On property B of hypergraphs

Danila Cherkashin
(joint work with Jacub Kozik)
Saint-Petersburg State University

RuFiDim
September 15, 2014, Petrozavodsk

Introduction

In 1961 Erdős and Hajnal introduced the quantity $m(n)$ as the minimum number of edges in an n-uniform hypergraph with chromatic number at least 3 .
The first nontrivial estimate was obtained by Erdős:
Theorem (Erdős, 1963)
$2^{n-1} \leqslant m(n) \leqslant e(\ln 2) n^{2} 2^{n-2}(1+\bar{\sigma}(1))$.
There were some improvements of the lower bound, but the upper bound still due to Erdős

Introduction

In 1961 Erdős and Hajnal introduced the quantity $m(n)$ as the minimum number of edges in an n-uniform hypergraph with chromatic number at least 3 .
The first nontrivial estimate was obtained by Erdős:
Theorem (Erdős, 1963)
$2^{n-1} \leqslant m(n) \leqslant e(\ln 2) n^{2} 2^{n-2}(1+\bar{o}(1))$.
There were some improvements of the lower bound, but the upper bound still due to Erdős

Introduction

In 1961 Erdős and Hajnal introduced the quantity $m(n)$ as the minimum number of edges in an n-uniform hypergraph with chromatic number at least 3 .
The first nontrivial estimate was obtained by Erdős:
Theorem (Erdős, 1963)
$2^{n-1} \leqslant m(n) \leqslant e(\ln 2) n^{2} 2^{n-2}(1+\bar{o}(1))$.
There were some improvements of the lower bound, but the upper bound still due to Erdős

Improvements of the lower bound

> Theorem (Schmidt, 1964)
> $m(n) \geqslant \frac{n}{n+2} 2^{n}$ for any $n \geqslant 2$.

Theorem (Beck, Spencer, 1977-1981)
$m(n) \geqslant c\left(\frac{n}{n n}\right)^{1 / 3} 2^{n}$ for anv $n \geqslant 2$.

Theorem (Radhakrishnan, Srinivasan, 2000)

$m(n) \geqslant c\left(\frac{n}{\ln n}\right)^{1 / 2} 2^{n}$ for any $n \geqslant 2$

Improvements of the lower bound

Theorem (Schmidt, 1964)

$$
m(n) \geqslant \frac{n}{n+2} 2^{n} \text { for any } n \geqslant 2 .
$$

Theorem (Beck, Spencer, 1977-1981)

$$
m(n) \geqslant c\left(\frac{n}{\ln n}\right)^{1 / 3} 2^{n} \text { for any } n \geqslant 2
$$

Theorem (Radhakrishnan, Srinivasan, 2000)
$m(n) \geqslant c\left(\frac{n}{\ln n}\right)^{1 / 2} 2^{n}$ for any $n \geqslant 2$

Improvements of the lower bound

Theorem (Schmidt, 1964)

$$
m(n) \geqslant \frac{n}{n+2} 2^{n} \text { for any } n \geqslant 2 .
$$

Theorem (Beck, Spencer, 1977-1981)

$$
m(n) \geqslant c\left(\frac{n}{\ln n}\right)^{1 / 3} 2^{n} \text { for any } n \geqslant 2
$$

Theorem (Radhakrishnan, Srinivasan, 2000)

$$
m(n) \geqslant c\left(\frac{n}{\ln n}\right)^{1 / 2} 2^{n} \text { for any } n \geqslant 2
$$

Pluhár's approach

Consider a hypergraph $H=(V, E)$. Let σ denote an ordering of the vertices V. A couple of edges $A_{1}, A_{2} \in E$ is called ordered 2 -chain in σ, if the following conditions hold:
■ $\left|A_{1} \cap A_{2}\right|=1$;
2 for any $v \in A_{1}, u \in A_{2}$, we have $\sigma(v) \leqslant \sigma(u)$.

