
same one. Since the dominance relation is derived by the individual in-
centives to deviate, we have to pay attention to who forms a cartel and
who belongs to a fringe. Thus, it seems natural that a cartel is identified
by its constituent members.

Therefore, in this paper, we define dominance relation with respect to
firms’ farsighted perspective over the set of cartels that are identified by
their members, i.e., {C : C C N} = 2V given the set of firms N, and
analyze stability of a dominant price leadership cartel. Another difference
between our and Diamantoudi’s approach is that we allow a coalitional
move following many existing studies.

In these settings, we show the following result:

If a cartel C' C N is pareto efficient and individual rational, then C
is a stable cartel. That is, {C} is a stable set according to our dominance
relation.
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Thus, we uncover the shapes of the stable sets. In the next section,
we explain the price leadership model of [2] and provide the definition of
our stability concept.

3 The model

3.1 Collusive price leadership

We consider an industry composed of n (n = 2) identical firms, which
produce a homogeneous output. If k firms decide to form a cartel and set
a price p, the remaining n — k firms constitute a competitive fringe and
decide each output ¢¢(p) by

p=c(qs(p)),

where ¢ is firm ¢’s marginal cost, which satisfies ¢ > 0 and ¢’ > 0.

Let d(p) be a market demand function satisfying d’ < 0. Members
of a dominant cartel choose the price that maximize their joint profit,
given the supply decision of a competitive fringe. Since the marginal cost
is increasing, the maximization of the joint profit is achieved by equal
division of their total output. Therefore, each firm of a cartel behaves
as a monopolist with respect to the individual residual demand function
defined as w. Thus, the price that a cartel actually chooses
is obtained as follows:

d(p) — (n — k)qs(p) boc (d(p) —(n— k’)qf(p)>

Mazpso

k k

According to the price as a solution of the above problem, the profits of a
cartel firm and a fringe firm are obtained for each k(k = 1,...,n) and are
denoted by g(k) and f(k), respectively. If k = 0, that is, there is no cartel,
then it is assumed that the market structure is competitive. Therefore,
£(0) is defined by a profit of a fringe firm for a competitive price p°°™?,
which satisfies d(p®®™?) = ngy(p°™?).

In this setting, the following proposition is shown by [2].

Proposition 1 ([2]) The following properties about the profits of a cartel
firm and a fringe firm hold.
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(i) f(k) > g(k) for each k(=1,...,n—1).

(i) g(k) is an increasing function in k.

This proposition says that there is a dilemma structure in firms who
decide to join or detach from a cartel. The second property of Proposition
1 means that a firm who belongs to a cartel prefers the cartel being larger.
The first property indicates that it is more profitable for each firm to
belong to a fringe if the size of a cartel is unchanged.

This dilemma structure is similar to but weaker than the typical pris-
oner’s dilemma situation. In the prisoner’s dilemma, the “defect” is more
profitable than the “cooperate”, irrespective of the others choices. When
we interpret cooperate and defect as joining and not joining a cartel,
f(k—1) > g(k) always holds in the prisoner’s dilemma. In contrast to the
prisoner’s dilemma, in the price leadership model, each cartel firm wants
to switch positions with a fringe firm (f(k) > g(k)). Thus, cartel firm
envies a fringe firm’s position.

The next proposition shows that fringe firms prefer a situation with a
dominant cartel to one without it.

Proposition 2 For any k(=1,...,n—1), f(0) < f(k) holds.

Proof. Suppose that there exists a k firms cartel. If the cartel chooses
price p = p®™P then they can gain f(0), the profit for a competitive
equilibrium. Since they set a price to maximize their profit, g(k) = f(0)
holds. This inequality and (i) of Proposition 1 implies f(k) > f(0). O

In the rest of the paper, we analyze the stability of the price leadership
cartel characterized by profit functions f and g, which satisfy the prop-
erties described in Propositions 1 and 2. In order to expand the scope
of our discussion, we establish our discussion and complete proof of our
theorems in a weaker setting than the conditions mentioned above. We
impose the following three conditions on functions f and g.
Assumption 1: f(0) < f(k) forany k=1,...,n— 1.

Assumption 2: g(k) is an increasing function in k.
Assumption 3: g(n) > f(0).

Thus, we provide our discussion without mentioning a dilemma struc-
ture (f(k) > g(k)) in the price leadership model. Assumption 3 is ob-
tained from the facts that g(k) is an increasing function and g(k) = f(0)
holds by the proof of Proposition 2.
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3.2 Stability

We begin by explaining some additional notations and definitions to ex-
press our stability concept. Let N = {1,...,n} and X = X;enyX; =
{0,1}" be a set of firms and a set of cartels, respectively. For each i € N,
x; = 1 implies that firm ¢ belongs to a dominant cartel, and z; = 0 implies
that firm 7 belongs to a competitive fringe. An element x € X is called
a cartel structure, or simply a cartel since each x € X corresponds to a
unique cartel C' C N. For each x € X, the set of firms that belong to a
cartel is denoted by C(z) = {i € N : x; = 1}, and the set of fringe firms
is denoted by F(z) = N\ C(z).
The payoff function u; : X — R for each i € N is defined as follows:

(k?) if T; = 17
uif) = { ?f(k) if 2, =0,

where |C(z)| = k. Functions f and g satisfy Assumptions 1, 2, and 3.

Let z € X and y € X be two distinct cartel structures. We say that
a cartel structure = pareto dominates y, and denote z Py if u;(z) 2 u;(y)
holds for all ¢ € N and strict inequality holds for some j € N. If x is not
pareto dominated by any other cartel, the x is called a pareto efficient
cartel structure. The set of all the pareto efficient cartel structures is
denoted by X¥ C X. Since x = (1,...,1), that is, the grand cartel is
pareto efficient by Assumptions 2 and 3, X is not empty.

We define X* C X by

X' ={zeX: g(ICx)]) > F(0)}.

Since g is increasing by Assumption 2 and g(n) > f(0) holds by Assump-
tion 3, there exists integer s* € N such that X* = {z € X : |C(x)| = s*}.
Let v; be a minimax payoff of firm i € N, i.e., v; = min,_,max,,u;(x).
Then,

o; = max{g(1), £(0)} W

by Assumptions 1 and 2. If cartel structure z satisfies u;(z) = v; for all
i € N, then z is called an individual rational cartel structure. If strict
equality holds for all ¢ € N, then x is called a strictly individual rational
cartel structure. We denote the sets of all the individual rational cartel
structures and the strictly individual rational cartel structures by X’ and
X 5T respectively. By its definition, X! C X*.
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A cartel structure y is inducible from x through coalition S C N if
x; = y; holds for any i € N \ S and we write x —g y. Clearly, if x —g y
holds, then y —g « also holds. For a coalition S C N, we write z >=g y if
w;(x) > u;(y) holds for any i € S.

Next, let us define a dominance relation over X. Since there exists
one-to-one correspondence between X and 2V, it is equivalent to define a
dominance relation over a set of cartels. Following [5] and [1]’s perspective,
we define indirect dominance relation over X that captures the ability for
each firm to foresee the final outcome which is induced by the firm’s
current behavior.

Definition 1 A cartel structure x is indirectly dominated by y and we

write y >> x if there exist a (finite) sequence of cartels 20,2, ... ™M with
20 =z and 2M =y and a sequence of coalitions S*, ..., SM such that for
eachm (=1,...,M) (a) 2™ ! —gm 2™ and (b) y = 2™ =gm 2™71.

