RuFiDiM 2014, Petrozavodsk — September 18th, 2014

Decomposition of a language of factors into sets of bounded complexity

Julien Cassaigne

Institut de mathématiques de Marseille, France julien.cassaigne@math.cnrs.fr

Joint work with Anna Frid (Marseille and Novosibirsk), Svetlana Puzynina (Turku and Novosibirsk), and Luca Zamboni (Lyon and Turku).

Decomposition of a language of factors into sets of bounded complexity

- Examples, definitions
- Linear factor complexity
- Higher factor complexity
- Open problems

Motivation

Let $\mathbf{u} \in A^{\mathbb{N}}$ be an infinite word. Language of factors: $L = F(\mathbf{u})$. Factor complexity: $p_L(n) = \#(L \cap A^n)$.

Question:

Is it possible to express elements of L using a smaller language S?

Thue-Morse

Let $t_0 = a$, $\overline{t}_0 = b$, $t_{k+1} = t_k \overline{t}_k$, $\overline{t}_{k+1} = \overline{t}_k t_k$. Then $t_1 = ab$, $\overline{t}_1 = ba$, $t_2 = abba$, $t_3 = abbabaabbabaab,$ etc. Thue-Morse word: $\mathbf{t} = \lim t_k = abbabaabbabaababbabaababba...$

If $w \in L = F(t)$ with $|w| \ge 2$, then there is k such that: w is a factor of t_{k+1} or $\overline{t_{k+1}}$, but neither of t_k nor of $\overline{t_k}$.

Then w = sp, where: *s* is a suffix of t_k or \overline{t}_k , and *p* is a prefix of t_k or \overline{t}_k .

Let S be the language of those prefixes and suffixes: then $L \subseteq S.S$, with $p_S(n) \leq 4$, while $p_L(n) = \Theta(n)$.

Sturmian words

Fix $\alpha \in [0, 1] \setminus \mathbb{Q}$. Standard Sturmian word of slope α : $\mathbf{u} = u_1 u_2 \dots$ with $u_n = \lfloor \alpha(n+1) \rfloor - \lfloor \alpha n \rfloor \in A = \{0, 1\}$.

For each $w \in F(\mathbf{u}) \cup A^n$, there is $\rho \in \mathbb{R}$ such that $w_i = \lfloor \alpha(i+1) + \rho \rfloor - \lfloor \alpha i + \rho \rfloor$ for $0 \le i < n$. ρ can be adjusted so that $\alpha j + \rho \in \mathbb{Z}$ for some $j, 0 \le j \le n$. Then $w_0 \dots w_{j-1} = \tilde{x}1$ (or ε if j = 0) and $w_j \dots w_{n-1} = 0y$ (or ε if j = n) where x and y are prefixes of \mathbf{u} .

Here $p_S(n) \leq 2$, while $p_L(n) = n + 1$.

Sturmian words

Fibonacci word

 $S = \{\varepsilon, 0, 00, 001, 0010, 00100, 001001, 0010010, 00100101, \dots \\ 1, 01, 101, 0101, 00101, 100101, 0100101, 10100101, \dots \}.$

 $F(\mathbf{u}) \cap A^8 = \{00100101, 00101001, 01001001, 01001010, 01001010, 01010010, 10010010, 1001001, 0100100, 10100101\}.$

Definitions

 \mathcal{L}_1 : class of languages *L* for which p_L is bounded (slender languages).

 \mathcal{L}_k : class of languages L for which there exist S_1, \ldots, S_k in \mathcal{L}_1 such that $L \subseteq S_1.S_2.\ldots.S_k$.

 \mathcal{W}_k : class of infinite words **u** for which $F(\mathbf{u}) \in \mathcal{L}_k$.

 \mathcal{P}_{α} : class of infinite words **u** for which $p_{\mathbf{u}}(n) = O(n^{\alpha})$.

We have seen that Thue-Morse and Sturmian words are in \mathcal{W}_2 .

Decomposition and complexity

Question:

How are decomposition classes \mathcal{W}_k related to complexity classes P_{α} ?

Counting argument: $\mathcal{W}_k \subseteq \mathcal{P}_{k-1}$ for all $k \ge 1$. Indeed, if p_{S_i} is bounded by C, then $S_1.S_2....S_k$ contains at most $\binom{n+k-1}{k-1}C^k$ words of length n.

Trivially: $W_1 = \mathcal{P}_0$.

Is it true in general that $\mathcal{W}_k = \mathcal{P}_{k-1}$?

