Discrete time two-sided mate choice problem with age preferences

Anna Ivashko¹, Elena Konovalchikova²

${ }^{1}$ Institute of Applied Mathematical Research
Karelian Research Center of RAS
Petrozavodsk, Russia
${ }^{2}$ Transbaikal State University
Chita, Russia
${ }^{1}$ aivashko@krc.karelia.ru
${ }^{2}$ konovalchikova_en@mail.ru

Best-choice problem

matching model, job search model, mating model, buyer-seller model

Two-sided mate choice problem

- Alpern S., Reyniers D.J. $(1999,2005)$ Homotypic and common preferences
- Mazalov V., Falko A. (2008) Common preferences, arriving flow
- Alpern S., Katrantzi I., Ramsey D. (2010) Age preferences: discrete time model
- Alpern S., Katrantzi I., Ramsey D. (2013) Age preferences: continuous time model

Alpern S., Katrantzi I., Ramsey D. (2010)

- Males have m periods for mating, females - n periods, $m>n$.
- It is assumed that the total number of unmated males is greater than the total number of unmated females.
- Each group has steady state distribution for the age of individuals.
- In the game unmated individuals from different groups randomly meet each other in each period. If they accept each other, they form a couple and leave the game, otherwise they go into the next period unmated and older.
- Payoff of mated player is the number of future joint periods with selected partner: payoff of male age i and female age j is equal to $\min \{m-i+1 ; n-j+1\}$
- The aim of each player is to maximize the expected payoff.

- $a=\left(a_{1}, \ldots, a_{m}\right), b=\left(b_{1}, \ldots, b_{n}\right)$.
- a_{i} - the number of unmated males of age i relative to the number of females of age 1 .
- b_{j} - the number of unmated females of age j relative to the number of females of age $1\left(b_{1}=1\right)$.
- R - the ratio of the rates at which males and females enter the adult population $R=\frac{a_{1}}{b_{1}}=a_{1}$.
- $A=\sum_{i=1}^{m} a_{i}, B=\sum_{i=1}^{n} b_{j}, r=\frac{A}{B}, r>1$.
- $F=\left[f_{1}, \ldots, f_{m}\right], G=\left[g_{1}, \ldots, g_{n}\right]$
- $f_{i}=k, k=1, \ldots, n$ - to accept a female of age $1, \ldots, k$
- $g_{j}=l, l=1, \ldots, m$ - to accept a male of age $1, \ldots, l$
$F=[1,2,3,3], \quad G=[4,4,4]$
n

The equilibrium age distributions are equal to

$$
\begin{aligned}
& a_{i+1}=a_{i}\left(1-\sum_{i \leftrightarrow j} \frac{b_{j}}{A}\right), i=1, \ldots, m-1 \\
& b_{j+1}=b_{j}\left(1-\sum_{i \leftrightarrow j} \frac{a_{i}}{A}\right), j=1, \ldots, n-1
\end{aligned}
$$

- $U_{i}, i=1, \ldots, m$ - the expected payoff of male of age i.
- $V_{j}, j=1, \ldots, n$ - the expected payoff of female of age j.
- $\frac{a_{i}}{A}$ - the probability a female is matched with a male of age i,
- $\frac{B}{A}$ - the probability a male is matched.
- $\frac{b_{j}}{A}=\frac{b_{j}}{B} \cdot \frac{B}{A}$ — the probability a male is matched with a female of age j.

$$
\begin{aligned}
& i \text { accepts } j \text { if } \min \{m-i+1, n-j+1\} \geq U_{i+1} ; \\
& j \text { accepts } i \text { if } \min \{m-i+1, n-j+1\} \geq V_{j+1} .
\end{aligned}
$$