If M = 1, we say that z is directly dominated by ¥ via coalition S*.

A farsighted stable set is a stable set or [15] solution defined by dom-
inance relation >> over X. Formally, a subset K of X is called a far-
sighted stable set (FSS) if the following conditions hold:

(i) For any « € K, there does not exist y € K such that y >> x (internal
stability of K).

(ii) For any z € N \ K, there exists € K such that © >> z (external
stability of K).

In the next section, we characterize FSSs of the price leadership cartels.

4 Results

In this section, we reveal the complete shapes of farsighted stable sets for
a price leadership model. Our main statement is that a pareto efficient
and individual rational cartel is itself a farsighted stable set and there is
no other type of farsighted stable set except for some degenerate cases.

First we prove the following two lemmas on the properties of pareto
efficient cartels and individual rational cartels. Let 2¢ € X and 2/ € X
denote (1,...,1) and (0,...,0), respectively. That is, 2 represents the
grand cartel structure and zf represents a competitive situation.



Farsighted stability of collusive price leadership 43

Lemma 1 The following properties hold:

(i) A cartel structure x € X,z # x¢ is pareto efficient, that is, x €
XP\ Az} if and only if f(|C()]) > g(n).

(ii) = € XP\ {2} if and only if x >> x°.

(iii) For any x € XT and for any y € X with y # x and y # =/, there
exists i € C(y) such that u;(x) > u;(y).

Proof. (i) Suppose that z satisfies f(|C(z)|]) > g(n) and that there
X such that yPz. For i € F(x), y; must be ‘0’ since u;(x) =

exists y €

f(C)]) > g(n) =2 g(|C(y)|) by Assumption 2. Thus, C(x) 2 C(y). For
ZIED C(y) € C(z), ui(y) = 9(|IC(y)]) < g(|C(x)]) = u;(x). This contradicts
yPx.

Next we show the only if part. Suppose that z € X, x # 2¢ but
f(IC(z)]) £ g(n). Then z¢ pareto dominates = by Assumption 2 and this
contradicts z € X T
(ii) We first show the ‘if’ part. If x >> 2 holds, then there exists the first
deviant coalition .S from x¢ to the final outcome x. Hence, x g x¢ holds.
Let i € S. Then, z; = 0 because there is no cartel better for a cartel firm
than grand cartel structure €. The fact that u;(x) > u;(x¢) implies that
f(C(x)]) > g(n). Thus, z is pareto efficient by (i) of this lemma.

Next, we show the “only if” part. Suppose € X \ {z¢}. Then,
by (i) of this lemma, u;(x) > u;(z°) for any ¢ € F(x). Thus, x directly
dominates z¢ via F(x).

(iii) If z; = 1 for any i € C(y), then C(z) 2 C(y) since & # y. Therefore,
|C(z)| > |C(y)|. This implies that for any i € C(y), u;(x) = g(|C(x)]) >
9(|IC(y)) = wi(y). Otherwise, there exists i € C(y) such that z; = 0.
Then u;(z) = f(|C(x)]) > g(n) = g(|]C(y)|) = ui(y). The second strict
inequality is by (i) of this lemma and the third inequality is by Assumption
2. O

Lemma 2 The following properties hold:
(i) = € X* if and only if x >> a7,

(ii) Let x € X \ {&}. Then, ¥ >> x if and only if £(0) > g(|C(z)|).
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Proof. (i) First we show the “only if” part. Let x € X*. Then, x directly
dominates x/ via coalition C(x) because all the firms in C(z) prefer x to
x7 by the definition of X* and z is inducible from z/ through coalition
C(x).

Next, we show the “if” part. Suppose x indirectly dominates zf. By
the definition of the indirect dominance relation, there exist a sequence
of the cartel structures ¥ = 2%, z',..., 2™ = z and a sequence of the
deviant coalitions S1, ..., SM satisfying conditions (a) and (b) in Defini-
tion 1. Let k be the first natural number such that there exists i € C(x)
with 2% = 0 and z¥™ = 1. Then, g(|C(2)]) > f(|C(z*)]) = f(0) by
Assumption 1.

(ii) Suppose f(0) > g(|C(z)]). Then, all the firms in C(x) prefers / to =
and x/ is inducible from z through C(z). Thus, zf directly dominates z
via C(x).

Next, suppose z/ >> z. Let S C N be the first deviant coalition in
the dominance relation from z to xf. If there exists i € S with z; = 0,
then f(0) > f(|C(z)|) by the definition of the dominance relation and
this contradicts Assumption 1. If there exists ¢ € S with x; = 1, then
f(0) > g(IC()]). O

The first and the second theorems show that any pareto efficient and
individual rational cartel structure is a FSS.

Theorem 1 For any v € X* N XT, {z} is a farsighted stable set.

Proof. Since {z} consists of one point, we only consider the external
stability. Take any y € X, y # x. When y = 2/, x dominates y by (i) of
Lemma 2.

When y # x/, by (iii) of Lemma 1, there exists i; € C(y) such that
ui, () > u;, (y). Then, we construct a cartel structure y' as follows. For
alli e N,

L [0 ifi=a,
vi _{ v if i # i

If either y' = x or y' = 2/ holds, then we stop this process. Otherwise,
there exists io € C(y;) such that u;, (z) > u;,(y!). Then, we construct y>

by
o [0 ifi=iy,
YT gl ifi
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If 42 = 2 or y> = =/, then we stop this process. Otherwise, there exists
iz € O(y?) such that u;,(z) > u, (y?) and we continue the same process
at most n — 3 times.

Since N is finite, we can find an integer M € N, a sequence of players
i1,...,im, and a sequence of outcomes y = 3%, y', ...,y such that y™ is
either x or =/, y™~! — iy Y forany m=1,..., M and x > ym !
for any m = 1,...,M. If y™ = x, then x indirectly dominates y. If
y™ = zf, then 2 dominates y™ by (i) of Lemma 2, and therefore, z
indirectly dominates y. We obtain the desired result. (I

Theorem 2 If g(1) < f(0), X* N XF = XTI N XP. Otherwise, X* N
XP=XxInxP,

Proof. If g(1) £ f(0), v; = f(0) by equation (1). Then, z € X n X*
is strictly individual rational since if i € F(x), then u;(z) = f(|C(z)|) >
g(n) > f(0) by Lemma 1 and if i € C(x), then u;(x) = g(|C(x)]) > f(0)
by Lemma 2. Since X%/ C X*, X* N X* = X5 N XP holds.

If g(1) > f(0), then X* = X \ {=/}. By Assumption 3, X* N XF =
XP. Let v € XP. Then, z # zf. For i € C(z), g(|C(z)]) = g(1) by
Assumption 2. For i € F(x), f(|C(z)]) > g(n) > g(1) since z € X7©.
Therefore, X* C X7 and X' N X = XP. O

Theorem 1 and Theorem 2 say that the cartel structure that is pareto
efficient and (strictly) individual rational is a FSS.

Lemma 3 If there does not exist an integer k* such that f(0) = g(k*),
the fact x € X* and y ¢ X* means that © dominates y.