$$
\begin{aligned}
& \text { Theorem (Pluhár, 2009) } \\
& \text { The chromatic number of a hypergraph } H=(V, E) \text { does not } \\
& \text { exceed } 2 \text { if and only if there exists an ordering } \sigma \text { of } V \text { such that } \\
& \text { there are no ordered 2-chains in } H \text {. }
\end{aligned}
$$

\square

Pluhár's approach

Consider a hypergraph $H=(V, E)$. Let σ denote an ordering of the vertices V. A couple of edges $A_{1}, A_{2} \in E$ is called ordered 2 -chain in σ, if the following conditions hold:
$1\left|A_{1} \cap A_{2}\right|=1$;
2 for any $v \in A_{1}, u \in A_{2}$, we have $\sigma(v) \leqslant \sigma(u)$.

Theorem (Pluhár, 2009)

The chromatic number of a hypergraph $H=(V, E)$ does not exceed 2 if and only if there exists an ordering σ of V such that there are no ordered 2-chains in H.

Corollary (Pluhár, 2009)

Pluhár's approach

Consider a hypergraph $H=(V, E)$. Let σ denote an ordering of the vertices V. A couple of edges $A_{1}, A_{2} \in E$ is called ordered 2 -chain in σ, if the following conditions hold:
$1\left|A_{1} \cap A_{2}\right|=1$;
2 for any $v \in A_{1}, u \in A_{2}$, we have $\sigma(v) \leqslant \sigma(u)$.

Theorem (Pluhár, 2009)

The chromatic number of a hypergraph $H=(V, E)$ does not exceed 2 if and only if there exists an ordering σ of V such that there are no ordered 2-chains in H.

Corollary (Pluhár, 2009)
 $m(n) \geqslant c n^{1 / 4} 2^{n}$

The new algorithm

Fix some $p \in[0,1]$.
Color each vertex independently in red with probability $(1-p) / 2$ or in blue with the same probability.
Note that with probability p vertex has no color.
For every edge A_{i} consider its colorless part B_{i}
$W \subseteq V$ is the set of all colorless vertices.
$Q \subset 2^{W}$ is the set of all subsets $B_{i} \subset W$ such that B_{i} is a colorless
part of an edge A_{i}, in which all colored vertices got the same color.
We use greedy coloring for the new hypergraph (W, Q)
Surprisingly, substituting $p=0.5 \ln n / n$ we get exactly the
Radhakrishnan and Srinivasan's bound (with the same constant)

The new algorithm

Fix some $p \in[0,1]$.
Color each vertex independently in red with probability $(1-p) / 2$ or in blue with the same probability.
Note that with probability p vertex has no color.
For every edge A_{i} consider its colorless part B_{i} $W \subseteq V$ is the set of all colorless vertices.
$Q \subset 2^{W}$ is the set of all subsets $B_{i} \subset W$ such that B_{i} is a colorless part of an edge A_{i}, in which all colored vertices got the same color.

We use greedy coloring for the new hypergraph (W, Q)
Surprisingly, substituting $p=0.5 \ln n / n$ we get exactly the
Radhakrishnan and Srinivasan's bound (with the same constant)

The new algorithm

Fix some $p \in[0,1]$.
Color each vertex independently in red with probability $(1-p) / 2$ or in blue with the same probability.
Note that with probability p vertex has no color.
For every edge A_{i} consider its colorless part B_{i}.
$Q \subset 2^{W}$ is the set of all subsets $B_{i} \subset W$ such that B_{i} is a colorless part of an edge A_{i}, in which all colored vertices got the same color We use greedy coloring for the new hypergraph (W, Q) Surprisingly, substituting $p=0.5 \ln n / n$ we get exactly the Radhakrishnan and Srinivasan's bound (with the same constant)

Theorem (Radhakrishnan, Srinivasan, 2000)

