CLUSTERING WORDS AND INTERVAL EXCHANGES

$A=\{1, \ldots, r\}$ or $A=\left\{a_{1}<a_{2}<\cdots<a_{r}\right\}$.
Primitive word $w=w_{1} \cdots w_{n}$: not a power of another word.

Parikh vector of $w:\left(n_{1}, \ldots, n_{k}\right), n_{i}:$ number of occurrences of a_{i} in w.
Conjugates: $w_{i, 1} \cdots w_{i, n}=w_{i} \cdots w_{n} w_{1} \cdots w_{i-1}, 1 \leq i \leq n$, ordered by ascending lexicographical order.
Burrows-Wheeler transform $B(w)=w_{1, n} w_{2, n} \cdots w_{n, n}$.
$w=2314132 \rightarrow$
1322314
1413223
2231413
2314132
3141322
3223141
4132231
$B(w)=4332211$.
π--clustering : $B(w)=a_{\pi 1}^{n_{\pi 1}} \cdots a_{\pi r}^{n_{\pi r}}$, for $\pi \neq I d$ permutation on $\{1, \ldots, r\}$. perfectly clustering : π-clustering for $\pi i=r+1-i, 1 \leq i \leq r$.

WHICH ARE THE CLUSTERING WORDS?

Perfectly clustering implies strongly (or circularly) rich (Restivo, Rosone): w^{2} has $\left|w^{2}\right|+1$ distinct palindromic factors.
Clustering on two letters implies Sturmian.
No converse.

Theorem 1 The following are equivalent:

1. w is π-clustering,
2. $w w$ occurs in a trajectory of a minimal discrete r-interval exchange with permutation π,
3. $w w$ occurs in a trajectory of a continuous r-interval exchange with permutation π satisfying the i.d.o.c. condition.

Continuous r-interval exchange : defined by a probability vector $\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{r}\right)$, and permutation π by

$$
\begin{gathered}
T x=x+\tau_{i} \quad x \in \Delta_{i} \\
\Delta_{i}=\left[\sum_{j<i} \alpha_{j}, \sum_{j \leq i} \alpha_{j}\left[, \tau_{i}=\sum_{\pi^{-1}(j)<\pi^{-1}(i)} \alpha_{j}-\sum_{j<i} \alpha_{j} .\right.\right. \\
\longmapsto \Delta_{1}, \Delta_{2}, \Delta_{3} \\
T \Delta_{3} T \Delta_{2}, T \Delta_{1},
\end{gathered}
$$

Discrete r-interval exchange : defined on a set of $n_{1}+\cdots+n_{r}$ points $x_{1}, \ldots, x_{n_{1}+\cdots+n_{r}}$

$$
T x_{k}=x_{k+s_{i}} \quad x_{k} \in \Delta_{i}
$$

$\Delta_{i}=\left\{x_{k}, \sum_{j<i} n_{j}<k \leq \sum_{j \leq i} n_{j}\right\}, s_{i}=\sum_{\pi^{-1}(j)<\pi^{-1}(i)} n_{j}-\sum_{j<i} n_{j}$.

Example $1122334 \rightarrow 4332211$.

Minimal : no invariant subset (nonempty, closed).

Trajectory : $x_{n}=i$ if $T^{n} x$ belongs to $\Delta_{i, 1} \leq i \leq r$.
I.d.o.c. condition : technical, stronger than minimality, weaker than total irrationality,.

For $r=2$ I.d.o.c. interval exchange $=$ irrational rotation. Trajectories $=$ Sturmian infinite words.

ELEMENTS OF PROOF

A clustering word defines a discrete interval exchange.

Lemma 1 If w is π-clustering, the mapping $w_{1, j} \mapsto w_{n, j}$ defines a discrete r-interval exchange transformation with length vector $\left(n_{1}, n_{2}, \ldots, n_{r}\right)$, and permutation π.

```
w=2314132->B(w)=4332211.
1 - - - - - 4
1-----3
2-----3
2-----2
3-----2
3-----1
4-- - - - 1
```

Continuous and discrete interval exchanges produce the same finite words.

