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Motivation

Let u ∈ AN be an infinite word.

Language of factors: L = F (u).

Factor complexity: pL(n) = #(L ∩An).

Question:

Is it possible to express elements of L using a smaller language S?
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Thue-Morse

Let t0 = a, t̄0 = b, tk+1 = tkt̄k, t̄k+1 = t̄ktk.
Then t1 = ab, t̄1 = ba, t2 = abba, t3 = abbabaab, etc.
Thue-Morse word: t = lim tk = abbabaabbaababbabaababba . . .

If w ∈ L = F (t) with |w| ≥ 2, then there is k such that:
w is a factor of tk+1 or t̄k+1, but neither of tk nor of t̄k.

Then w = sp, where:
s is a suffix of tk or t̄k, and
p is a prefix of tk or t̄k.

Let S be the language of those prefixes and suffixes:
then L ⊆ S.S, with pS(n) ≤ 4, while pL(n) = Θ(n).
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Sturmian words

Fix α ∈ [0,1] \ Q.

Standard Sturmian word of slope α:

u = u1u2 . . . with un = bα(n+ 1)c − bαnc ∈ A = {0,1}.

For each w ∈ F (u) ∪An, there is ρ ∈ R such that

wi = bα(i+ 1) + ρc − bαi+ ρc for 0 ≤ i < n.

ρ can be adjusted so that αj + ρ ∈ Z for some j, 0 ≤ j ≤ n.

Then w0 . . . wj−1 = x̃1 (or ε if j = 0)

and wj . . . wn−1 = 0y (or ε if j = n)

where x and y are prefixes of u.

Here pS(n) ≤ 2, while pL(n) = n+ 1.
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Sturmian words
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Fibonacci word

u = 010010100100101001010010010100100101001010 . . .

S = {ε,0,00,001,0010,00100,001001,0010010,00100101, . . .

1,01,101,0101,00101,100101,0100101,10100101, . . .}.

F (u) ∩A8 = {00100101,00101001,01001001,01001010,

01010010,10010010,10010100,10100100,10100101}.
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Definitions

L1: class of languages L for which pL is bounded (slender languages).

Lk: class of languages L for which there exist S1, ..., Sk in L1

such that L ⊆ S1.S2. . . . .Sk.

Wk: class of infinite words u for which F (u) ∈ Lk.

Pα: class of infinite words u for which pu(n) = O(nα).

We have seen that Thue-Morse and Sturmian words are in W2.
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Decomposition and complexity

Question:

How are decomposition classes Wk related to complexity classes Pα?

Counting argument: Wk ⊆ Pk−1 for all k ≥ 1.

Indeed, if pSi is bounded by C, then S1.S2. . . . .Sk contains at most(
n+k−1
k−1

)
Ck words of length n.

Trivially: W1 = P0.

Is it true in general that Wk = Pk−1?
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Linear factor complexity

Our main result is:

Theorem.

W2 is exactly the class of infinite words with linear factor complexity.

It remains to prove that P1 ⊆ W2.

Let u ∈ P1.

We have to design a way to factor any v ∈ F (u) as v = svtv,

so that S = {sv|v ∈ F (u)} and T = {tv|v ∈ F (u)} are slender.

For this we shall use markers.
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Markers

M ⊆ An is a set of D-markers of length n for u

if every w ∈ F (u) ∩ADn contains an element of M as a factor.

Lemma.

If u ∈ P1, then there exist constants D and R such that, for any n ∈ N,

there is a set M of D-markers of length n for u with #M ≤ R.
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Special factors

A word w ∈ F (u) is a right special factor

if there exist letters a 6= b such that wa ∈ F (u) and wb ∈ F (u).

The number of right special factors of length n

is at most pu(n+ 1)− pu(n).

Theorem. [Cassaigne 1996]

If pu(n) = O(n), then pu(n+ 1)− pu(n) is bounded.

More precisely: if ∀n ∈ N, pu(n) ≤ Cn+ 1,

then ∀n ∈ N, pu(n+ 1)− pu(n) ≤ 2C(2C + 1)2.
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Proof of the lemma

Lemma.

If u ∈ P1, then there exist constants D and R such that, for any n ∈ N,

there is a set M of D-markers of length n for u with #M ≤ R.

Assume u is not eventually periodic, with pu(n) ≤ Cn+ 1.

Take for M the set of right special factors of length n.

Let D = C + 1 and R = 2C(2C + 1)2. Then #M is bounded by R.

If a factor w does not contain any right special factor of length n,

then it cannot contain any repeated factor of length n,

otherwise this would imply periodicity.

Then |w| ≤ Cn+ n− 1 < Dn.
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Construction

For each k ≤ 1, fix a set Mk of D-markers of length 2k, with #Mk ≤ R.

Let v ∈ F (u), and assume first n = |v| ≥ 2D.
Choose an occurrence i of v in u.
Let m ∈Mk be a marker that occurs in v, with k as large as possible.