The new algorithm

Fix some $p \in[0,1]$.
Color each vertex independently in red with probability $(1-p) / 2$ or in blue with the same probability.
Note that with probability p vertex has no color.
For every edge A_{i} consider its colorless part B_{i}. $W \subseteq V$ is the set of all colorless vertices.
> $Q \subset 2^{W}$ is the set of all subsets $B_{i} \subset W$ such that B_{i} is a colorless part of an edge A_{i}, in which all colored vertices got the same color We use greedy coloring for the new hypergraph (W O) Surprisingly, substituting $p=0.5 \ln n / n$ we get exactly the Radhakrishnan and Srinivasan's bound (with the same constant)

Theorem (Radhakrishnan, Srinivasan, 2000)

The new algorithm

Fix some $p \in[0,1]$.
Color each vertex independently in red with probability $(1-p) / 2$ or in blue with the same probability.
Note that with probability p vertex has no color.
For every edge A_{i} consider its colorless part B_{i}. $W \subseteq V$ is the set of all colorless vertices.
$Q \subset 2^{W}$ is the set of all subsets $B_{i} \subset W$ such that B_{i} is a colorless part of an edge A_{i}, in which all colored vertices got the same color.

> We use greedy coloring for the new hypergraph (W, Q)
> Surprisingly, substituting $p=0.5 \ln n / n$ we get exactly the
> Radhakrishnan and Srinivasan's bound (with the same constant)

Theorem (Radhakrishnan, Srinivasan, 2000)

The new algorithm

Fix some $p \in[0,1]$.
Color each vertex independently in red with probability $(1-p) / 2$ or in blue with the same probability.
Note that with probability p vertex has no color.
For every edge A_{i} consider its colorless part B_{i}. $W \subseteq V$ is the set of all colorless vertices.
$Q \subset 2^{W}$ is the set of all subsets $B_{i} \subset W$ such that B_{i} is a colorless part of an edge A_{i}, in which all colored vertices got the same color.

We use greedy coloring for the new hypergraph (W, Q).

> Surprisingly, substituting $p=0.5 \ln n / n$ we get exactly the
> Radhakrishnan and Srinivasan's bound (with the same constant)

Theorem (Radhakrishnan, Srinivasan, 2000)

The new algorithm

Fix some $p \in[0,1]$.
Color each vertex independently in red with probability $(1-p) / 2$ or in blue with the same probability.
Note that with probability p vertex has no color.
For every edge A_{i} consider its colorless part B_{i}. $W \subseteq V$ is the set of all colorless vertices.
$Q \subset 2^{W}$ is the set of all subsets $B_{i} \subset W$ such that B_{i} is a colorless part of an edge A_{i}, in which all colored vertices got the same color.
We use greedy coloring for the new hypergraph (W, Q).
Surprisingly, substituting $p=0.5 \ln n / n$ we get exactly the Radhakrishnan and Srinivasan's bound (with the same constant):

Theorem (Radhakrishnan, Srinivasan, 2000)

$m(n) \geqslant c\left(\frac{n}{\ln n}\right)^{1 / 2} 2^{n}$

Multiple colors case

> Theorem (Shabanov, 2009)
> $m(n, r) \geqslant \frac{1}{2} n^{1 / 2} r^{n-1}$ for any $n \geqslant 3, r \geqslant 3$.

Theorem (Kostochka, 2006)
$m(n, r) \geqslant e^{-4 r^{2}}\left(\frac{n}{\ln n}\right)^{a /(a+1)} r^{r}$, where $a=\left\lfloor\log _{2} r\right\rfloor$ and
$r<\sqrt{1 / 8 \ln 1 / 2 \ln n}$

Theorem (Pluhar, Shabanov, 2009)

$m(n, r) \geqslant c n^{\frac{1}{2}-\frac{1}{2 r}} r^{n}$ for any $n \geqslant 3, r \geqslant 2$

Theorem (DC, Kozik, 2013)
$m(n, r) \geqslant c\left(\frac{n}{\ln n}\right)^{\frac{r-1}{r}} r^{n-1}$ for any $n \geqslant 3$ and fixed $r \geqslant 2$.