Proof. Because of the assumption of this lemma, y ¢ X* means that
9(|IC(y)]) < f(0). For any i € C(y), if z; is 1, then u,;(x) = g(|C(z)|) >
f(0) > g(|C(y)]) since x € X*. If x; is 0, then w;(x) = f(|C(x)|) =
£(0) > ¢g(|C(y)|) by Assumption 1. Thus, all the firms in C(y) prefers =
to y. Moreover, all the firms in C(z) prefer x to 27 by the definition of
X*. Therefore, the deviation defined by (i) first, all the members in C(y)
detaching from the cartel and (ii) next, all the members in C(x) forming
a cartel, implies that = indirectly dominates y. ([
Next theorem shows that without some degenerate cases, there is no
farsighted stable set other than the ones defined in Theorem 1.
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Theorem 3 If either condition (1) or (2) holds, then there exists no far-
sighted stable set other than that given in Theorem 1:

(1) X c x~.
(2) There does not exist an integer k* such that f(0) = g(k*).

Proof. Take any farsighted stable set K that is different from the set
given in Theorem 1. Then, K does not contain any outcome that belongs
to X*NX7T since, as shown in Theorem 1, such a cartel structure indirectly
dominates all the others and this contradicts the internal stability of K.

Suppose condition (1) is satisfied. If 2 € K, then ¢ X since
otherwise,  is an element of X* by the supposition. Thus K N X* =0
and this implies that by (ii) of Lemma 1 there exists no « € K such that
x >> 2 Since 2¢ € X N X* and thus ¢ ¢ K, the external stability of
K does not hold.

Suppose condition (2) holds. If K N X* # (), then K does not have an
element in X \ X* because otherwise the internal stability of K does not
hold by Lemma 3. Of course, K does not have an element in X* N X%
because of the argument of the first paragraph in this proof. Thus, K C
X*\ XP. However, any element in K does not indirectly dominate z¢ by
(i) of Lemma 1 and this contradicts the external stability of K.

When KN X* =0, for any z € K, g(|C(z)|) < f(0) holds by Assump-
tion 2 and condition (2). Since K is not a set {z/}, we can take x € K
with © # xf. Then, x is indirectly dominated by 2/ because of (ii) of
Lemma 2. To guarantee the internal stability of K, K does not have x7.
In order to preserve the external stability of K, some element y € K must
indirectly dominate zf. However y must be an element in X* by (i) of
Lemma 2 and this is a contradiction. 0

In the next theorem, we describe the shapes of FSSs in the degenerate
cases, i.e., f(0) = g(k*) for some k*, using an additional assumption.
The assumption in the next theorem is, however, satisfied in the price
leadership model (Proposition 2).

Theorem 4 Assume that f(0) < f(k) for any k(= 1,...,n—1). Consider
the case where there exists an integer k* such that f(0) = g(k*). If the
following condition (a) holds,

f(ET) > g(n),
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then K1 = {2f}U{z € X : |C(z)| = k*} is a farsighted stable set in
addition to those given in Theorem 1 and there is no farsighted stable
set. Otherwise there is no farsighted stable set except for ones given in
Theorem 1.

Proof. First, we show that K; is a farsighted stable set when condition
(a) holds. Let Ky = K; \ {#/}. By (i) of Lemma 2, any element in Ko
does not indirectly dominate zf, and by (ii) of Lemma 2, x/ does not
indirectly dominate any element in K. Let x € Ko, y € Ky, x # y. For x
to indirectly dominate y, there exist some element 2’ € X and some firm
i € N such that firm ¢ prefers z to 2/, and z; = 1 and «} = 0. However,
there does not exist such «’ because f(|C(z')|]) = f(0) = g(Jc(z)|) by
Assumption 1. Thus, the internal stability of K holds.

Let y € X such that |C(y)| > k*. Take any S C C(y) such that
|S| = |C(y)| — k*. Then, a cartel structure = such that z; = 1 for all
i€ C(y)\ S and z; = 0 otherwise, directly dominates y via S because in
cartel structure z, all the firms in S are in a fringe and they prefer = to
y (f(k*) > g(n) > g(k)) by condition (a) and Assumption 2. Next, let
y € X,y # 27 such that |C(y)| < k*. Then, 2/ dominates y by (ii) of
Lemma 2. Hence, the external stability of K7 holds, and thus, K; is a
farsighted stable set.

Let K be a farsighted stable set other than those in Theorem 1. If
x/ ¢ K, there exists € K such that x dominates /. By (ii) of Lemma 2,
x € X* and |C(x)| = k* + 1. Then, x ¢ XT since otherwise {x} becomes
a farsighted stable set described in Theorem 1. By (ii) of Lemma 1, x
does not dominate x°. Thus, there exists y € K such that y dominates
x¢, and thus, y € XT by (ii) of Lemma 1. To preserve the internal
stability of K, y € XF \ X*. Thus, |C(y)| £ k*. Then, g(|C(y)|) <
f(0) < f(]C(x)]) and f(0) < g(|C(z)|) hold by the assumption of this
theorem and the definitions of X* and X¥. Hence, z indirectly dominates
y through y — ¢y xf — () T because all the firms in C(y) prefer x to
y and all the firms in C(z) prefers x to 27. This contradicts the internal
stability of K.

Consider the case that x/ € K. Clearly {z/} # K. Thus, there exists
x € K with x # x/. To preserve the internal stability, = satisfies |C(z)| =
k* since by Lemma 2, 2 dominates =/ if |C(2)| > k* and 2/ dominates
otherwise. Moreover, as shown in the first paragraph of this proof, x does
not indirectly dominate y such that |C(y)| = k*. To preserve the external
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stability of K, K must be {x/}U{x € X : |C(z)| = k*}. As shown, this
K is in fact a farsighted stable set if f(k*) > g(n). Otherwise, K is not a
farsighted stable set because x¢ pareto dominates all the elements in K.
|

In this paper, it is assumed that to induce a cartel structure x from
another cartel structure y, it is enough that all the firms that actually
move (i.e., enter or exit from a cartel) agree to this movement. From a
viewpoint of coalition formation theory, however, it is often assumed that
the permission of the members in a current cartel is necessary for a fringe
firm to join the cartel. Meanwhile, firms in the cartel can exit from the
cartel in a unilateral way. As a result, we can redefine the inducement
relations as follows:

x—gy <= wmm=y;Vie N\S, and
if C(y)\ C(x) # 0, then S 2 C(z) N C(y).
This definition reflects the fact that on one hand, players in C(x) \ C(y)
detach from the cartel in a unilateral way, and on the other hand, to
join the cartel, players in C(y) \ C(z) need the permission of members in
C(z) N C(y).

It is possible to redefine the indirect dominance relation and the far-
sighted stable set according to the above inducement relations. An impor-
tant point is that this restriction on inducement relations does not alter
our conclusions. That is, Theorems 1, 2, 3, and 4 hold when this new
indirect dominance relation is used. The reason is that for every indi-
rect dominance path that is used in the lemmas and the theorems in this
paper, either members in a cartel prefer the final cartel structure to the
current situation or there is no cartel whenever fringe firms form a cartel.

5 Conclusions

In this paper, we analyzed the stability of a dominant cartel model of
the price leadership introduced by [2]. The solution concept adopted in
this study is the stable set with indirect dominations, which reflect firms’
farsighted view.

The dominance relation proposed by [3] is defined over a set of cartel
sizes, i.e., {0,...,n}. Thus, in her paper, two distinct cartels are consid-
ered as the same when these sizes are equal. In contrast, we distinguish
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one cartel from the other when the constituent members are different even
if they are of the same size. Hence, we define our dominance relation over
{C: C C N}. Another difference between our and [3]’s approach is that
while she considers an individual move for each step of the dominance
path, we allow a coalitional move following many other literatures.

