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Best-choice problem

matching model, job search model, mating model, buyer-seller model

Two-sided mate choice problem

• Alpern S., Reyniers D.J. (1999, 2005) Homotypic and common preferences

• Mazalov V., Falko A. (2008) Common preferences, arriving flow

• Alpern S., Katrantzi I., Ramsey D. (2010) Age preferences: discrete time model

• Alpern S., Katrantzi I., Ramsey D. (2013) Age preferences: continuous time
model



Alpern S., Katrantzi I., Ramsey D. (2010)

• Males have m periods for mating, females — n periods, m > n.

• It is assumed that the total number of unmated males is greater than the total
number of unmated females.

• Each group has steady state distribution for the age of individuals.

• In the game unmated individuals from different groups randomly meet each
other in each period. If they accept each other, they form a couple and leave
the game, otherwise they go into the next period unmated and older.

• Payoff of mated player is the number of future joint periods with selected partner:
payoff of male age i and female age j is equal to min{m− i+1;n− j +1}

• The aim of each player is to maximize the expected payoff.



• a = (a1, ..., am), b = (b1, ..., bn).

• ai — the number of unmated males of age i relative to the number of females
of age 1.

• bj — the number of unmated females of age j relative to the number of females
of age 1 (b1 = 1).

• R — the ratio of the rates at which males and females enter the adult population

R =
a1

b1
= a1 .

• A =
m∑

i=1

ai, B =
n∑

i=1

bj, r =
A

B
, r > 1.

• F = [f1, ..., fm], G = [g1, ..., gn]

• fi = k, k = 1, ..., n — to accept a female of age 1, ..., k

• gj = l, l = 1, ...,m — to accept a male of age 1, ..., l

F=[1,2,3,3], G=[4,4,4]



The equilibrium age distributions are equal to

ai+1 = ai

(

1−
∑

i↔j

bj
A

)

, i = 1, ...,m− 1;

bj+1 = bj

(

1−
∑

i↔j

ai
A

)

, j = 1, ..., n− 1.

• Ui, i = 1, ...,m — the expected payoff of male of age i.

• Vj, j = 1, ..., n — the expected payoff of female of age j.

•
ai

A
— the probability a female is matched with a male of age i,

•
B

A
— the probability a male is matched.

•
bj

A
=

bj

B
·
B

A
— the probability a male is matched with a female of age j.

i accepts j if min{m− i+1, n− j +1} ≥ Ui+1;

j accepts i if min{m− i+ 1, n− j + 1} ≥ Vj+1.



Model 1: Maximum age of males m > 2, maximum age of

females n = 2

Strategies: F = [f1, ..., fm], G = [g1, g2]

The expected payoffs of females are equal to






V2 =
m−1∑

i=1

ai

A
I{fi = 2}+

am

A
≤ 1,

V1 =
m−1∑

i=1

2
ai

A
+

am

A
max{1, V2} = 2−

am

A
.

G = [m,m]: the expected payoffs of males are equal to






Um =
b1

A
1+

b2

A
1+ (1−

B

A
)0 =

1

r
< 1, ⇒ fm = 2, fm−1 = 2

Um−1 =
b1

A
2+

b2

A
max{1, Um}+

(

1−
1

r

)

Um =
2

r
−

b2

A
+

(

1−
1

r

)

Um < 2,

Um−2 =
b1

A
2+

b2

A
max{1, Um−1}+

(

1−
1

r

)

Um−1

...

U1 =
b1

A
2+

b2

A
max{1, U2}+

(

1−
1

r

)

U2



Theorem 1. Equilibrium strategy of female is to accept any partner.

Equilibrium strategy of male of age i is fi = 1, if Ui+1 > 1, i = 1, ...,m−
2, and fi = 2, if Ui+1 ≤ 1, i = 1, ...,m− 2.

Steady state distributions for the age of males and females:

a =
(
R,Rz, ..., Rzm−1

)
,

b = (1,0), R = a1 =
1

(1− z)(1 + z + z2 + ...+ zm−1)






Um = 1− z,

Um−i = 2(1− z) + zUm−i+1, i = 1, ...,m− 2,

where z = 1− 1/r.

Equilibrium for m = 4, n = 2 r =
A

B

([1,1,2,2], [4,4]) (1,2.618)

([1,2,2,2], [4,4]) [2.618,4.079)

([2,2,2,2], [4,4]) [4.079,+∞)



Model 2: Maximum age of males m ≥ 3, maximum age of

females n = 3

The expected payoff of female has the following form

V3 =
m−1∑

i=1

ai
A
I{fi = 3}+

am

A
≤ 1,

V2 =
m−2∑

i=1

ai
A
2I{fi ≥ 2}+

am−1

A
2+

am

A
1 ≤ 2,

V1 =
m−2∑

i=1

ai
A
3+

am−1

A
2+

am

A
max{1, V2},

Females have two equilibrium strategies G1 = [m − 1,m,m], G2 =

[m,m,m] for different values of operational sex ratio r.

Males use strategy F = [f1, ..., fm] — to accept only those females who

are not older than fi, i = 1, ...,m.



