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Introduction

In 1961 Erdős and Hajnal introduced the quantity m(n) as the
minimum number of edges in an n-uniform hypergraph with
chromatic number at least 3.
The first nontrivial estimate was obtained by Erdős:

Theorem (Erdős, 1963)

2n−1 6 m(n) 6 e(ln 2)n22n−2(1 + ō(1)).

There were some improvements of the lower bound, but the upper
bound still due to Erdős
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Danila Cherkashin On property B of hypergraphs



Introduction
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Improvements of the lower bound

Theorem (Schmidt, 1964)

m(n) > n
n+22n for any n > 2.

Theorem (Beck, Spencer, 1977-1981)

m(n) > c
(

n
lnn

)1/3
2n for any n > 2.

Theorem (Radhakrishnan, Srinivasan, 2000)

m(n) > c
(

n
lnn

)1/2
2n for any n > 2.
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Pluhár’s approach

Consider a hypergraph H = (V,E). Let σ denote an ordering of
the vertices V . A couple of edges A1, A2 ∈ E is called ordered
2-chain in σ, if the following conditions hold:

1 |A1 ∩A2| = 1;
2 for any v ∈ A1, u ∈ A2, we have σ(v) 6 σ(u).

Theorem (Pluhár, 2009)

The chromatic number of a hypergraph H = (V,E) does not
exceed 2 if and only if there exists an ordering σ of V such that
there are no ordered 2-chains in H.

Corollary (Pluhár, 2009)

m(n) > cn1/42n
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The new algorithm

Fix some p ∈ [0, 1].
Color each vertex independently in red with probability (1− p)/2 or
in blue with the same probability.
Note that with probability p vertex has no color.

For every edge Ai consider its colorless part Bi.
W ⊆ V is the set of all colorless vertices.
Q ⊂ 2W is the set of all subsets Bi ⊂W such that Bi is a colorless
part of an edge Ai, in which all colored vertices got the same color.

We use greedy coloring for the new hypergraph (W,Q).
Surprisingly, substituting p = 0.5 lnn/n we get exactly the
Radhakrishnan and Srinivasan’s bound (with the same constant):

Theorem (Radhakrishnan, Srinivasan, 2000)

m(n) > c
(

n
lnn

)1/2
2n
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Multiple colors case

Theorem (Shabanov, 2009)

m(n, r) > 1
2n

1/2rn−1 for any n > 3, r > 3.

Theorem (Kostochka, 2006)

m(n, r) > e−4r2
(

n
lnn

)a/(a+1)
rn, where a = blog2 rc and

r <
√

1/8 ln 1/2 lnn.

Theorem (Pluhar, Shabanov, 2009)

m(n, r) > cn
1
2
− 1

2r rn for any n > 3, r > 2.

Theorem (DC, Kozik, 2013)

m(n, r) > c( n
lnn)

r−1
r rn−1, for any n > 3 and fixed r > 2.
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Multiple colors case. Pluhár’s approach

Consider a hypergraph H = (V,E). Let σ denote an ordering of
the vertices V . A family of edges A1, . . . , Ar ∈ E is called ordered
r-chain in σ, if the following conditions hold:

1 for any i ∈ {1, . . . , r − 1}, we have |Ai ∩Ai+1| = 1;
2 for any i, j such that |i− j| > 1, we have Ai ∩Ai+1 = ∅;
3 for any i ∈ {1, . . . , r − 1} and any v ∈ Ai, u ∈ Ai+1, we have
σ(v) 6 σ(u).

Theorem (Pluhár, 2009)

The chromatic number of a hypergraph H = (V,E) does not
exceed r if and only if there exists an ordering σ of V such that
there are no ordered r-chains in H.
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Multiple colors case. New algorithm part 1

Fix some p ∈ [0, 1].
Color each vertex independently in one of the r colors with
probability (1− p)/r for each color.
Note that with probability p vertex has no color.

For every edge Ai consider its colorless part Bi.
W ⊆ V is the set of all colorless vertices.
Q ⊂ 2W is the set of all subsets Bi ⊂W such that Bi is a colorless
part of an edge Ai, in which all colored vertices got the same color.

We use greedy coloring for the new hypergraph (W,Q).

It is important in our proof that even if Ai \Bi is monochromatic,
Bi can also be monochromatic, but of different color.
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Multiple colors case. New algorithm part 2

We use modified Pluhár argument.
Consider a hypergraph H = (V,E) and a map f from E to
{1, . . . , r}.
Ordered r-chain is called strong ordered if f(Ai) = i for i = 1 . . . r.

Theorem

The following statements are equivalent:
(i) there is a coloring of V in r colors such that no edge A in E
consists only of vertices of color f(A);
(ii) there is an order of elements of V without strong ordered
r-chains.

Substituting p = r−1
r

lnn
n we get the theorem

Theorem (DC, Kozik, 2013)

m(n, r) > c( n
lnn)

r−1
r rn−1, for any n > 3 and fixed r > 2.
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The new algorithm. Counting.

Denote by P1 the probability of the appearance of a
monochromatic edge without colorless vertices.

P1 6 |E|
(

1− p
2

)n

6 |E|e−pn2−n 6 |E| 1√
n2n

Denote by P2 the probability that the greedy algorithm fails.

P2

|E|2
6 p

(
1− p

2

)2n∑
k,l

(k − 1)!(l − 1)!

(k + l − 1)!
Ck−1

n−1

(
2p

1− p

)k−1

Cl−1
n−1

(
2p

1− p

)l−1

6

6 p
1

n22n

∑
k,l

(
2np

1− p

)k+l−1
1

(k + l − 2)!
6

6 p
1

n22n

∑
t=k+l−1

(
2np

1− p

)t 1

t!
=

p

n22n
et
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p

n22n
et
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The new algorithm. Counting.

Denote by P1 the probability of the appearance of a
monochromatic edge without colorless vertices.

P1 6 |E|
(

1− p
2

)n

6 |E|e−pn2−n 6 |E| 1√
n2n

Denote by P2 the probability that the greedy algorithm fails.

P2

|E|2
6 p

(
1− p

2

)2n∑
k,l

(k − 1)!(l − 1)!

(k + l − 1)!
Ck−1

n−1

(
2p

1− p

)k−1

Cl−1
n−1

(
2p

1− p

)l−1

6

6 p
1

n22n

∑
k,l

(
2np

1− p

)k+l−1
1

(k + l − 2)!
6

6 p
1

n22n

∑
t=k+l−1

(
2np

1− p

)t 1

t!
=

p

n22n
et
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Thank you!

Thank you for your patience!
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