We can find the complete shapes of farsighted stable sets, which re-
main open in [3]. Our results imply the possibility of cooperation in the
dilemma situation and shed some light on dissolution of the dilemma,
which has been widely studied by non-cooperative approach and equilib-
rium concept. In addition, our discussions have policy implications on a
market structure because our theorem (Theorem 1) shows that there is
the possibility of firms forming a large cartel even if the decision problem
of the firms joining or not joining a cartel is in a dilemma situation. These
implications are in contrast to the results of [11] and [8] who analyze car-
tel formation in non-cooperative way and show that firms encounter some
difficulty to form a large cartel.

Finally, our theorems are mathematical extensions of the results of
[13] who study farsighted stability of the n-person prisoner’s dilemma
described by a normal form game and show that a pareto efficient and
individual rational outcome is itself a farsighted stable set.
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Abstract

This paper studies behavior of players in a common exclusively-
shared channel using a backoff protocol for resolving collisions. We
show that when players have freedom to choose backoff parameters
(or time to send a next packet), they behave selfishly. The system
has an undesirable Nash equilibrium, where every player tries to
grasp as much channel as possible. Since the channel is exclusively
shared, no player would get a packet through (all packets will col-
lide). Although the result is seemingly obvious, we were unable to
find it in the literature. We also evaluate a simple incentive mech-
anism based on an arbiter model, which controls channel access by
jamming misbehaving players.

1 Introduction

The backoff protocol is a scheduling protocol for simultaneous access to
a multiple access channel where simultaneous transmissions collide. To
deal with collisions, a backoff protocol was introduced and adopted in

© A. Lukyanenko, I. Falko, A. Gurtov, 2009
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such protocols as Aloha [2], Ethernet [13] and IEEE 802.11 (Wi-Fi) [1].
As an example, Aloha protocol uses a constant backoff protocol, while
IEEE 802.11 uses a truncated exponential binary backoff protocol.

Over past thirty years, the backoff protocol was analyzed by several
researchers [3, 7, 8, 5, 6, 4]. Furthermore, following the idea by Kwak et
al. [11] we analyzed general backoff protocols [12]. We studied optimality
of a general backoff function instead of a fixed function. The analysis
showed that the choice of the optimal protocol parameters depends on the
number of active stations in the network and may vary depending on the
load of the network. Hence, permitting the stations to choose the backoff
parameters depending on the channel load can increase throughput for
individual stations and the network itself.

On the other hand, recent studies on game-theoretic aspects of the
backoff protocols showed that the freedom to control backoff parameters
leads to selfish behavior of individual players (stations) [10].

In this paper we consider what if we give freedom to manipulate general
backoff parameters to each station in the network. In other words, if a

station is free to use the channel at any time, what the resulting behavior
would be?

Unlike in the backoff model, here we do not give the history of inter-
action to a station. Hence, the network model is a black box to the end
station. A station does not know had the packet collided before the game
is finished, stations know only the number of other stations (players) and
that every player in the network wants to selfishly maximize its through-
put. Unfortunately, we omit consideration of the previous history (backoff
counter) because it makes the model very complex otherwise. We believe
that the model still represents the choice of each player as with a general
backoff network without restrictions on behavior. Under these conditions,
we show that the game has undesirable Nash equilibrium.

Additionally, we modify the model using a known incentive mechanism
— a common network arbiter, which jams the channel if some player
transmits too much packets. We show that these incentives do not give
a unique Nash equilibrium solution, and one of the possible equilibrium
solutions still involves undesirable behavior.
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2 Analysis

2.1 Model

Consider the following game model. N players try to send packets through
a shared channel during time 7. The whole time is divided into timeslots;
the length of each timeslot is 1, hence there are T slots of length 1, which
are synchronized and known to each player. During one timeslot player
can send one packet. At the beginning of each game, every player chooses
timeslots for sending packets. We assume that a player i decides to use
k; slots for transmission. Knowing the number of slots to be used, the
exact slots for transmission are chosen randomly and uniformly among
other possible. There are (g) combinations to place k; elements on T
and probability for every combination is equal. For such a game we want
to find which strategy (a number of packets to send) a player will choose.
A similar problem was studied by Kolchin et al. in the book “Random
allocations” [9]. The difference is that the book did not consider a game
problem, but used the same k; for every player. Even for such problem,
it is hard to analyze the collision probability. In our case, the probability

(D)

that k1 and ko will collide exactly in A slots equals to )
k2

2.2 Two-player game

Consider a particular case of the game above, when the number of players
is two. The first player decides to send packets in k; slots, the second in ks
slots. As in [9] consider the following random variable p, be the number of
slots, during which r packets are sent (0 < r < N). In case of two-player
game, there are at most two packets in a slot from both players. Now, let
us calculate py. If we define as ¢; the event that two packets were sent
in slot ¢, then po = EiTZIH‘{qi}, where F{A} is an indicator function for
event A. Taking expectation from the equation we get Eus = TP{q;},
and for a two-player game it is equal to Fuy = T’%% = %

That value is exactly the expected number of collided packets. The

expected number of successful packets for the first player is ky — % and
k1 ko
T

for the second player is ko — . Hence, we have the income function
H;(k1,k2) = ki(1—%2) for the first player and Ho(k1, k2) = ko(1—%2) for
the second. It is clear that unless one of players chooses T as a strategy,
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the best income for another player is to choose T' as a strategy. This is a
Nash equilibrium. Since we assumed that players behave similarly, we can
assume that the Nash equilibrium is (7',T"). Each of two players behaves
selfishly.

2.3 N-player game

Now, consider an N-player game. It can be reduced to a two-player game,
if we consider the first player as one player, and the rest of players as
another player. Hence, if we define A as the number of slots taken by the
rest of the players, then the income for the first player will be

Hy(k1, ko, ... kn) =

T
A EA
Z k1(1 — =)P{ka,...,kn occupies A} = k1 (1 — —).
T T
A=0
Consider again, .. Now we need to find po, the number of free slots
for players 2, N. Let ¢; be an event that slot ¢ is unoccupied by players
2,N. Then po = ZiTle‘{qi}. The expectation of this value is Fuy =
TP{q;} = THﬁvzz(l — ’%) Thus, the expected number of free slots is

T(1- Hi]i2(1 — £1Y), and hence the income function for the first player is

Hy(k1, ko, ... ky) =k Hf\LQ(l — ). The income for player j is

ks
Hj(ky, ko, ... ky) = kj | H (1— ?).

From here, we again see that unless one of the other players chooses T
as a strategy, any player is forced to choose T. Because of similarity and
as players cannot know what other players choose, the expected Nash
equilibrium for the game will be (T,...,T). Hence, the N-player game
leads to selfish behavior.

2.4 On optimality and improvement of the game

Using the equilibrium derived above, every player receives zero income.
Consider the case when players behave equally. Every player chooses k
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as the strategy; let us find the maximum possible profit for a player. We
need to find optimal points for function k Hiiu;éj (1—%). The derivative
for this function is equal to (1 — £)N=2(1 — &%), The optimal point is
k= %, and the income (if all players choose that as an optimal point)
is %(1 — %)”*1 R %671. That means that at most % of the channel is
divided equally (utilization e~! of the channel is a well-known theoretical
limit for shared channels). Now, to get that optimal behavior as a Nash
equilibrium for all N players we need to chan}g;e the income function to
the following form H;(ki,ka, ..., kn) = k; [[isy 2, (1 — 8)1{k; < &}
It means that we give nothing to a player who tries to use more than
% of the channel. Unfortunately, this is hard to implement in practice.
A known way is to add an arbiter station that jams the channel if some
player uses more than it should. In that case, the income function will

get the following form

N

ki T

kj ‘_H#(l -7 ki<
H;(kl,... kn) = 7];] !