Linear factor complexity

Our main result is:

Theorem.

 \mathcal{W}_2 is exactly the class of infinite words with linear factor complexity.

It remains to prove that $\mathcal{P}_1 \subseteq \mathcal{W}_2$.

Let $\mathbf{u} \in \mathcal{P}_1$.

We have to design a way to factor any $v \in F(\mathbf{u})$ as $v = s_v t_v$, so that $S = \{s_v | v \in F(\mathbf{u})\}$ and $T = \{t_v | v \in F(\mathbf{u})\}$ are slender. For this we shall use markers.

Markers

 $M \subseteq A^n$ is a set of *D*-markers of length *n* for **u** if every $w \in F(\mathbf{u}) \cap A^{Dn}$ contains an element of *M* as a factor.

Lemma.

If $\mathbf{u} \in \mathcal{P}_1$, then there exist constants D and R such that, for any $n \in \mathbb{N}$, there is a set M of D-markers of length n for \mathbf{u} with $\#M \leq R$.

Special factors

A word $w \in F(\mathbf{u})$ is a right special factor if there exist letters $a \neq b$ such that $wa \in F(\mathbf{u})$ and $wb \in F(\mathbf{u})$.

The number of right special factors of length n is at most $p_u(n+1) - p_u(n)$.

Theorem. [Cassaigne 1996] If $p_{\mathbf{u}}(n) = O(n)$, then $p_{\mathbf{u}}(n+1) - p_{\mathbf{u}}(n)$ is bounded. More precisely: if $\forall n \in \mathbb{N}$, $p_{\mathbf{u}}(n) \leq Cn + 1$, then $\forall n \in \mathbb{N}$, $p_{\mathbf{u}}(n+1) - p_{\mathbf{u}}(n) \leq 2C(2C+1)^2$.

Proof of the lemma

Lemma.

If $\mathbf{u} \in \mathcal{P}_1$, then there exist constants D and R such that, for any $n \in \mathbb{N}$, there is a set M of D-markers of length n for \mathbf{u} with $\#M \leq R$.

Assume **u** is not eventually periodic, with $p_{\mathbf{u}}(n) \leq Cn + 1$. Take for M the set of right special factors of length n. Let D = C + 1 and $R = 2C(2C + 1)^2$. Then #M is bounded by R.

If a factor w does not contain any right special factor of length n, then it cannot contain any repeated factor of length n, otherwise this would imply periodicity.

Then $|w| \le Cn + n - 1 < Dn$.

Construction

For each $k \leq 1$, fix a set M_k of D-markers of length 2^k , with $\#M_k \leq R$.

Let $v \in F(\mathbf{u})$, and assume first $n = |v| \ge 2D$. Choose an occurrence i of v in \mathbf{u} . Let $m \in M_k$ be a marker that occurs in v, with k as large as possible.

We choose one occurrence j of m in v as follows.

Let π be the minimal period of m. If there are occurrences j such that m does not occur at position $i + j + \pi$ in \mathbf{u} , choose one (case 1). Otherwise, let j be the first occurrence (case 2).

We have $v = xm_1m_2y$, with |x| = j and $m_1 = m_2 = 2^{k-1}$. Let $s_v = xm_1$ and $t_v = m_2y$. If |v| < 2D, let $s_v = v$ and $t_v = \varepsilon$. Let $S = \{s_v | v \in F(\mathbf{u})\}$ and $T = \{t_v | v \in F(\mathbf{u})\}$. Then $F(\mathbf{u}) \subseteq ST$.

Fibonacci

 $D = 2, R = 1, M_1 = \{10\}, M_2 = \{0010\}, M_3 = \{01010010\}, M_4 = \{0101001001010010\}, \dots$

Take v = 1001001010010010010. v occurs in \mathbf{u} at i = 6. v contains two overlapping occurrences of m = 01010010, and no larger marker: k = 3. We choose the second occurrence: j = 10, since m does not occur in \mathbf{u} at position $i + j + \pi = 21$.

Then $s_v = 10010010100101$ and $t_v = 0010010$.

\boldsymbol{S} and \boldsymbol{T} are slender

Fix $\ell \geq 2D$. Any $t \in T \cap A^{\ell}$ was obtained using a marker m. As $m \in M_k$ with $2^{k-1} \leq \ell < D2^{k+1}$, k may take one of at most $\lceil 2 + \log_2 D \rceil$ values, so there are at most $R\lceil 2 + \log_2 D \rceil$ possible markers.