We choose one occurrence j of m in v as follows.
Let π be the minimal period of m. If there are occurrences j such
that m does not occur at position i+ j+π in u, choose one (case 1).
Otherwise, let j be the first occurrence (case 2).

We have v = xm1m2y, with |x| = j and m1 = m2 = 2k−1.
Let sv = xm1 and tv = m2y. If |v| < 2D, let sv = v and tv = ε.
Let S = {sv|v ∈ F (u)} and T = {tv|v ∈ F (u)}. Then F (u) ⊆ ST .
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Fibonacci

u = 010010100100101001010010010100100101001010 . . .

D = 2, R = 1, M1 = {10}, M2 = {0010}, M3 = {01010010},
M4 = {0101001001010010}, ...

Take v = 100100101001010010010. v occurs in u at i = 6.

v contains two overlapping occurrences of m = 01010010,

and no larger marker: k = 3.

We choose the second occurrence: j = 10,

since m does not occur in u at position i+ j + π = 21.

Then sv = 10010010100101 and tv = 0010010.
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S and T are slender

Fix ` ≥ 2D.
Any t ∈ T ∩A` was obtained using a marker m.
As m ∈Mk with 2k−1 ≤ ` < D2k+1,
k may take one of at most d2 + log2De values,
so there are at most Rd2 + log2De possible markers.

It now remains to prove that a particular marker m contributes
a bounded set Tm,` to T ∩A` (and similarly to S ∩A`).
Let m = m1m2, with |m1| = |m2| = 2k−1.
For each t ∈ Tm,`, we consider one particular occurrence
of a factor v ∈ F (u) that was cut at an occurrence of m
and resulted in a decomposition v = st.
We distinguish cases 1 and 2 (and start with the easier case 2).
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Case 2

In case 2, every position j where m occurs in v is such that there is
also an occurrence of m at position i+ j + π in u

(i.e. at position j + π in v if it fits).
Therefore m1t is periodic with period π.
There is only one such word of length 2k−1 + `.

u

v

m1 m2
m

m

m

m

m

s t
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Case 1

In case 1, we have chosen a position j where m occurs in v such that

there is no occurrence of m at position i+j+π in u (final occurrence).

For each integer h, 0 ≤ h < 2k−1, consider the factor et,h of u

of length `+ 2k starting at position i+ j − h
(if this is negative, extend u to the left with a new letter z).

If we prove that all et,h are distinct,

then 2k−1(#Tm,` − 1) ≤#{et,h} ≤ pu(`+ 2k) + 2k−1 − 1

so that #Tm,` ≤ 1 + C(`+ 2k)21−k + 1 < 4CD + 2C + 2.
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All et,h are distinct

Assume that et,h = et′,h′.
If h = h′, obviously also t = t′. Assume h 6= h′.

et,h = et′,h′

t

m

t′

m

Observe that m has period |h′ − h| < 2k−1 = |m|/2.
Then |h′ − h| is a multiple of π,
but then one of the occurrences of m is not final.

19



Quadratic complexity

Question:

Is it true in general that Wk = Pk−1 ?

The answer is no for k = 3.

Indeed, consider the word u = ababbabbbabbbbabbbbb . . ..

It is well-known that u ∈ P2.

However, u 6∈ W3, but u ∈ W4.

(The proof of both facts is very technical, and omitted here.)
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Higher complexity

If factor complexity is higher than quadratic, it is even worse.

Theorem.

For any unbounded nondecreasing positive integer function f ,

there exists an infinite word u such that pu(n) = O(n2f(n))

and u 6∈ Wk for any k.

We can assume that f(n) ≤ n. Let

u =
∞∏
p=1

f(p)∏
q=1

(apbq)p.
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u 6∈ Wk

Assume F (u) ⊆ S1. . . . .Sk, where S = S1∪. . .∪Sk is slender, pS(n) ≤ C.

For every (p, q) such that 2k− 1 ≤ p ≤ n−3
4k−2 and q ≤ f(p), there exists

sp,q ∈ S of length less than n that contains bapbqa as a factor.

All the words sp,q are distinct, so their total number is

b n−3
4k−2c∑

p=2k−1

f(p)

which is not bounded by Cn, a contradiction.
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Complexity of u

Factors of u are of the following types:
1. factors of the form ai, bj, aibj, bjak, aibjak, bjakb`;
2. other factors of (apbq)ω;
3. factors containing abqapbq+1;
4. factors containing bapbf(p)ap+1 or bbap+1ba.

The number of factors of type 1 is O(n2).
Factors of type 2 are determined by the value of p, the first occurrence
of ab, both at most n, and the value of q, at most f(n).
Factors of type 3 are determined by the value of p, the first occurrence
of bq+1, and the value of q.
Factors of type 4 are determined by the value of p and the first
occurrence of ap+1.
Therefore pu(n) = O(n2f(n)).
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Open problems

What is the largest real αk such that Pαk ⊆ Wk ?

What is the minimal possible complexity of a word not in any Wk ?

What is the minimal possible complexity of a uniformly recurrent word

not in any Wk ?

Are all morphic words in some Wk ?
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