T ki T

— 1—— ki > —.

vy L a-7)0 k=zg
i=1,i#j

Unfortunately this equation does not restrict (%, cee %) to be the

only Nash equilibrium. A player ¢ can choose any value between % and

T.
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We consider the stream of tasks in Poisson manner with intensivity A
in some information system. The service time is fixed and equal 7. The
priority for the service here is an offer which waits the maximal time.

There is a spumer who produces the sequence of the tasks with time
interval # and attackes the system. It yields that the waiting time of the
users increases. The objective of the system is to minimize the expected
delay of the users and the objective of the spumer is opposite. We find
the expected delay H(7,#) which depends on the parameters 7 and 6 and
construct the equilibrium in this game.
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The following two-sided best-choice game is considered. There is sys-
tem with two groups of objects: computers and users. Every user has
a computational task. Computers can be ordered by power and tasks
can be ordered by computational complexity. Each user wants the most
powerful computer to solve his task. Each computer tries to get the most
computational complex task. At every stage each task randomly assigns
to the computer. If the computer is satisfied by the task’s complexity and
the user is satisfied by the computer’s power the computer solving the
task. Otherwise they try to find the suitable pair at the next stage. This
problem belongs to the class os two-sided best-choice games that appears
in different areas of biology, sociology, market models, etc. ([1],[2])

We present the multistage game with n 4+ 1 stages in which objects
(players) from different groups randomly meet each other at each stage.
Denote x the quality of computer (power) and y the quality of task (com-
putational complexity). The initial distributions of qualities are both
uniform on [0, 1]. If they accept each other, they create a pair and leave
the game. The aim of each player is to maximize the quality of selected
object. At the last stage n 4+ 1 the objects who don’t create the pair
receive zero.

In the paper we analyze the optimal strategies in the two-sided best-
choice problem and derive the explicit formulas for optimal thresholds.

All players from each group use the same strategy with thresholds
21,29, .., Z2n. The distribution of players by quality is changing from stage

1The work is supported by Russian Fund for Basic Research, project 08-01-98801-
r-sever-a.
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to stage. At the beginning the distribution is uniform. The number of
the players in the each group is equal to Ny = 1. After the i-th stage the
number of the players in the each group is equal to
2
N1
The distribution of players by quality after the i-th stage has the
density of the following form:

N; = 2z; — ci=1,...,n. (1)

where i = 1,...,n.

Theorem 1.

Nash equilibrium in the (n + 1)-stage two-sided best-choice game is
determined by the sequence of thresholds z;, i = 1,...,n, which satisfy the
recurrence relation

Z; = aizi_li = 2, R

21:1(1—\/1—@),
aj

where coefficients a; satisfy the equations

2

=101, (2)
3— a7,

a; =

and a, = 2/3.
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A system of the real estate development optimization and game theo-
retic models is described in this paper.

A basic role in the proposed system is played by aggregate models of
a real estate development company. They are static optimization models
aimed at the definition of optimal prices with constraints on the solvent
demand.

A natural generalization of the basic model is possible in two direc-
tions: “horizontally” and “vertically”. First, an interaction of real estate
development companies as equal economic agents may be considered. In
turn, two model approaches are possible in this case. If we consider com-
petitive relations of development companies without formation of coali-
tions then non-cooperative games of n players in normal form arise. If a
cooperation is admissible (common resources, mergers and acquisitions of
development companies) then we get cooperative games.

Second, development companies have economic relations with organi-
zations of other types. These relations are hierarchical as a rule, and a
development company can be both a Leader (in relations with its sup-
pliers) and a Follower (in relations with its investors, credit institutions,
administration agencies). Respectively, hierarchical game theoretic mod-
els arise. An aggregate optimization model of a real estate development
company has a form

© G. A. Ougolnitsky, 2009
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u =

N
‘ [aj (pj) pj — ¢j] S; — C — max (1)

<
I
—

M=

aj(p;) S5 < 8™, 0<p; <pi™, j=1,....,N (2)

1

<.
Il

where j is an index of a real estate development project;
N is a number of projects realized by the company in the current year;
u is an annual profit of the company;
S; is an annual volume of construction works in the j-th project (m?);
¢j is a cost price in the j-th project;
p; is a sale (rent) price of 1 m? in the j-th project;
a; (p;) is a share of the sold (rented) m? in the total amount S;;
C are constant expenditures of the company;
S™max ig the maximal solvent demand of the company target consumer
group (m?);
P is maximal possible (“real”) sale/rent price of 1 m? in the j-th
project.

Without loss of generality it is more convenient to consider the model
(1)—(2) for one project, i.e.

u = Ja(p)p—c S—C— max (3)
a(p) S <8, 0<p<ph™ (4)

where all variables relate to the one project.
The key role in the model (3)—(4) belongs to the variable « (p) which
describes a dependence of a share of the sold (rented) m? on the sale (rent)

price. A parametrization of the function a (p) is based on the following
assumptions:

e «(p) is a decreasing price function;
e let be apin < o (p) < Qmax, then a (0) = Omax, & (pmax) = Omin-

Two classes of functions a (p) were chosen for the structural identifi-
cation:
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e a linear function a(® (p) = ap+b (a < 0);
e an exponential function a(? (p) = a exp (~bp) (a >0, b > 0).

Using the assumptions made above we get:

a(l) (p) = p (amin - amax) /pmax + Qmaxs (5)
a® (P) = amax exp (= (p/P™™) [N Amin — In apax]) - (6)

Solving the optimization problem (3)—(4) by Lagrange method we get
for the parameterizations (5) and (6) respectively:

P (ST g g) max

p(l) = S (0min—Qmax) S < Qimax S (7)
pruax, gmax 5 o G
Pmax (11] S™MA* —In Omax S) max

p(2) — S (In min —1n Amax) ’ S S Qmax S (8)
e, ST > qpax S

Thus, for both parameterizations the optimal solution depends on
whether the inequality S™®* < apuax S is true. If the solvent demand
is less than the supply value then the optimal price is calculated as a
certain function of the model parameters. Otherwise, the company may
declare an arbitrary big price restricted by common sense only.

Let on a territory there are n real estate development companies des-
ignated by the index i = 1,...,n. Then a competitive interaction of the
companies is described as a non-cooperative n-players game in normal
form

G=({L....n} {X1,. .., X} {ur, - und) (9)
where payoff functions u; are given by the formula (1), and sets of admis-
sible strategies X; are given by the constraints of a type (2). During the
investigation of the game theoretic model (9) the following assumptions
were studied:

l.ay=a;(p), 0<p; <p* i=1,...,n,
where pi"®* is a maximal admissible sale/rent price fixed by the i-th
company for the common sense considerations independently from

others;
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max m

2. ;= a; (i), pio = pi/p™™>, p™™ = max {p1,...,pn};

3. X; is defined by constraints «; S; < S;"** for each company i =
1,...,n independently;

4. X; is defined by common constraints Y a; S; < S™* for the whole
solvent demand on the territory.

In all four cases of possible combinations of the values a; and X; a
qualitative character of the optimal solutions (7) and (8) does not change.