Multiple colors case

Theorem (Shabanov, 2009)
$m(n, r) \geqslant \frac{1}{2} n^{1 / 2} r^{n-1}$ for any $n \geqslant 3, r \geqslant 3$.
Theorem (Kostochka, 2006)
$m(n, r) \geqslant e^{-4 r^{2}}\left(\frac{n}{\ln n}\right)^{a /(a+1)} r^{n}$, where $a=\left\lfloor\log _{2} r\right\rfloor$ and $r<\sqrt{1 / 8 \ln 1 / 2 \ln n}$.

Theorem (Pluhar, Shabanov, 2009)

$m(n, r) \geqslant c n^{\frac{1}{2}-\frac{1}{2 r}} r^{n}$ for any $n \geqslant 3, r \geqslant 2$

Theorem (DC, Kozik, 2013)

$m(n, r) \geqslant c\binom{n}{\ln n} \frac{r-1}{r} r^{n-1}$, for any $n \geqslant 3$ and fixed $r \geqslant 2$

Multiple colors case

Theorem (Shabanov, 2009)
$m(n, r) \geqslant \frac{1}{2} n^{1 / 2} r^{n-1}$ for any $n \geqslant 3, r \geqslant 3$.
Theorem (Kostochka, 2006)
$m(n, r) \geqslant e^{-4 r^{2}}\left(\frac{n}{\ln n}\right)^{a /(a+1)} r^{n}$, where $a=\left\lfloor\log _{2} r\right\rfloor$ and $r<\sqrt{1 / 8 \ln 1 / 2 \ln n}$.

Theorem (Pluhar, Shabanov, 2009)
$m(n, r) \geqslant c n^{\frac{1}{2}-\frac{1}{2 r}} r^{n}$ for any $n \geqslant 3, r \geqslant 2$.
Theorem (DC, Kozik, 2013)
$m(n, r) \geqslant c\left(\frac{n}{\ln n}\right)^{\frac{r-1}{r}} r^{n-1}$, for any $n \geqslant 3$ and fixed $r \geqslant 2$.

Multiple colors case

Theorem (Shabanov, 2009)

$$
m(n, r) \geqslant \frac{1}{2} n^{1 / 2} r^{n-1} \text { for any } n \geqslant 3, r \geqslant 3 .
$$

Theorem (Kostochka, 2006)
$m(n, r) \geqslant e^{-4 r^{2}}\left(\frac{n}{\ln n}\right)^{a /(a+1)} r^{n}$, where $a=\left\lfloor\log _{2} r\right\rfloor$ and $r<\sqrt{1 / 8 \ln 1 / 2 \ln n}$.

Theorem (Pluhar, Shabanov, 2009)
$m(n, r) \geqslant c n^{\frac{1}{2}-\frac{1}{2 r}} r^{n}$ for any $n \geqslant 3, r \geqslant 2$.
Theorem (DC, Kozik, 2013)
$m(n, r) \geqslant c\left(\frac{n}{\ln n}\right)^{\frac{r-1}{r}} r^{n-1}$, for any $n \geqslant 3$ and fixed $r \geqslant 2$.

Multiple colors case. Pluhár's approach

Consider a hypergraph $H=(V, E)$. Let σ denote an ordering of the vertices V. A family of edges $A_{1}, \ldots, A_{r} \in E$ is called ordered r-chain in σ, if the following conditions hold:

1 for any $i \in\{1, \ldots, r-1\}$, we have $\left|A_{i} \cap A_{i+1}\right|=1$;
2 for any i, j such that $|i-j|>1$, we have $A_{i} \cap A_{i+1}=\emptyset$;
3 for any $i \in\{1, \ldots, r-1\}$ and any $v \in A_{i}, u \in A_{i+1}$, we have $\sigma(v) \leqslant \sigma(u)$.

