
Some models of representation

of two parallel FIFO-queues

and their optimal control

by

Eugene A. Barkovsky
(IAMR KarRC RAS)

RuFiDiM 2014



Introduction

In many applications and tasks, such as the

development of various network devices and embedded

operating systems, it is required to work with

multiple FIFO-queues located in the shared memory

space. Mechanism of paged virtual memory is not used here,

and the entire operation occurs in multiple memory pools.and the entire operation occurs in multiple memory pools.

The number of queues in such devices can reach several

hundreds and thousands.

To represent FIFO-queues different software or

hardware solutions are used.

RuFiDiM 2014



Introduction

Here we propose a mathematical models and solve the

problems of optimal partitioning of shared memory for

two FIFO-queues when they are moving sequentially and

in a circle one after another (A.V. Sokolov, 2002) on thein a circle one after another (A.V. Sokolov, 2002) on the

assumption that the operations are performed by the

principle described by R. Sedgwick (1999), but it is

possible, along with the serial, the parallel execution of

operations on queues with given probabilities.

RuFiDiM 2014



FIFO

FIFO (First In – First Out) is a method for organizing and

manipulating a data buffer, where the oldest (first) entry, or “head” of

the queue, is processed first.

RuFiDiM 2014



R. Sedgwick’s principle

Operations with queues are performed by the

following scheme:

• insertion of an element is performed

on the odd step;on the odd step;

• and deletion –– on the even step.

Some probabilities of operations performed

with queues are known.

RuFiDiM 2014



Statement of the problem

Suppose that in the memory size ofm we are working

with two FIFO-queues with elements of fixed size in one

conventional unit. Then:

• p1, p2 and p12 –– probabilities of insertion

in queues;

RuFiDiM 2014

in queues;

• q1, q2 and q12 –– probabilities of deletion

from queues;

• r1 and r2 –– probabilities of operations that

do not change the length of queues.



• insertion in I, with the deletion from II queue –– p1q2;

• insertion in II, with the deletion from I queue –– p2q1;

• insertion in I queue –– p1r2+p12q2;

• insertion in II queue –– p2r2+p12q1;

• insertion in parallel in both queues –– p12r2;

• deletion from I queue –– q r +p q ;• deletion from I queue –– q1r1+p2q12;

• deletion from II queue –– q2r1+p1q12;

• deletion in parallel from both queues –– q12r1;

• execution of opposite operations, that preserve queues status,

–– r1r2+p1q1+p2q2+p12q12.

RuFiDiM 2014



In a regular Markov chain there is a limit vector α.

This vector is a solution of the equation α*P = α, where P
is the transition probability matrix. According to the law

of large numbers for regular Markov chain, element of the

vector αi is the portion of time that the process spends in

state i.

Therefore, to find out portion of time when queues areTherefore, to find out portion of time when queues are

overflowing, it is necessary to sum elements of the vector α,
corresponding to those states where newly arriving items for

queues are lost.

Our task is to find a vector α, where the sum of these
states is minimal.

RuFiDiM 2014



Sequential representation

Suppose that s is a number of units of memory allocated to

the first queue, then (m−s) –– number of units of memory allocated
to the second queue.

The purpose of this research is to determine the optimal allocation

of memory between queues (s), where the optimality criterion is the
minimum average share of lost (by the overflow) elements of queues.

RuFiDiM 2014



Sequential representation

x and y are current lengths of the
first and the second queues,

respectively.

Consider random walks on

two-dimensional space on an

integer lattice in the areainteger lattice in the area

0 ≤ x ≤ s+2, 0 ≤ y ≤ m−s+2.

Lines x = s+1 and y = m−s+1
form the first reflective screen;

lines x = s+2, y = m−s+2 form
the second reflective screen.

RuFiDiM 2014



Sequential representation

m = 8

s = 4

n = (m-s+3)*(s+3)

RuFiDiM 2014

s = 4



One after another

Assume, that x and y are current
lengths of queues,

z –– distance between the end of
the first queue and the beginning

of the second.

Aim of the research is toAim of the research is to

determine the average share of

lost elements for comparison with

the average share of lost elements

with sequential work of parallel

queues in the case of the optimal

partition of shared memory.

RuFiDiM 2014



One after another

RuFiDiM 2014



One after another

RuFiDiM 2014



Comparison of losses

RuFiDiM 2014

All results were confirmed by simulation modeling.



Work stealing

In many implementations of parallel programming

languages and libraries (Intel TBB, Cilk/Cilk Plus,

Microsoft TPL, fork-join API for Java, et al) there is a task

scheduler, where the working thread takes a new job to runscheduler, where the working thread takes a new job to run

from the end of its queue on the principle of LIFO.

However, if the process (CPU) is idle, it is looking for a job

in the queue of another process (CPU), and extracts it on the

basis of FIFO

RuFiDiM 2014



Thank you!Thank you!

RuFiDiM 2014