As the solutions (7) and (8) are dominant strategies of the player ¢
then vectors

pV = (D) o = (o) (10)

could be treated as equilibriums in dominant strategies in the game (9).
But it is necessary to notice that the players’ behavior is completely isola-
tive only in the case a; = a; (p;), «; S; < S, In other three cases to
find a dominant strategy each player must know the values of parameters
of other players. That’s why the solutions (10) are better to consider as
Nash equilibriums which allow an informational exchange between play-
ers.

Now let on a territory there are n real estate development companies
1 = 1,...,n which can exchange information, join resources and realize
common projects. Denote A; an amount of own resources of the i-th
development company.

Then we can formalize a cooperative interaction of development com-
panies as a weighted majority game (A™"; A;,... A,), i.e. the charac-
teristic function is

1a E Ai Z Amin’
v(S) = i€S (11)
0, otherwise.

Thus, a coalition is winning if and only if a summary amount of own
resources of its members is not less than A™®. The threshold value A™"
can be treated as, for example, a necessary deposit for a tender or credit.

The following special cases of the game (11) can be selected:
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1. a dictator game Ji € {1,...,n}: A; > A™D Vj£i A; < Amin,

In this case the game is unessential, v(S) = 1 < ¢ € S, the only
imputation (0,...,0,1,0,...,0) (x; = 1) exists which forms C-core,
is the only Neumann-Morgenstern solution and the Shapley value;

2. a symmetrical game of the k-th order

1, s>k, B
v(9) = { 0, otherwise. s=15], 1<k<n.

In this case the C-core is empty, the Shapley value has a form
(1/n,...,1/n), an example of the Neumann-Morgenstern solution
is given by a discriminative solution

{(a:“,...,a:ik,o,...,o) 2120, 20 i1+ Xk = 1}.

An interaction of real estate development companies with a bank (let’s

suppose for simplicity that there is only one bank on the territory) is
described by the following rules.

Stage 1: preparation of the credit applications by development com-

panies.
This stage includes for each company i =1,...,n:
e forming of the concepts for projects 7 =1,...,n;;

e working out of schedules of the project works, construction works,
financing for each project;

o evaluating of own resources and cost price per 1 m? for each project;

e exposing the credit needs and application to the bank with the re-
quest
n;
K} =Y K.
j=1

Stage 2: decision making by the bank. At this stage the bank:
e analyzes the requests K9, ... K?;

e evaluates of the credit risks r; for each request;
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e defines a rate of interest s; = s; (14);

e makes a decision about credits Ki,...,K, and rates of interest
S1y+v-58n;

e informs development companies about the decision.

Stage 3: decision making by a development company.
At this stage each development company i = 1,...,n:

e specifies real amounts of the construction works and respective sched-
ules based on given credit resources K; and rate of interest s;;

e calculates the optimal price for development objects by solving the
optimization problem (3)—(4).

The following assumptions are made to build a model of decision mak-
ing by the bank:

e the credit risk is defined by the formula
TZ:KZ/AZ, Z:L,TL, (12)

where A; are own resources of the i-th company, K; are credit re-
sources assigned by the bank. Then a condition of credit apportion-
ment is an inequality r; < ™ where r™?* is a banking normative
of admissible risk;

e the interest rate is an increasing linear function of the risk: s; =
ar;+b=aK;/A;+b=a;K;+b, i=1,...,n. Let’s consider that

0< Smin S Si S Smax < 17 Tmin S T S Tmax, S (Tmin) = Smin>

S (Tmax) = Smax-

Then we get
_ Smax — Smin h— Smin "max — Smax "min _
a; = A ) - 9 - 17 ,
i (Tmax - Tmin) Tmax — Tmin

(13)
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Considering the assumptions made above the model of decision making
by the bank at the stage 2 is an optimization problem

i=1 i=1
> Ki<K, 0<K; <L, j=1,..,n (15)
i=1

where K is a whole capital of the bank in the current year,
L; = min {K? A; >}, Solving the problem (14)-(15) by Lagrange
method we find the optimal values

Kp =win{ly My, M=K/ (02 0;7); (16)
s¥ = (Smax—Smin) K +A; (Smin "max —Smax Tmin)
! . Ai(Tmax —Tmin) ’ (17)
t=1,...,n.

The model of decision making by an i-th development company at the
stage 3 has a form (3)—(4) with an additional constraint

¢ Si <A —Ci+(1-5s7) K, (18)

from what we get a final value of the optimal construction works amount

Si=1[Ai = Ci+ (1= s7) K] /ei, (19)
which has to be substituted instead of S in the formulas (7)—(8) to calcu-
late the optimal prices.

Let’s consider a case n = 1. The rules described above define a hier-
archical game “Bank—Developer” in the form:
uo(Kl):a1K12+bK1—>maX ( )

OgKlgmin{K,K?,Alrmax} (21)

uy (K1,p1) = [ (p1) p1 — 1] [A1 — C1 + (1 = s1) Ki] /e — max  (22)
0< o (p1) [A1 = Cr+ (1 —s1) Ki] Jer <SP, 0 <pr < pi*™™. (23)
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The outcome (K7, p;), where K is calculated by the formula (16),
and p} by one of the formulas (7) or (8) after substitution of the values
s and S7 by formulas (17) and (19) respectively, is a formal Stackelberg
equilibrium in the game (20)—(23). But this game is degenerate because
Bank’s payoff function does not depend on p; and the Bank chooses the
solution K3 by solving the optimization problem (14)-(15) and is not
interested in Developer’s optimal reaction.
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Multi-Player Network Game'
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Abstract
In this work we present some game-theoretic models based on
player rating. We used goodness variables to encourage good behav-
ior of network players. We derive Nash equilibria for finite planning
horizon in all our models. The numerical modelling and the results
comparison are given.

1. Model with goodness function

We consider game-theoretic model based on player rating. In [2] it
was introduced a goodness function which represents player’s behavior
history as a value from (0, 1). This function presents a rating of a player
and central server takes it into consideration in the serving process.

In our model we have two players. The system starts executing at
time moment 0 and stops at T. Each player interacts only with central
server and demands some service from it. Every player has a goodness
variable z;(t) € (0,1), z;(0) = z. The central server gives a player i
a service value proportional to his goodness value. A player can get at
most twice more what the server suggests. Hence the players’ controls
up(t),uz(t) € (0,2] correspond to the factor of what server suggests to
take.

Goodness variables depend on players’ behavior and change according
to the following rule:

A1) =00 -5~ i) 210 = b,
250 = 2201~ 22(0) (5 ~ i)« 2(0) = 3.

IThe research was supported by the Russian Fund for Basic Research, project 08-
01-98801-r-sever-a
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where 0 < wp, us < 2 — players’ demands, 0 < z1,z2 < 1 — players’
goodness variables.

We can notice that player’s ¢ goodness value has a strong connection
with player’s j control. The player’s i rating decreases at time moment ¢
only if u;(t) < u;(t), i.e. player’s j behavior at this time moment is better
for the central server.

Players’ net revenues over finite time horizon are:

T T
Ji= /O sty dt, Jp = /0 2o (t)us(t) dt .