MINIMALITY AND INVERTIBILITY

Lemma 2 (Crochemore, Désarménien, Perrin or Mantaci, Restivo, Rosone, Sciortino) If w and w^{\prime} are words such that $B(w)=B\left(w^{\prime}\right)$, then w and w^{\prime} are cyclically conjugate.

Lemma 3 If the discrete r-interval exchange T with length vector $\left(n_{1}, n_{2}, \ldots, n_{r}\right)$, and permutation π is not minimal, the word $(\pi 1)^{n_{\pi 1}} \ldots(\pi r)^{n \pi r}$ has no primitive pre-image by the Burrows-Wheeler transform.
$111233444 \rightarrow 444332111$ is not minimal and gives two perfectly clustering words on smaller alphabets, 41 and 323.

WEAKER HYPOTHESES

Non-primitivity. For w not primitive, the Burrows-Wheeler can be defined (the lexicographical order is not strict). Lemma 3 : is not valid: $333322211=B(1322313223)$ though the discrete 3-interval exchange is not minimal, A modified Theorem 1 holds.

32221 has no antecedent, primitive or not, by the Burrows-Wheeler transformation.

Two permutations. $223331111 \rightarrow 111133322$ is a minimal discrete 3 -interval exchange, $w=$ 123131312 is such that $w w$ occurs in trajectories of T but $B(w)=323311112$.

BUILDING CLUSTERING WORDS

By discrete interval exchanges.

Minimality. Pak and Redlich \rightarrow for $n=3$ and $\pi 1=3, \pi 2=2, \pi 3=1$ and length vector $\left(n_{1}, n_{2}, n_{3}\right)$, the interval exchange is minimal iff $\left(n_{1}+n_{2}\right)$ and $\left(n_{2}+n_{3}\right)$ are coprime.
$11223333 \rightarrow 333322111$ gives the perfectly clustering word 313131223 .

Condition of minimality for $n \geq 4$?

By continuous interval exchanges

Use of the self-dual induction or its generalization $\rightarrow 13131312222$ and 1313122213122131 are perfectly clustering.
$2^{m}(3141)^{n} 32$ are perfectly clustering for any m and n.
5252434252516152516161525161 is perfectly clustering.
4123231312412 is π-clustering for $\pi 1=4, \pi 2=3, \pi 3=1, \pi 4=2$.

CHARACTERIZATION OF TRAJECTORIES

Theorem 2 A uniformly recurrent infinite word sequence u is a trajectory of an r-interval exchange, defined by permutation π and satisfying the i.d.o.c. condition, if and only if the words of length one occurring in u are $L_{1}=\{1, \ldots, r\}$ and it satisfies the following conditions

- if w is any word occurring in $u, A(w)$, resp. $D(w)$), the set of all letters x such that $x w$, resp. $w x$, occurs in u, is an interval, resp. an interval for the order of π,
- if $x \in A(w), y \in A(w), x \leq y$ for the order of $\pi, z \in D(x w), t \in D(y w)$, then $z \leq t$,
- if $x \in A(w)$ and $y \in A(w)$ are consecutive in the order of $\pi, D(x w) \cap D(y w)$ is a singleton.

$$
\begin{array}{ll}
{\left[w a_{1}\right] \quad\left[w a_{2}\right]} & \left., w a_{3}\right],\left[w a_{4}\right],\left[w a_{5}\right] \\
T\left[x_{1} w\right] T\left[x_{2} w\right] & T\left[x_{3} w\right], T\left[x_{4} w\right]
\end{array}
$$

Do these trajectories contain infinitely many $w w$? Yes for $\pi i=r+1-i, 1 \leq i \leq r$. Open in general.