Model 1: Maximum age of males $m>2$, maximum age of

females $n=2$

Strategies: $F=\left[f_{1}, \ldots, f_{m}\right], G=\left[g_{1}, g_{2}\right]$
The expected payoffs of females are equal to

$$
\left\{\begin{array}{l}
V_{2}=\sum_{i=1}^{m-1} \frac{a_{i}}{A} I\left\{f_{i}=2\right\}+\frac{a_{m}}{A} \leq 1, \\
V_{1}=\sum_{i=1}^{m-1} 2 \frac{a_{i}}{A}+\frac{a_{m}}{A} \max \left\{1, V_{2}\right\}=2-\frac{a_{m}}{A} .
\end{array}\right.
$$

$G=[m, m]$: the expected payoffs of males are equal to

$$
\left\{\begin{array}{l}
U_{m}=\frac{b_{1}}{A} 1+\frac{b_{2}}{A} 1+\left(1-\frac{B}{A}\right) 0=\frac{1}{r}<1, \Rightarrow f_{m}=2, f_{m-1}=2 \\
U_{m-1}=\frac{b_{1}}{A} 2+\frac{b_{2}}{A} \max \left\{1, U_{m}\right\}+\left(1-\frac{1}{r}\right) U_{m}=\frac{2}{r}-\frac{b_{2}}{A}+\left(1-\frac{1}{r}\right) U_{m}<2, \\
U_{m-2}=\frac{b_{1}}{A} 2+\frac{b_{2}}{A} \max \left\{1, U_{m-1}\right\}+\left(1-\frac{1}{r}\right) U_{m-1} \\
\cdots \\
U_{1}=\frac{b_{1}}{A} 2+\frac{b_{2}}{A} \max \left\{1, U_{2}\right\}+\left(1-\frac{1}{r}\right) U_{2}
\end{array}\right.
$$

Theorem 1. Equilibrium strategy of female is to accept any partner. Equilibrium strategy of male of age i is $f_{i}=1$, if $U_{i+1}>1, i=1, \ldots, m-$ 2 , and $f_{i}=2$, if $U_{i+1} \leq 1, i=1, \ldots, m-2$.

Steady state distributions for the age of males and females:
$a=\left(R, R z, \ldots, R z^{m-1}\right)$,
$b=(1,0), R=a_{1}=\frac{1}{(1-z)\left(1+z+z^{2}+\ldots+z^{m-1}\right)}$
$\left\{\begin{array}{l}U_{m}=1-z, \\ U_{m-i}=2(1-z)+z U_{m-i+1}, i=1, \ldots, m-2,\end{array}\right.$
where $z=1-1 / r$.

Equilibrium for $m=4, n=2$	$r=\frac{A}{B}$
$([1,1,2,2],[4,4])$	$(1,2.618)$
$([1,2,2,2],[4,4])$	$[2.618,4.079)$
$([2,2,2,2],[4,4])$	$[4.079,+\infty)$

Model 2: Maximum age of males $m \geq 3$, maximum age of

 females $n=3$The expected payoff of female has the following form

$$
\begin{aligned}
& V_{3}=\sum_{i=1}^{m-1} \frac{a_{i}}{A} I\left\{f_{i}=3\right\}+\frac{a_{m}}{A} \leq 1, \\
& V_{2}=\sum_{i=1}^{m-2} \frac{a_{i}}{A} 2 I\left\{f_{i} \geq 2\right\}+\frac{a_{m-1}}{A} 2+\frac{a_{m}}{A} 1 \leq 2, \\
& V_{1}=\sum_{i=1}^{m-2} \frac{a_{i}}{A} 3+\frac{a_{m-1}}{A} 2+\frac{a_{m}}{A} \max \left\{1, V_{2}\right\},
\end{aligned}
$$

Females have two equilibrium strategies $G_{1}=[m-1, m, m], G_{2}=$ [m, m, m] for different values of operational sex ratio r.

Males use strategy $F=\left[f_{1}, \ldots, f_{m}\right]$ - to accept only those females who are not older than $f_{i}, i=1, \ldots, m$.