There are three forms of strategies:

G2 = [m,m,m] G1 = [m− 1,m,m]

I. F1 = [1, ...,1
︸ ︷︷ ︸

k

,2, ...,2
︸ ︷︷ ︸

l

,3, ...,3
︸ ︷︷ ︸

m−k−l

] II. F3 = [2, ...,2
︸ ︷︷ ︸

k

,3, ...,3
︸ ︷︷ ︸

m−k

]

k = 1, ...,m− 3, l = 1, ...,m− 3 k = 1, ...,m− 2

III. F2 = [1, ...,1
︸ ︷︷ ︸

k

,2, ...,2
︸ ︷︷ ︸

l

,3, ...,3
︸ ︷︷ ︸

m−k−l

]

k = 1, ...,m− 3, l = 1, ...,m− 3



I. Players use strategy profile (F1, G2),
where G2 = [m,m,m] (to accept any partner), F1 = [1, ...,1

︸ ︷︷ ︸
k

,2, ...,2
︸ ︷︷ ︸

l

3, ...,3
︸ ︷︷ ︸
m−k−l

]

Theorem 2. If players use strategy profile (F ∗
1 , G

∗
2),

where G∗
2 = [m,m,m], F ∗

1 = [1, ...,1
︸ ︷︷ ︸

k

,2, ...,2
︸ ︷︷ ︸

l

3, ...,3
︸ ︷︷ ︸
m−k−l

], then male’s payoffs are equal to







Um = 1− z,

Um−1 = 2− z2 − z,

Um−i = 3− zi+1 − zi − zi−1, i = 2, ...,m− 2.

Equilibrium distributions are equal to

a = (R,Rz,Rz2, ..., Rzm−1); b = (1,0,0),

R =
1

(1− z)(1 + z + z2 + ...+ zm−1)
,

A = r,
for z = 1− 1/r.

m = 5

r
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m = 4

r
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V2
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For m = 4 and r = 2, we obtain a =

(
16

15
,

8

15
,
4

15
,
2

15

)

, b = (1,0,0),

F ∗
1 = [1,2,3,3], G∗

2 = [4,4,4].

F ∗
1 = [1, ...,1,2,3,3] for r ∈ (1; 2.191) and m ≥ 4,

F ∗
1 = [1, ...,1,2,2,3,3] for r ∈ [2.191; 2.618) and m ≥ 6,

F ∗
1 = [1, ...,1,2,3,3,3] for r ∈ [2.618; 3.14) and m ≥ 6,

F ∗
1 = [1, ...,1,2,2,3,3,3] for r ∈ [3.14; 4.079) and m ≥ 7.



II. Female’s strategy is G1 = [m− 1,m,m] (V2 ≥ 1),

male’s strategy is F3 = [2, ...,2
︸ ︷︷ ︸

k

,3, ...,3
︸ ︷︷ ︸

m−k

], k = 1, ...,m− 2.

Theorem 3. If players use the equilibrium strategy profile (F ∗
3 , G

∗
1),

where G∗
1 = [m− 1,m,m], F ∗

3 = [2, ...,2
︸ ︷︷ ︸

k

,3, ...,3
︸ ︷︷ ︸

m−k

], for certain values of k

(k = 1, ...,m− 2) then the males’ optimal payoffs are equal to

Um = 1− z −
1

A
,

Um−1 = 2(1− z) + zUm,

Um−i = 3−
am

A2(1− z)
−

(

1−
am

A2(1− z)

)

zi−1 −

(

1 +
1

A

)

zi − zi+1,

i = 2, ...,m− 2,



the equilibrium age distributions are equal to

a =
(

R,Rz,Rz2, ..., Rzm−1
)

, b =









1,
zm−1

m−1∑

i=0
zi
,0









.

R =
1+ z + z2 + ...+ zm−2 +2zm−1

(1− z)(1 + z + z2 + ...+ zm−1)2
,

A = R
m−1∑

i=0
zi,

where z = 1− 1/r.

Equilibrium for m = 5 r =
A

B

([2,2,3,3,3], [4,5,5]) [2.85,4.517)

([2,3,3,3,3], [4,5,5]) [4.517,6.87)

([3,3,3,3,3], [4,5,5]) [6.87,+∞)



III. Female’s strategy is G1 = [m− 1,m,m] (V2 ≥ 1),

male’s strategy is F2 = [1, ...,1
︸ ︷︷ ︸

k

,2, ...,2
︸ ︷︷ ︸

l

,3, ...,3
︸ ︷︷ ︸

m−k−l

], k = 1, ...,m − 3, l =

1, ...,m− 3.

V2 = 2−
am

A
− 2

k∑

i=1

ai

A
< 1

The distributions for the age of males and females have forms

a = (a1, ..., am); b =

(

1,
am

A
,
am

A

k∑

i=1

ai

A

)

,

where

a1 = R, ai = ai−1(1− 1/A), i = 2, ..., k + 1,

aj = aj−1

(
b3

A
+1−

1

r

)

, j = k +2, ..., k + l+1,

as = as−1

(

1−
1

r

)

, s = k + l+2, ...,m.

Equilibrium for m = 5 r =
A

B

([1,2,3,3,3], [4,5,5]) [2.016,2.79)



m = 5

Equilibrium r =
A

B
R

([1,1,2,3,3], [5,5,5]) (1,2.191) (1,1.049)

([1,2,3,3,3], [4,5,5]) [2.016,2.79) [1.081,1.191)

([2,2,3,3,3], [4,5,5]) [2.85,4.517) [1.209,1.560)

([2,3,3,3,3], [4,5,5]) [4.517,6.87) [1.560,2.097)

([3,3,3,3,3], [4,5,5]) [6.87,+∞) [2.097,+∞)

Proposition. If m = n ≥ 2 then Ui ≤ m−(i−1) and Vj ≤ m−(j−1) for i, j = 1, ...,m.
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