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Introduction

The linear complexity (or rank) of a sequence v over the �nite �eld is
de�ned to be the smallest positive integer LC for which there exist
constants c1, ...,cLC ,ci ∈ GF (q) such that

−vm = c1vm−1+ c2vm−2+ · · ·+ cLCvm−LC for all m ≥ LC . (1)

The polynomial m(x) = xLC + c1x
LC−1+ · · ·+ cLC is called the minimal

polynomial of v .

The sequences satisfying the relation (1), are called linear recurring
sequences. Linear recurring sequences over �elds are well-known subjects
of research in applied algebra and discrete mathematics, dating back to
Fibonacci. Many mathematics investigate this sequences (Moivre, L.
Euler, Lagrange , P. L. Chebyshev, A. A. Markov, ..., V. L. Kurakin, A. S.
Kuzmin, A. A. Nechaev, S.W. Golomb and others).
The linear recurring sequences are used in radar-location, coding theory,
generation of pseudo-random numbers, etc.
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Introduction

The research of the linear complexity of known sequences (in particular,
sequences have good autocorrelation, balanced) is one approach in this
area.
The autocorrelation, the balance properties and the linear complexity are
important parameters of pseudo-random sequences signi�cant for
practical applications.
In this report, I want to present the results of investigation of the linear
complexity and the minimal polynomial of balanced quaternary sequences
with optimal autocorrelation values (the least possible) over the �nite
�eld of four elements.
These sequences were constructed by Tang,Ding and et.al. using the
interval structure and the inverse Gray map.
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General information

Let v = v0, . . . ,vN−1 be a sequence of period N. It is well-know that the
minimal polynomial m(x) and the linear complexity LC of v are given by
the following equations:

m(x) = (xN −1)/gcd
(
xN −1,sv (x)

)
,

LC = N−deggcd
(
xN −1,sv (x)

)
, (2)

where sv (x) is the generating polynomial of v . Thus, sv (x) = ∑
N−1
i=0 vix

i .

Let F4 = {0,1,µ,µ +1} be a �nite �eld of four elements, and let α be a
primitive N-th root of unity in the extension of the �eld F4. Then we
have an expansion (xN −1) = ∏

N−1
i=1 (x−α i ) and by (2) we obtain

m(x) = (xN −1)/ ∏
i :sv (α i )=0

(x−α
i ),

LC = N−|{i : sv (α i ) = 0, i = 0,1, . . . ,N−1}|. (3)

So, by (3), to compute the minimal polynomial and the linear complexity
of v it is su�cient to know the roots of polynomial sv (x) in the set
{α j , j = 0,1, . . . ,N−1}.
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Cyclotomic classes

Let p = nR+1 be a prime, where n,R are natural numbers, and let g be
a primitive root modulo p. Put, by de�nition

H0 = {gdt mod p, t = 0,1, . . . ,R−1}, k = 0,1, . . . ,d −1.

H0 is the cyclic subgroup of index n multiplicative group Z∗p of classes

ring residues modulo p. Then cosets Hk = gkH0,k = 1, . . . ,n−1 are
called cyclotomic classes of order n.
Then, we have a partition

Z∗p =
n−1⋃
k=0

Hk .

Example.

i. Let p = 7,d = 2,g = 3. Then H0 = {1,2,4}, H1 = {3,5,6};
ii. Let p = 13,g = 2. Then H0 = {1,3,9}, H1 = {2,5,6}, H2 = {4,10,12},
H3 = {7,8,11}.
The use of cyclotomic classes to construct sequences, which are called
cyclotomic sequences is an important method for sequence design.
Bellow, we consider few examples.
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Legendre sequences

Well-know Legendre sequences are based on cyclotomic classes of order
two. Let n = 2. The Legendre sequences l , l

′
with a period p are de�ned

as

lj =


0, if j mod p = 0,

0, if j mod p ∈ H0,

1, if j mod p ∈ H1,

l
′
j =


1, if j mod p = 0,

0, if j mod p ∈ H0,

1, if j mod p ∈ H1,

Here H0 and H1 are all the nonzero squares and non-squares in Zp,
respectively.
Example. If p = 7 then

lj =

{
0, if j mod p = 0,3,5,6,

1, if j mod p = 1,2,4,

i.e. in a period l = 0,1,1,0,1,0,0.
It is well known that Legendre binary sequences have optimal
autocorrelation value if p ≡ 3(mod4).
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Hall sequences

Let p = A2+27= 6R+1 be a prime, A≡ 1(mod 3), and let g be (and,
always can be) selected such that 3 ∈ H1.
Then D = H0∪H1∪H3 is a Hall di�erence set.

hj =

{
1, if j mod p ∈ D,
0, else.