There are three forms of strategies:

$G_{2}=[m, m, m]$	$G_{1}=[m-1, m, m]$
I. $F_{1}=[\underbrace{1, \ldots, 1}_{k}, \underbrace{2, \ldots, 2}_{l}, \underbrace{3, \ldots, 3}_{m-k-l}]$	II. $F_{3}=[\underbrace{2, \ldots, 2}_{k}, \underbrace{3, \ldots, 3}_{m-k}]$
$k=1, \ldots, m-3, l=1, \ldots, m-3$	$k=1, \ldots, m-2$
	III. $F_{2}=\underbrace{1, \ldots, 1}_{k}, \underbrace{2, \ldots, 2}_{l}, \underbrace{3, \ldots, 3}_{m-k-l}]$
	$k=1, \ldots, m-3, l=1, \ldots, m-3$

I. Players use strategy profile $\left(F_{1}, G_{2}\right)$,
where $G_{2}=[m, m, m]$ (to accept any partner), $F_{1}=[\underbrace{1, \ldots, 1}_{k}, \underbrace{2, \ldots, 2}_{l} \underbrace{3, \ldots, 3}_{m-k-l}]$
Theorem 2. If players use strategy profile $\left(F_{1}^{*}, G_{2}^{*}\right)$,
where $G_{2}^{*}=[m, m, m], F_{1}^{*}=[\underbrace{1, \ldots, 1}_{k}, \underbrace{2, \ldots, 2}_{l} \underbrace{3, \ldots, 3}_{m-k-l}]$, then male's payoffs are equal to

$$
\left\{\begin{array}{l}
U_{m}=1-z \\
U_{m-1}=2-z^{2}-z \\
U_{m-i}=3-z^{i+1}-z^{i}-z^{i-1}, i=2, \ldots, m-2
\end{array}\right.
$$

Equilibrium distributions are equal to
$a=\left(R, R z, R z^{2}, \ldots, R z^{m-1}\right) ; b=(1,0,0)$,
$R=\frac{1}{(1-z)\left(1+z+z^{2}+\ldots+z^{m-1}\right)}$,

$A=r$,
for $z=1-1 / r$.

For $m=4$ and $r=2$, we obtain $a=\left(\frac{16}{15}, \frac{8}{15}, \frac{4}{15}, \frac{2}{15}\right), b=(1,0,0)$, $F_{1}^{*}=[1,2,3,3], G_{2}^{*}=[4,4,4]$.
$F_{1}^{*}=[1, \ldots, 1,2,3,3]$ for $r \in(1 ; 2.191)$ and $m \geq 4$,
$F_{1}^{*}=[1, \ldots, 1,2,2,3,3]$ for $r \in[2.191 ; 2.618)$ and $m \geq 6$,
$F_{1}^{*}=[1, \ldots, 1,2,3,3,3]$ for $r \in[2.618 ; 3.14)$ and $m \geq 6$,
$F_{1}^{*}=[1, \ldots, 1,2,2,3,3,3]$ for $r \in[3.14 ; 4.079)$ and $m \geq 7$.
II. Female's strategy is $G_{1}=[m-1, m, m]\left(V_{2} \geq 1\right)$,
male's strategy is $F_{3}=[\underbrace{2, \ldots, 2}_{k}, \underbrace{3, \ldots, 3}_{m-k}], k=1, \ldots, m-2$.

Theorem 3. If players use the equilibrium strategy profile (F_{3}^{*}, G_{1}^{*}), where $G_{1}^{*}=[m-1, m, m], F_{3}^{*}=[\underbrace{2, \ldots, 2}_{k}, \underbrace{3, \ldots, 3}_{m-k}]$, for certain values of k ($k=1, \ldots, m-2$) then the males' optimal payoffs are equal to

$$
\begin{aligned}
& U_{m}=1-z-\frac{1}{A} \\
& U_{m-1}=2(1-z)+z U_{m}, \\
& U_{m-i}=3-\frac{a_{m}}{A^{2}(1-z)}-\left(1-\frac{a_{m}}{A^{2}(1-z)}\right) z^{i-1}-\left(1+\frac{1}{A}\right) z^{i}-z^{i+1}, \\
& i=2, \ldots, m-2,
\end{aligned}
$$