Theorem (Pluhár, 2009)

The chromatic number of a hypergraph $H=(V, E)$ does not exceed r if and only if there exists an ordering σ of V such that there are no ordered r-chains in H

Multiple colors case. Pluhár's approach

Consider a hypergraph $H=(V, E)$. Let σ denote an ordering of the vertices V. A family of edges $A_{1}, \ldots, A_{r} \in E$ is called ordered r-chain in σ, if the following conditions hold:
1 for any $i \in\{1, \ldots, r-1\}$, we have $\left|A_{i} \cap A_{i+1}\right|=1$;
2 for any i, j such that $|i-j|>1$, we have $A_{i} \cap A_{i+1}=\emptyset$;
3 for any $i \in\{1, \ldots, r-1\}$ and any $v \in A_{i}, u \in A_{i+1}$, we have $\sigma(v) \leqslant \sigma(u)$.

Theorem (Pluhár, 2009)

The chromatic number of a hypergraph $H=(V, E)$ does not exceed r if and only if there exists an ordering σ of V such that there are no ordered r-chains in H.

Multiple colors case. New algorithm part 1

Fix some $p \in[0,1]$.
Color each vertex independently in one of the r colors with probability $(1-p) / r$ for each color.
Note that with probability p vertex has no color.
For every edge A_{i} consider its colorless part B_{i}
$W \subseteq V$ is the set of all colorless vertices.
$Q \subset 2^{W}$ is the set of all subsets $B_{i} \subset W$ such that B_{i} is a colorless part of an edge A_{i}, in which all colored vertices got the same color. We use greedy coloring for the new hypergraph (W, Q).

It is important in our proof that even if $A_{i} \backslash B_{i}$ is monochromatic, B_{i} can also be monochromatic, but of different color.

Multiple colors case. New algorithm part 1

Fix some $p \in[0,1]$.
Color each vertex independently in one of the r colors with probability $(1-p) / r$ for each color.
Note that with probability p vertex has no color.

> For every edge A_{i} consider its colorless part B_{i} $W \subseteq V$ is the set of all colorless vertices. $Q \subset 2^{W}$ is the set of all subsets $B_{i} \subset W$ such that B_{i} is a colorless part of an edge A_{i}, in which all colored vertices got the same color. We use greedy coloring for the new hypergraph (W, Q) It is important in our proof that even if $A_{i} \backslash B_{i}$ is monochromatic, B_{i} can also be monochromatic, but of different color

Multiple colors case. New algorithm part 1

Fix some $p \in[0,1]$.
Color each vertex independently in one of the r colors with probability $(1-p) / r$ for each color.
Note that with probability p vertex has no color.
For every edge A_{i} consider its colorless part B_{i}. $W \subseteq V$ is the set of all colorless vertices.
$Q \subset 2^{W}$ is the set of all subsets $B_{i} \subset W$ such that B_{i} is a colorless
part of an edge A_{i}, in which all colored vertices got the same color.
We use greedy coloring for the new hypergraph (W, Q).
It is important in our proof that even if $A_{i} \backslash B_{i}$ is monochromatic,
B_{i} can also be monochromatic, but of different color.

Multiple colors case. New algorithm part 1

Fix some $p \in[0,1]$.
Color each vertex independently in one of the r colors with probability $(1-p) / r$ for each color.
Note that with probability p vertex has no color.
For every edge A_{i} consider its colorless part B_{i}. $W \subseteq V$ is the set of all colorless vertices.
$Q \subset 2^{W}$ is the set of all subsets $B_{i} \subset W$ such that B_{i} is a colorless part of an edge A_{i}, in which all colored vertices got the same color. We use greedy coloring for the new hypergraph (W, Q) It is important in our proof that even if $A_{i} \backslash B_{i}$ is monochromatic, B_{i} can also be monochromatic, but of different color.

Multiple colors case. New algorithm part 1

Fix some $p \in[0,1]$.
Color each vertex independently in one of the r colors with probability $(1-p) / r$ for each color.
Note that with probability p vertex has no color.
For every edge A_{i} consider its colorless part B_{i}. $W \subseteq V$ is the set of all colorless vertices.
$Q \subset 2^{W}$ is the set of all subsets $B_{i} \subset W$ such that B_{i} is a colorless part of an edge A_{i}, in which all colored vertices got the same color.