Players act non-cooperatively and wish to maximize their payoffs. We
find Nash equilibrium using Pontryagin maximum principle.
2. Model with relative goodness function

We change the model in the sense that now players determine the
goodness values for each other. Let x;; € (0,1) be the relative goodness
function, i.e. player i defines a rating of player j. Of course z;; = 1,
1 = 1,2, because player ¢ thinks good about himself. Again the central
server gives a player ¢ a service value proportional to his relative goodness
value.

Players’ payoffs are:

7 T21(t) 7 T12(t)
J1 _/0 U1(t)(E21( )+1 dt JQ —/0 Ug(t)xlz( )+1 dt

where 0 < wuy, us < 2 — players’ demands, 0 < x19,721 < 1 — players’
relative goodness variables.
Relative goodness variables change according to the following rule:

r1o(t) = 212(t) (1 — 212(2)) (% - (;;2_’_(22()) 219(0) = 22,

1 uy (t
Plt) = e (01— o () (5 = e+ am(0) =i,
For this model we also determine Nash equilibrium. Also we extend
this model for the game with three players.
3. Combined model
The last model we consider here is the combination of first two. Now
we have two goodness variables for each player: z; € (0,1) — central
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server’s rating of player ¢ and z;; € (0,1) — rating of player ¢ which gives
him player j, i,7 =1, 2.
Here players’ net revenues are:

= /OT wn(t) (ml(t) + sz;)(tll) dt,

Iy = /OT us(t) (2() + m) d,

where 0 < wp, us < 2 — players’ demands, 0 < z1,z2 < 1 — players’
goodness variables, 0 < x19, 91 < 1 — players’ relative goodness variables.
Goodness variables change according to

A1) = (00— a1 (0)(1 = (1), 71(0) = 2,

w5 (t) = wa(t)(1 — a(1))(1 —1U2(t)) ; C52(?) =,

alt) = 21201~ 212(0) (5 = A 5) | wia(0) =l
)

xhy () = x21(t)(1 — le(t))(% B m(:l—l-uuz(t)) ’

Numerical modelling was carried out for all presented models and we
compare player’s controls and payoffs.
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The paper deals with an on-line detection disorder problem (see
Shiryaev [4]) under probability maximizing of abrupt changes localiza-
tion approach to the sequences which are not necessarily i.i.d. before and
after the disruption moment. Some problems with such generalization
have been touched by Moustakides [2]. The considerations are inspired
by the problem regarding how can we protect ourselves against a second
fault in a technological system after the occurrence of an initial fault (see
Szajowski[5]). At two random moments ¢, n, where ¢ < 7, the distribution
of observed sequence changes. It is known before ¢ and after 7. Between
these instants is unknown to the statistician and chosen randomly by "na-
ture” from a set of distributions (see e.g. Bojdecki et al. [1], Sarnowski &
Szajowski [3]). The stopping rule which stops between disorder moments
¢ and 7 with maximal probability is identified.
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The state inspections play an important role in the modern economy.
There are two main directions of their activity. The first one is collection
of payments to the state budget. The tax inspections and the customs
control the payment’s values and check exemptions from payments for
different economic agents. The agency should prevent tax or customs
evasion but not interfere with the agents eligible for exemption from the
payment. The second direction is concerned with prevention of the law
infringement. Police, sanitary, firework inspection and others deal with
this task. The efficiency of an inspection should be measured by the social
welfare increase proceeding from its activity.

For many countries in transition, in particular for Russia, corruption
is the most important problem in inspections’ organization. Bribery is
one form of corruption that is the most difficult to reveal. There exists a
wide literature that discusses problems of optimal inspection organization
(in particular for tax inspection) and the problem of corruption. The first
type of models (see Srinivasan (1973)) studies the interaction between the
tax authority and a group of taxpayers, whose income is random, without
taking into account the possibility of corruption. It is assumed that at the
end of the accounting period each taxpayer declares his/her income to the
tax inspectors. The reported income is taxed according to the given tax
rates. However, a taxpayer may try to hide some part of income by under-
reporting. If the taxpayer is audited, the inspector will inevitably uncover
the true level of income. The detected tax evader is fined and made to
pay the evaded tax. Further, it is assumed that auditing is costly and that

IThe research was supported by Grant of the President of the Russian Federation
#693.2008.1 and by Grant of Russian Foundation for Basic Research for project #08-
01-00249.
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the central authority is interested in maximizing net tax revenue (i.e. the
sum of taxes and penalties minus expenditures on audits) given the tax
rates, fines and the costs of auditing. In the case of a homogeneous group
of taxpayers, the only taxpayer-specific information available to the tax
authority is the declared incomes. Thus, the authority must determine
the probability of audit, using these declarations. The purpose of this
model is to find the optimal auditing rule given the tax rates and income
distribution.

Chander, Wilde (1992) and Vasin, Panova (2000) extend the previous
model by taking corruption into account. The model assumes that a tax
inspector, which has discovered an instance of tax evasion, may bargain
with the detected evader over the size of a bribe given in exchange for
not revealing the evasion. In order to prevent this kind of corruption,
the authority chooses to review some of the inspectors’ audits and fires
those inspectors who have not reported tax evasion. Thus, the authority’s
problem is to choose the frequencies of both levels of audit - the audit
of taxpayers by inspectors and the review of audits from the center as
well as inspectors salary. There are two variants of the optimal strategy
depending on parameters of the model:

1. If the ratio of the audit cost to the cost of reviewing is above some
threshold then the optimal strategy includes threshold probabilities
of auditing and reviewing that make corruption and tax evasion
unprofitable.

2. If the ratio is below this threshold level then it is optimal to cancel
reviewing and increase the auditing probability to such value that
tax evasion turns out to be unprofitable in spite of the possibility
for bribing.

However, realization of these variants meets the following difficulties:

1. The first variant assumes that there is a possibility to hire sufficient
number of honest collaborators for reviewing, but actually the cen-
ter typically has very few reliable collaborators and their time is a
very expensive resource. Thus, this variant may be impossible or
inefficient.
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2. As to the second variant, the lack of control creates incentives for
cooperation among inspectors in order to reduce the actual auditing
probability to such value that maximizes the total amount of bribes.

An alternative approach is to form a controlling hierarchy that sup-
presses corruption at all levels. Consider a country where a benevolent
leader aims to organize an efficient tax collection. There are N firms,
each gets high or low income with probabilities h and 1 — h respectively.
The additional tax from the high income is T and the penalty for evasion
is F. For the inspection, the leader can use a small number M of reli-
able collaborators and also employ any number of rational inspectors who
maximize their expected incomes with account of possible salaries, bribes
and penalties. Salary sj; (per one audit or review) permits to employ
a sufficient number of such inspectors, and ¢ is the cost of one audit by
a reliable collaborator. Consider a strategy of the tax inspection orga-
nization. It includes probability py of primary audit for any low-income
declaration. In order to prevent bribing of a primary auditor, any report
confirming low income is under reviewing (first-level audit) with proba-
bility p1. And so on, any i-level audit confirming the low income is under
reviewing (i + 1-level audit) with probability p;; until the upper level
k where honest collaborators work. A salary of an i-level inspector is
s; > sy. Each revealed inspector which has not reported tax evasion is
fired and gets after that alternative salary sq;;. This value is uncertain:
we assume that sq¢ € (spr — A, spr). Thus, a government strategy in-
cludes the number k + 1 of audit levels, auditing probabilities po, . . ., pk
and salaries s, ..., s; at each level.