It now remains to prove that a particular marker m contributes a bounded set $T_{m,\ell}$ to $T \cap A^{\ell}$ (and similarly to $S \cap A^{\ell}$). Let $m = m_1 m_2$, with $|m_1| = |m_2| = 2^{k-1}$. For each $t \in T_{m,\ell}$, we consider one particular occurrence of a factor $v \in F(\mathbf{u})$ that was cut at an occurrence of mand resulted in a decomposition v = st. We distinguish cases 1 and 2 (and start with the easier case 2).

Case 2

In case 2, every position j where m occurs in v is such that there is also an occurrence of m at position $i + j + \pi$ in \mathbf{u} (i.e. at position $j + \pi$ in v if it fits). Therefore $m_1 t$ is periodic with period π . There is only one such word of length $2^{k-1} + \ell$.

Case 1

In case 1, we have chosen a position j where m occurs in v such that there is no occurrence of m at position $i+j+\pi$ in \mathbf{u} (final occurrence).

For each integer h, $0 \le h < 2^{k-1}$, consider the factor $e_{t,h}$ of **u** of length $\ell + 2^k$ starting at position i + j - h (if this is negative, extend **u** to the left with a new letter z).

If we prove that all $e_{t,h}$ are distinct, then $2^{k-1}(\#T_{m,\ell}-1) \leq \#\{e_{t,h}\} \leq p_{\mathbf{u}}(\ell+2^k)+2^{k-1}-1$ so that $\#T_{m,\ell} \leq 1 + C(\ell+2^k)2^{1-k}+1 < 4CD+2C+2$.

All $e_{t,h}$ are distinct

Assume that $e_{t,h} = e_{t',h'}$. If h = h', obviously also t = t'. Assume $h \neq h'$.

Observe that m has period $|h' - h| < 2^{k-1} = |m|/2$. Then |h' - h| is a multiple of π , but then one of the occurrences of m is not final.

Quadratic complexity

Question:

Is it true in general that $W_k = \mathcal{P}_{k-1}$?

The answer is no for k = 3.

Higher complexity

If factor complexity is higher than quadratic, it is even worse.

Theorem.

For any unbounded nondecreasing positive integer function f, there exists an infinite word **u** such that $p_{\mathbf{u}}(n) = O(n^2 f(n))$ and $\mathbf{u} \notin \mathcal{W}_k$ for any k.

We can assume that $f(n) \leq n$. Let

$$\mathbf{u} = \prod_{p=1}^{\infty} \prod_{q=1}^{f(p)} (a^p b^q)^p.$$

 $\mathbf{u}
ot\in \mathcal{W}_k$

Assume $F(\mathbf{u}) \subseteq S_1, \ldots, S_k$, where $S = S_1 \cup \ldots \cup S_k$ is slender, $p_S(n) \leq C$. For every (p,q) such that $2k-1 \leq p \leq \frac{n-3}{4k-2}$ and $q \leq f(p)$, there exists $s_{p,q} \in S$ of length less than n that contains $ba^{pbq}a$ as a factor. All the words $s_{p,q}$ are distinct, so their total number is

$$\sum_{p=2k-1}^{\lfloor \frac{n-3}{4k-2} \rfloor} f(p)$$

which is not bounded by Cn, a contradiction.

Complexity of u

Factors of \mathbf{u} are of the following types:

- 1. factors of the form a^i , b^j , $a^i b^j$, $b^j a^k$, $a^i b^j a^k$, $b^j a^k b^\ell$;
- 2. other factors of $(a^p b^q)^{\omega}$;
- 3. factors containing $ab^{q}a^{p}b^{q+1}$;
- 4. factors containing $ba^{p}b^{f(p)}a^{p+1}$ or $bba^{p+1}ba$.

The number of factors of type 1 is $O(n^2)$.

Factors of type 2 are determined by the value of p, the first occurrence of ab, both at most n, and the value of q, at most f(n).

Factors of type 3 are determined by the value of p, the first occurrence of b^{q+1} , and the value of q.

Factors of type 4 are determined by the value of p and the first occurrence of a^{p+1} .

Therefore $p_{\mathbf{u}}(n) = O(n^2 f(n))$.

Open problems

What is the largest real α_k such that $\mathcal{P}_{\alpha_k} \subseteq \mathcal{W}_k$?

What is the minimal possible complexity of a word not in any \mathcal{W}_k ?

What is the minimal possible complexity of a uniformly recurrent word not in any \mathcal{W}_k ?

Are all morphic words in some \mathcal{W}_k ?