Then h has optimal autocorrelation value {−1}.
Example. Let p = 31,g = 3. Then

hj =

{
1, if j mod 31= 1,2,3,4,6,8,12,15,16,17,23,24,27,29,30,
0, else.

If put, by de�nition Di = g iD, i = 1, . . . ,5 and denote by hi the
characteristic sequence Di , then also hi has optimal autocorrelation value.
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The method derive to the linear complexity of cyclotomic

sequences

Let u with a period p be de�ned as

ui =

{
1, if i mod p ∈

⋃
k∈I Hk ,

0, else .
(4)

Here I is a subset of index. Then u is called a cyclotomic sequence.

In this case we have su(α
j ) = su(α

gk
) if j ∈ Hk .

Let us introduce the auxiliary polynomial sd (x) = ∑i∈H0
x i . From our

de�nition it follows that

su(α
j ) = ∑

k∈I
sd (α

jgk
).

Hence, by (3), to compute the minimal polynomial and the linear
complexity of u it is su�cient to know the values of

sn(1),sn(α), . . . ,sn(α
gn−1

).
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The method derive the linear complexity of cyclotomic

sequences

Denote by (i , j)n = |Hi ∩ (Hj +1)|, i , j ∈ Z cyclotomic numbers of order n.

Theorem (1)

For k = 0,1, . . . ,n−1 we have

sn(α)sn(α
gk
) =

n−1

∑
i=0

(k , i)nsn(α
g i
)+δ .

Here δ =

{
R, if R ≡ 0(mod2),k = 0 or R ≡ 1(mod2),k = n/2,

0, else.

Theorem 1 de�nes a system of equations for sn(α
gk
),k = 0, . . . ,n−1. As

is noted above, this allows one to �nd values sv (α
j ), j = 0, . . . ,p−1 of

the polynomial of u, which, according to (3), makes it possible to
compute the linear complexity of the sequence.
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Example

Let n = 2 and p ≡ 3 (mod 4), i.e., p = 3+4t, t ∈ Z. Then
(0,0)2 = (p−3)/4= t and (0,1)2 = (p+1)/4= t+1. In this case we
derive from theorem 1 the following equation:

s2(α)s2(α
g ) = ts2(α)+(t+1)s2(α

g ).

By de�nition s2(α)+ s2(α
g ) = 1. Hence,s2(α) = 1,s2(α

g ) = 0 if
p ≡ 7(mod 8) and s2(α) = µ,s2(α

g ) = µ +1 if p ≡ 3(mod 8).
We compute the values of polynomial of Legendre sequence. The values
of polynomial of Hall sequence and other cyclotomic sequences are
computed similarly.

Vladimir Edemskiy About the linear complexity of sequences over the �nite �eld of four elements



Sequences over the �nite �eld of 4 elements

Let c = c0, . . . ,cN−1 and d = d0, . . . ,dN−1 be binary sequences of period
N.
The well-known Gray mapping φ : Z4→ Z2×Z2 is de�ned as

φ(0) = (0,0), φ(1) = (0,1), φ(2) = (1,1), φ(3) = (1,0).

If we view F4 = {0,1,µ,µ +1} as a vector space over F2 with a basis
µ, 1, then we can de�ne a sequence v by inverse Gray map as

vi =


0, if (ci ,di ) = (0,0),

1, if (ci ,di ) = (0,1),

µ +1, if (ci ,di ) = (1,1),

µ, if (ci ,di ) = (1,0).

(5)

Tang, Ding, Lim, Kim et al. constructed new balanced sequences with
optimal autocorrelation values using binary sequences with optimal
autocorrelation value via Gray mapping. We investigate the linear
complexity of series above mentioned sequences over the �nite �eld of
four elements.
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Tang and Ding sequences

Let a= a0, . . . ,ap−1 and b = b0, . . . ,bp−1 be binary sequences of period p,
p ≡ 3(mod4). De�ne sequences c and d as

ci =

{
ai/2, if i ≡ 0(mod2),

a(i+N)/2, if i ≡ 1(mod2).

di =

{
bi/2, if i ≡ 0(mod2),

b(i+N)/2+1, if i ≡ 1(mod2),
(6)

i.e. c = I (a,L1/2a) and f = I (b,L1/2b+1), where I and L denote the
interleaved operator and the left cyclic shift operator respectively.