A formal problem is to find the optimal strategy that provides honest
behavior of all agents and maximizes net tax revenue under this condition.
Note that, for risk-neutral inspector, firing as equivalent to monetary fine
F = (s — squ)a, a = §/(1 — §), where § is a discount coefficient. Let
d; = s; — sy denote the increment of the salary at level ¢ above the
maximum alternative salary.

Proposition 1 Assume that auditors at level i check honestly. Then mu-
tually beneficial collusion between i — 2-level inspector and his auditor is
mpossible if and only if p; > — 222
impossible if and only if p; > ——m———
p Y pl_di72+di71+A
sion is unprofitable if and only if po > T/F and collusion between taxpayer

fori=2,... k. Tax eva-
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(%)

and his auditor is impossible if and only if p1 > ———.
F + doOé
Proposition 2 The subgame perfect equilibrium corresponding to the hon-
est behavior in the interaction of inspectors and taxpayers exists if and
only if the government strategy meets the inequalities in the previous
proposition. The net tax revenue at such equilibrium is as follows:

-
R(k, d) = hT —po(1 — h)-
(s +do+p1(sy +di +pa(-- -+ pr—1(sayr + di—1 + pié) . ... ).

Consider the following example. The additional tax from the high
income is 10 000 and the penalty for evasion is 80 000. The number of
taxpayers is 100 000, the probability to get high income is h = 0,5. Reli-
able collaborators get 100 000 per one check. Salary sj; equals 150 and
A equals 100, so sq¢ € (50,150). Each auditor can make 60 inspections
or revisions per year. So his alternative salary per year lies between 3 000
and 9 000. Let a discount coefficient § equal 0,1.

The following table shows the net tax revenue and auditing expenses
for optimal salaries, probabilities and different number of auditing levels.

Number of Net tax revenue | Auditing expenses | Number of employed
auditing levels honest collaborators
2 181 940 000 318 060 000 1863
3 459 222 000 40 778 000 200
4 480 532 000 19 468 000 62
5 488 653 000 11 347 000 25
6 491 774 000 8 226 000 12
7 493 424 000 6 576 000 6
8 494 215 000 5 785 000 4
9 494 695 000 5 305 000 2
10 494 947 000 5 053 000 2

According to this data, the 6-level inspection organization cuts down
auditing expenses 40 times with respect to the base model with 2 levels.
Moreover, the necessary number of honest collaborators also decreases by
150 times. So even a small number of honest collaborators can provide
an efficient tax audit.
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Abstract

Sufficient conditions for strong equilibrium to exist in a differ-
ential game with stochastic controllable dynamics are formulated.
An example is proposed, where linear-quadratic game was solved
by reducing it to the optimal control problem.

1 Problem statement

Consider stochastic differential game with many players I'(xg, T — to).
Initial state is xy and the duration is T — tg, where tg, T — moments
of beginning and ending of the game. Denote a set of players as N =
{1,...,4,...n}, n > 2. Stochastic dynamic is:

da(t) = f(r, 2(7),u1 (1), . .., un(7))dt + o (1, 2(7), ur (1), . . ., un(7))dz(T),

(1)

where x(tg) = xo, 2(7) is a state of Brownian motion [1, 2, 3], z(7) € R

is a game state variable, u;(7) — player’s i € N control at the moment 7,
u; € Uy C R, H U, =Un C R".

iEN
Suppose that functions flryz(m),ur(7),. .., un(1)),
o(1,2(7),u1(7),...,un(7)) are continuously differential on [tg,T] X R X
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Un. Let the object of every player ¢ € N is a maximization of expected
value of the functional [4,5]:

T
max B, | [ gira(0 (), u(n). () + (D) i€ N

to
2)
where ¢;(7,2(7),u1(7),...,u;(7),...un(7)) and ¢;(x(T)) — continuous
functions.

Consider games with perfect information [5]. We will find a solution
in the class of feed-back strategies. A feed-back strategy ;(r,z(7)) of
player i has following program realization: u;(7) = ¢;(7, (7)), wi(7) € U;,
T € [to,T]. Let S C N is an arbitrary coalition in the game I'(z). Denote
strategy of coalition S as ¢g(7,2) = (vi(7,))ies € [I Ui = Us C R?,

i€S

T € [to,T], s = |S|. Let o(1,2) = (p1(7,2),...0n(7,x)) is a situation in
feed-back strategy. A payoff of the coalition S is a sum of payoffs:

Ts(wo,p(r,2)) = Y Ji(wo, (7,7)) =
=

Ei, / g5(7, 2(7), (7, 2))dr + g5 (@(T)) | |
where gS(Tax(T)790(Tv x)) = ;ggi(Tax(T)7§0(T7 1'))

We use strong equilibrium optimality principle as a solution of the
game I'(zo, T — o) [6, 7].

Definition 1 A couple {¢i(7,z), 05(1,2),...,0%(T,2)}, T € [to,T] we
will call Strong equilibrium in the game T'(xo, T — to), if for any coalition
S C N, S # 0 and strategy ps(1,z) € Ug the following inequalities take
place:

T
B, / g5(7, 2 (), (7, 2), P 5 (7, 2) )7 + g5 (2(T) | >

to
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T
> By, {/QS(TJ[S](T)’“S(T),WE/S(T,x[S]))dT+QS($[S](T)) ’

to
where
dx*(T) = f(Taﬂf*(T)aSDE(T@),@?\;/S(T@)WT
+ o(r,2"(7),05(7, ), ¥y 5 (7, ) dz(7),
$*(t0):mo.
dx[s](T) = f(T>w[s](,r)vQOS(Tax[S])aQDTV/S(T’:C[S]))dT

+ o(r,2l¥(r), 0 (r,219), 3y o (7, 219))dz(7),
ZZE{S] (to) = Xp.
2 The results
Theorem 1 Suppose that for any coalition S C N, S # () there exist dou-
ble continuous-differentiable  functions VISl(t,x) and a couple

{oi(t,x(t)) € U;,i € N}, satisfying the following  system  of
Bellman-Isaaks equations:

us

Vt[s} (t, 1)) + max {302 (t, 215 ug (), cp}‘v/s(t,x[s])) 1245 (t, 219 (t)) +

1 (050 ) VI (1257)
+gs<t7$[] s(t) @N/stx )}

= vt 2% + %UQ (t,z*, 0" (t, %)) VIS (¢, 2%) +

+H e NV (10) +05 (00767 (107) = 0
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with dynamics

dz*(t) = f (t,z*, 0" (t, ")) dt + o (t, %, " (t,2")) dz,

x*(to) = xo, us(t) € Ug, V[S](T,x[s]) = qg(a:[s](T)).

then for any initial conditions [to, xo] the couple {} (t,x(t)) € U;, i€ N}
constitutes strong equilibrium in (1)-(2).

Consider an example of linear-quadratic stochastic game, where the
solution was found by reducing an original statement to optimal control
problem.

Example. Consider a differential game with dynamics

3
dx(t) = <agc + Zbiui> dt + oxdz, x(ty) = xo, (3)

i=1
where u; € R; a, b;, 0 — are known parameters, i € N.
The objective function of player i € N = {1,2,3} is

2

yu) =
f( )= S b o S5 [+ i ] ) des o)

where r;(t) — continuous on [tg, T] function. A payoff of the coalition S
is a sum of players’ i € S payoffs. Then in the game (3)-(4) there exists
strong equilibrium.
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