The paged representation os stacks in single level memory

Andrew V. Drac

IAMR KarRS RAS, Petrozavodsk, Russia

$$
\text { RuFiDiM - } 2014
$$

Introduction

Memory size limitations:

- The high cost of production
- Power consumption

Usage of stacks:

- Calls to subroutines
- Recursive algorithms
- Problems of translation and syntax analysis

Stack Push Push Push Pop Push Pop Pop Pop Empty

Representation of stacks

Consequtive representation

Linked representation

Paged representation

The problem

Consider n stacks in memory size m. Time is discrete and only one of operations can happen on each time step:

- p_{i} - probability of insertion of element into i-th stack,
- q_{i} - probability of deletion of element from the i-th stack,
- r - probability of read of element from any stack (without deletion).
T - time until overflow (number of time steps).
There is no shutdown in the case of deletion of element from empty stack.
x_{i} - current length of i-th stack.
Process starts from empty stacks.

Absorbing Markov chain

$\left(x_{1}, \ldots, x_{n}\right)$ detetermines the state of Markov chain. To caclulate T we need:

- Introduce the numbering of states.
- Construct function $F\left(x_{1}, \ldots, x_{n}\right)=I$, where I is the number of state.
- Build the transition matrix Q by iterating over states:
$Q\left[F\left(x_{1}, \ldots, x_{i}, \ldots, x_{n}\right)\right]\left[F\left(x_{1}, \ldots, x_{i}+1, \ldots, x_{n}\right)\right]=p_{i}$,
$Q\left[F\left(x_{1}, \ldots, x_{i}, \ldots, x_{n}\right)\right]\left[F\left(x_{1}, \ldots, x_{i}-1, \ldots, x_{n}\right)\right]=q_{i}$,
$Q\left[F\left(x_{1}, \ldots, x_{i}, \ldots, x_{n}\right)\right]\left[F\left(x_{1}, \ldots, x_{i}, \ldots, x_{n}\right)\right]=p_{i}$,
$Q_{i j}$ shows the propability of thansition in one step from state with number i to state with number j.
Other element are equal 0 .
- Calculate the fundamental matrix $N=(E-Q)^{-1}$.
- Sum the elements from row which matches the initial state.

Random walk

Kарни РАН

Consequtive representation

Consider fixed partition of memory $k_{1}, \ldots, k_{n / 2}\left(k_{1}+\cdots+k_{n / 2}=m\right)$.

Consequtive representation

Number of states is equal to:

$$
\begin{gathered}
\frac{1}{2^{n / 2}} \prod_{i=1}^{n / 2}\left(k_{i}+1\right)\left(k_{i}+2\right) \\
F\left(x_{1}, \ldots, x_{n}\right)=\begin{array}{l}
\left(\frac{\left(k_{n / 2}+1\right)\left(k_{n / 2}+2\right)}{2} \ldots \frac{\left(k_{1}+1\right)\left(k_{1}+2\right)}{2}\left(x_{2}\left(k_{1}+\frac{3-x_{2}}{2}\right)+x_{1}\right)+\right. \\
\\
\left.\left.x_{4}\left(k_{2}+\frac{3-x_{4}}{2}\right)+x_{3}\right) \ldots\right)+x_{n}\left(k_{n / 2}+\frac{3-x_{n}}{2}\right)+x_{n-1}
\end{array}
\end{gathered}
$$

Linked representation

I is the ratio of the size of pointer to the size of essential data. $M=\left[\frac{m}{1+l}\right]$ - size of memory which is allocated to essential data.

$$
n=3, M=4
$$

Linked representation

Number of states is equal to: $\frac{(M+n)!}{M!n!}$

$$
F\left(x_{1}, \ldots, x_{n}\right)=\sum_{j=1}^{n}\binom{M-w_{j}+j}{j}-\binom{M-w_{j}+j-x_{j}}{j}
$$

where $w_{j}=x_{j+1}+\cdots+x_{n}$.

Paged representation

$M=\left[\frac{m}{1+l}\right]$ - size of memory which is allocated to essential data. k - size of page.
$N=\left\lfloor\frac{M}{k}\right\rfloor$ - maximum number of pages.

$n=3, m=6, k=2, N=3$

Paged representation

Total number of states is equal to

$$
\begin{gathered}
\sum_{i=0}^{n}\binom{n}{i}\binom{N}{n-i} k^{n-i} \\
F\left(x_{1}, \ldots, x_{n}\right)=\sum_{j=1}^{n}\binom{M-z_{j}+j}{j}-\binom{M-z_{j}+j-x_{j}}{j}
\end{gathered}
$$

where $z_{j}=\left\lceil\frac{x_{j+1}}{k}\right\rceil k+\cdots+\left\lceil\frac{x_{n}}{k}\right\rceil k$

Calculations

- $O(n)$ - calculation of index for current state.
- $\leq 2 n+1$ nonzero elements in transition matrix Q.
- S - dimension of transition matrix.
- $O\left(S * n^{2}\right)$ - the complexity of constructing of matrix.
- We need only the first row for matrix $N=(E-Q)^{-1}$.
- Calculations were made on the cluster KarRS RAS with usage of Intel Math Kernel Library.

Table 1: $n=4, m=16, I=1 / 2$

p_{1}	p_{2}	p_{3}	p_{4}	q_{1}	q_{2}	q_{3}	q_{4}	T_{c}^{1}	T_{c}^{2}	T_{l}	T_{p}^{2}	T_{p}^{3}
0.2	0.2	0.05	0.05	0.2	0.2	0.05	0.05	84.65	69.47	60.18	62.98	45.98
0.2	0.2	0.2	0.2	0.05	0.05	0.05	0.05	21.69	21.69	16.38	17.04	14.29
0.1	0.1	0.1	0.1	0.15	0.15	0.15	0.15	225.06	225.06	153.16	158.64	90.29
0.2	0.2	0.05	0.05	0.2	0.2	0.05	0.05	50.11	36.80	37.57	39.68	32.24
0.65	0.05	0.05	0.05	0.05	0.05	0.05	0.05	21.03	13.95	15.27	16.60	14.84
0.05	0.05	0.05	0.05	0.65	0.05	0.05	0.05	270.63	251.74	204.88	211.77	146.57
0.41	0.03	0.03	0.03	0.03	0.03	0.03	0.41	84.65	23.18	26.34	28.94	26.05

T_{c}^{1} - time for consequtive representation in the case of optimal partition of memory.
T_{c}^{2} - time for consequtive representation when memory is divided equally between pairs of stacks.
T_{l} - time for linked representation.
T_{p}^{i} - time for paged representation when size of pages is equal to i.