Lemma (2)

Let v be de�ned by (4). Then

sv (x) = µsc(x)+ sd (x),

where sc (x) = ∑
2N−1
i=0 cix

i and sd (x) = ∑
2N−1
i=0 dix

i .
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Auxiliaries lemmas

Lemma (3)

(i) If c = I (a,L1/2a) then sc(x) = (1+ xp)sa(x
2);

(ii) If d = I (b,L1/2b+1) then
sd (x) = (1+ xp)sb(x

2)+ x(x2N −1)/(x2−1).
(iii) If b = Lma then sb(x

2) = x2p−2msa(x
2).

Thus, by Lemmas 2 and 3 we have

gcd(x2p−1,sv (x)) =
xp−1

x−1
gcd
(xp−1

x−1
,µsa(x

2)+ sb(x
2)
)
.

Let w(x) = µsa(x)+ sb(x). If a,b are the cyclotomic sequences then the

known values sn(α
gk
),k = 0, . . . ,n−1 also allow one to �nd values

w(αgk
),k = 0, . . . ,n−1 and to compute the minimal polynomial and the

linear complexity of v .
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The linear complexity of sequences obtained from Legendre

sequences

The values of Legendre sequence polynomial were studied early. In
particular, with an appropriate choice of α we can assume that

sl (α
j ) =

{
1, if j ∈ H0,

0, if j ∈ H1

(7)

for p ≡ 7(mod 8), and

sl (α
j ) =

{
µ, if j ∈ H0,

µ +1, if j ∈ H1

(8)

for p ≡ 3(mod 8).
Let t(x) = ∏j∈H0

(x−α j ). Our �rst contribution is the following.
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The linear complexity of sequences obtained from Legendre

sequences

Theorem (4)

Let c = I (l ,L1/2l), d = I (Lml ,Lm+1/2l+ 1),m = 0, . . . ,p−1, and let v be
de�ned by (4). Then:
(i) LC = (p+3)/2 and m(x) = (x−1)2t(x) if p ≡ 7 (mod 8).
(ii) LC = p+1 and m(x) = (xp−1)(x−1) if p ≡ 3(mod 8) and m = 0
for p = 3.
(iii) LC = 3 and m(x) = (x−1)2(x− (µ +1)m) if p = 3,m = 1,2.

In this case w(x2) = µsa(x
2)+ sb(x

2) = µsl (x
2)
(
1+µ−1x2p−2m

)
and

1+µ−1α−2mj 6= 0, j = 1, . . . ,p−1 for p 6= 3. Then the statement of
Theorem 4 follows from (7)-(8).
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The linear complexity of sequences obtained from Legendre

sequences

For cryptographic applications one needs sequences with high linear
complexity, i.e LC > N/2. In the case of Tang and Ding sequences the
last inequality means that LC = p+1. Then always
m(x) = (xp−1)(x−1) by (3). Later we will omit the expression for m(x).

Theorem (5)

Let c = I (l ,L1/2l), d = I (Lml
′
,Lm+1/2l

′
+ 1),m = 0, . . . ,p−1, and let v

be de�ned by (4). Then:
(i) LC = (p+3)/2 if p ≡ 3(mod 8) and m = 0 or p = 3,m = 2.
(ii) LC = p+1 if p ≡ 7(mod 8) or p ≡ 3(mod 8) and m 6= 0 for p 6= 3 or
m = 1 for p = 3.

We prove Theorem 5 similarly as Theorem 4.
The results of computing the linear complexity by Berlekamp-Massey
algorithm when p = 3,7,11,19,23, . . . con�rm Theorems 4 and 5.
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The values of Hall sequence polynomial

The values of the polynomial sh(x) are computed similarly as the values
of Legendre sequence polynomial. We have the next assertion

Lemma (6)

Let h be a Hall sequence. Then there exist the primitive p-th root α of
unity such that:
(i)

sh(α
j ) =

{
1, if j ∈ H0,

0, if j ∈ H1∪·· ·∪H5.

for p ≡ 7(mod 8);
(ii)

sh(α
j ) =


1, if j ∈ H0∪H1∪H3∪H4,

µ, if j ∈ H2,

µ +1, if j ∈ H5,

for p ≡ 3(mod 8).
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The linear complexity of sequences obtained from Legendre

and Hall sequences

Lemma 6 allows to compute the linear complexity of sequences over F4

obtained from Legendre and Hall sequences or Hall sequences. The
results of derivation are given below.