We use greedy coloring for the new hypergraph (W, Q)
It is important in our proof that even if $A_{i} \backslash B_{i}$ is monochromatic,
B_{i} can also be monochromatic, but of different color.

Multiple colors case. New algorithm part 1

Fix some $p \in[0,1]$.
Color each vertex independently in one of the r colors with probability $(1-p) / r$ for each color.
Note that with probability p vertex has no color.
For every edge A_{i} consider its colorless part B_{i}. $W \subseteq V$ is the set of all colorless vertices.
$Q \subset 2^{W}$ is the set of all subsets $B_{i} \subset W$ such that B_{i} is a colorless part of an edge A_{i}, in which all colored vertices got the same color. We use greedy coloring for the new hypergraph (W, Q).

It is important in our proof that even if $A_{i} \backslash B_{i}$ is monochromatic, B_{i} can also be monochromatic, but of different color.

Multiple colors case. New algorithm part 1

Fix some $p \in[0,1]$.
Color each vertex independently in one of the r colors with probability $(1-p) / r$ for each color.
Note that with probability p vertex has no color.
For every edge A_{i} consider its colorless part B_{i}. $W \subseteq V$ is the set of all colorless vertices.
$Q \subset 2^{W}$ is the set of all subsets $B_{i} \subset W$ such that B_{i} is a colorless part of an edge A_{i}, in which all colored vertices got the same color. We use greedy coloring for the new hypergraph (W, Q).

It is important in our proof that even if $A_{i} \backslash B_{i}$ is monochromatic, B_{i} can also be monochromatic, but of different color.

Multiple colors case. New algorithm part 2

We use modified Pluhár argument.
Consider a hypergraph $H=(V, E)$ and a map f from E to $\{1, \ldots, r\}$.
Ordered r-chain is called strong ordered if $f\left(A_{i}\right)=i$ for $i=1 \ldots r$

Theorem

The following statements are equivalent:
(i) there is a coloring of V in r colors such that no edge A in E consists only of vertices of color $f(A)$;
(ii) there is an order of elements of V without strong ordered r-chains.

Multiple colors case. New algorithm part 2

We use modified Pluhár argument.
Consider a hypergraph $H=(V, E)$ and a map f from E to $\{1, \ldots, r\}$.
Ordered r-chain is called strong ordered if $f\left(A_{i}\right)=i$ for $i=1$

Theorem

The following statements are equivalent:
(i) there is a coloring of V in r colors such that no edge A in E consists only of vertices of color $f(A)$,
(ii) there is an order of elements of V without strong ordered r-chains.

Substituting $p=\frac{r-1}{r} \frac{\ln n}{n}$ we get the theorem
Theorem (DC Kazik 2013)
$m(n, r) \geqslant c\left(\frac{n}{\ln n}\right)^{\frac{r-1}{r}} r^{n-1}$, for any $n \geqslant 3$ and fixed $r \geqslant 2$.

Multiple colors case. New algorithm part 2

We use modified Pluhár argument.
Consider a hypergraph $H=(V, E)$ and a map f from E to $\{1, \ldots, r\}$.
Ordered r-chain is called strong ordered if $f\left(A_{i}\right)=i$ for $i=1 \ldots r$.

Theorem

The following statements are equivalent:
(i) there is a coloring of V in r colors such that no edge A in E consists only of vertices of color $f(A)$;
(ii) there is an order of elements of V without strong ordered r-chains.

Substituting $p=\frac{r-1}{r} \frac{\ln n}{n}$ we get the theorem

Theorem (DC, Kozik, 2013)

$$
m(n, r) \geqslant c\left(\frac{n}{\ln n}\right)^{\frac{r-1}{r}} r^{n-1}, \text { for any } n \geqslant 3 \text { and fixed } r \geqslant 2
$$

The new algorithm. Counting.

Denote by P_{1} the probability of the appearance of a monochromatic edge without colorless vertices.

Denote by P_{2} the probability that the greedy algorithm fails.

The new algorithm. Counting.