Theorem (7)

Let c = I (l ,L1/2l), d = I (Lmh(k),Lm+1/2h(k)+1),m= 0, . . . ,p−1, and let
v be de�ned by (1). Then:
(i) LC = p+1 if p ≡ 3(mod 8) and m 6= 0.
(ii) LC = (p+3)/2 if m = 0, p ≡ 3(mod 8) and k = 1,3,5 or
p ≡ 7(mod 8) and k = 0,2,4.
(iii) LC = 2(p+2)/3 if m = 0, p ≡ 3(mod 8) and k = 0,2,4 or
p ≡ 7(mod 8) and k = 1,3,5.
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The linear complexity of sequences obtained from Hall

sequences

Theorem (8)

Let c = I (h,L1/2h), d = I (Lmh(k),Lm+1/2h(k)+1),m = 0, . . . ,p−1, and
let v be de�ned by (1). Then:
1. LC = p+1 if p ≡ 3(mod 8) and m 6= 0 or p ≡ 3(mod 8) and
m = k = 0.
2. LC = 2(p+2)/3 if m = 0, p ≡ 3(mod 8) and k = 1,2,4,5.
3. LC = (5p+7)/6 if m = 0, p ≡ 3(mod 8) and k = 3.
4. LC = (p+5)/3 if p ≡ 7(mod 8) and k = 1, . . . ,5.
5. LC = (p+11)/6 if p ≡ 3(mod 8) and k = 0.

The results of computing the linear complexity by Berlekamp-Massey
algorithm when p = 31,43,127,283, ... con�rm Theorem 7 and 8.
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The linear complexity of sequences obtained from

twin-prime sequences

Let a be a twin-prime sequence with period N = p(p+2), both p and
p+2 are primes, and let b = Lma. In this case we have
w(x2) = µsa(x

2)+x2N−2msa(x
2) by Lemma 3. Thus, by (3) for p 6= 3 we

have

gcd(x2N −1,sv (x)) =
xN −1

x−1
gcd
(xN −1

x−1
,sa(x

2)
)
. (9)

The linear complexity of twin-prime sequences and the values sa(α
j ) were

computed earlier. In particular, from (9) we obtain the next statement.

Lemma (9)

Let v be de�ned by (4), where a is a twin-prime sequence and
c = I (a,L1/2a), d = I (Lma,L1/2+ma+1). Then LC = p(p+2)+1 i�
p ≡ 1(mod 8) or p ≡−3 (mod 8).

For example, the conditions of Lemma 9 are satis�ed for p = 17,29.
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Lim et al. sequences

In their paper, Lim et al. proved that if a,b are binary sequences with
optimal autocorrelation value and

ei =

{
ai , if i ≡ 0(mod2),

ai , if i ≡ 1(mod2).

fi =

{
bi , if i ≡ 0(mod2),

bi +1, if i ≡ 1(mod2),
(10)

then a sequence u : ui = φ−1(ei , fi ) is a balanced quaternary sequence
with period 2N and optimal autocorrelation values.
In this cases:
(i) se(x) = (1+ xN)sa(x);

(ii) sf (x) = (1+ xN)sb(x)+ x x2N−1
x2−1 .
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The linear complexity of Lim et al. sequences

Let z be a sequence obtained by inverse Gray mapping from e, f . Then
we have the next assertion.

Lemma (10)

Let e, f be de�ned by (10). Then

gcd(x2N −1,sz(x)) =
xN −1

x−1
gcd
(xN −1

x−1
,µsa(x

2)+ sb(x
2)
)
. (11)

Hence, if sequences v and z are de�ned by inverse Gray mapping for the
same pair of binary sequences a,b then

gcd(x2N −1,sv (x)) = gcd(x2N −1,sz(x))

by Lemma 2 and Lemma 10. So, the linear complexities of v and z are
equal. Thus, if a,b are Legendre sequences, Hall sequences or twin-prime,
then the linear complexity of the sequence z is de�ned by Theorems 1-7.
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The linear complexity of Kim et al. sequences

Let l
′
, l be Legendre sequences, and let

qi =

{
l
′
i , if i ≡ 0(mod2),

li , if i ≡ 1(mod2).

ri =

{
l
′
i , if i ≡ 0(mod2),

li +1, if i ≡ 1(mod2).

Here (i) sq(x) = (1+ xp)sl (x)+1;

(ii) sr (x) = (1+ xp)sl (x)+1+ x x2p−1
x2−1 .

The sequence u : ui = φ−1(qi , ri ) is a balanced quaternary sequence with
optimal autocorrelation values.

Theorem (11)

Let y be a sequence obtained by inverse Gray mapping from q, r . Then
LC = 2p and m(x) = x2p−1.
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Conclusion

We examined the linear complexity of sequences over the �nite �eld of
order four. These sequences were constructed by the inverse Gray
mapping from Legendre sequences, Hall sequences and twin-prime
sequences.
Well, that's all.
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