Denote by P_{1} the probability of the appearance of a monochromatic edge without colorless vertices.

$$
P_{1} \leqslant|E|\left(\frac{1-p}{2}\right)^{n} \leqslant|E| e^{-p n} 2^{-n} \leqslant|E| \frac{1}{\sqrt{n} 2^{n}}
$$

Denote by P_{2} the probability that the greedy algorithm fails.

The new algorithm. Counting.

Denote by P_{1} the probability of the appearance of a monochromatic edge without colorless vertices.

$$
P_{1} \leqslant|E|\left(\frac{1-p}{2}\right)^{n} \leqslant|E| e^{-p n} 2^{-n} \leqslant|E| \frac{1}{\sqrt{n} 2^{n}}
$$

Denote by P_{2} the probability that the greedy algorithm fails.

The new algorithm. Counting.

Denote by P_{1} the probability of the appearance of a monochromatic edge without colorless vertices.

$$
P_{1} \leqslant|E|\left(\frac{1-p}{2}\right)^{n} \leqslant|E| e^{-p n} 2^{-n} \leqslant|E| \frac{1}{\sqrt{n} 2^{n}}
$$

Denote by P_{2} the probability that the greedy algorithm fails.

$$
\frac{P_{2}}{|E|^{2}} \leqslant p\left(\frac{1-p}{2}\right)^{2 n} \sum_{k, l} \frac{(k-1)!(l-1)!}{(k+l-1)!} C_{n-1}^{k-1}\left(\frac{2 p}{1-p}\right)^{k-1} C_{n-1}^{l-1}\left(\frac{2 p}{1-p}\right)^{l-1}
$$

The new algorithm. Counting.

Denote by P_{1} the probability of the appearance of a monochromatic edge without colorless vertices.

$$
P_{1} \leqslant|E|\left(\frac{1-p}{2}\right)^{n} \leqslant|E| e^{-p n} 2^{-n} \leqslant|E| \frac{1}{\sqrt{n} 2^{n}}
$$

Denote by P_{2} the probability that the greedy algorithm fails.

$$
\begin{gathered}
\frac{P_{2}}{|E|^{2}} \leqslant p\left(\frac{1-p}{2}\right)^{2 n} \sum_{k, l} \frac{(k-1)!(l-1)!}{(k+l-1)!} C_{n-1}^{k-1}\left(\frac{2 p}{1-p}\right)^{k-1} C_{n-1}^{l-1}\left(\frac{2 p}{1-p}\right)^{l-1} \\
\leqslant p \frac{1}{n 2^{2 n}} \sum_{k, l}\left(\frac{2 n p}{1-p}\right)^{k+l-1} \frac{1}{(k+l-2)!} \leqslant
\end{gathered}
$$

The new algorithm. Counting.

Denote by P_{1} the probability of the appearance of a monochromatic edge without colorless vertices.

$$
P_{1} \leqslant|E|\left(\frac{1-p}{2}\right)^{n} \leqslant|E| e^{-p n} 2^{-n} \leqslant|E| \frac{1}{\sqrt{n} 2^{n}}
$$

Denote by P_{2} the probability that the greedy algorithm fails.

$$
\begin{gathered}
\frac{P_{2}}{|E|^{2}} \leqslant p\left(\frac{1-p}{2}\right)^{2 n} \sum_{k, l} \frac{(k-1)!(l-1)!}{(k+l-1)!} C_{n-1}^{k-1}\left(\frac{2 p}{1-p}\right)^{k-1} C_{n-1}^{l-1}\left(\frac{2 p}{1-p}\right)^{l-1} \\
\leqslant p \frac{1}{n 2^{2 n}} \sum_{k, l}\left(\frac{2 n p}{1-p}\right)^{k+l-1} \frac{1}{(k+l-2)!} \leqslant \\
\leqslant p \frac{1}{n 2^{2 n}} \sum_{t=k+l-1}\left(\frac{2 n p}{1-p}\right)^{t} \frac{1}{t!}=\frac{p}{n 2^{2 n}} e^{t}
\end{gathered}
$$

Thank you!

Thank you for your patience!