the equilibrium age distributions are equal to

$$
\begin{aligned}
& a=\left(R, R z, R z^{2}, \ldots, R z^{m-1}\right), b=\left(1, \frac{z^{m-1}}{\sum_{i=0}^{m-1} z^{i}}, 0\right) . \\
& R=\frac{1+z+z^{2}+\ldots+z^{m-2}+2 z^{m-1}}{(1-z)\left(1+z+z^{2}+\ldots+z^{m-1}\right)^{2}}, \\
& A=R \sum_{i=0}^{m-1} z^{i},
\end{aligned}
$$

where $z=1-1 / r$.

Equilibrium for $m=5$	$r=\frac{A}{B}$
$([2,2,3,3,3],[4,5,5])$	$[2.85,4.517)$
$([2,3,3,3,3],[4,5,5])$	$[4.517,6.87)$
$([3,3,3,3,3],[4,5,5])$	$[6.87,+\infty)$

III. Female's strategy is $G_{1}=[m-1, m, m]\left(V_{2} \geq 1\right)$,
male's strategy is $F_{2}=[\underbrace{1, \ldots, 1}_{k}, \underbrace{2, \ldots, 2}_{l}, \underbrace{3, \ldots, 3}_{m-k-l}], k=1, \ldots, m-3, l=$ $1, \ldots, m-3$.
$V_{2}=2-\frac{a_{m}}{A}-2 \sum_{i=1}^{k} \frac{a_{i}}{A}<1$
The distributions for the age of males and females have forms
$a=\left(a_{1}, \ldots, a_{m}\right) ; b=\left(1, \frac{a_{m}}{A}, \frac{a_{m}}{A} \sum_{i=1}^{k} \frac{a_{i}}{A}\right)$,
where

$$
\begin{aligned}
& a_{1}=R, a_{i}=a_{i-1}(1-1 / A), i=2, \ldots, k+1, \\
& a_{j}=a_{j-1}\left(\frac{b_{3}}{A}+1-\frac{1}{r}\right), j=k+2, \ldots, k+l+1, \\
& a_{s}=a_{s-1}\left(1-\frac{1}{r}\right), s=k+l+2, \ldots, m .
\end{aligned}
$$

Equilibrium for $m=5$	$r=\frac{A}{B}$
$([1,2,3,3,3],[4,5,5])$	$[2.016,2.79)$

$$
m=5
$$

Equilibrium	$r=\frac{A}{B}$	R
$([1,1,2,3,3],[5,5,5])$	$(1,2.191)$	$(1,1.049)$
$([1,2,3,3,3],[4,5,5])$	$[2.016,2.79)$	$[1.081,1.191)$
$([2,2,3,3,3],[4,5,5])$	$[2.85,4.517)$	$[1.209,1.560)$
$([2,3,3,3,3],[4,5,5])$	$[4.517,6.87)$	$[1.560,2.097)$
$([3,3,3,3,3],[4,5,5])$	$[6.87,+\infty)$	$[2.097,+\infty)$

Proposition. If $m=n \geq 2$ then $U_{i} \leq m-(i-1)$ and $V_{j} \leq m-(j-1)$ for $i, j=1, \ldots, m$.

REFERENCES

1. Alpern S., Reyniers D.J. Strategic mating with homotypic preferences. Journal of Theoretical Biology. 1999. N 198, 71-88.
2. Alpern S., Reyniers D. Strategic mating with common preferences. Journal of Theoretical Biology, 2005, 237, 337-354.
3. Alpern S., Katrantzi I., Ramsey D. Strategic mating with age dependent preferences. The London School of Economics and Political Science. 2010.
4. Gale D., Shapley L.S. College Admissions and the Stability of Marriage. The American Mathematical Monthly. 1962. Vol. 69. N. 1, 9-15.
5. Kalick S.M., Hamilton T.E. The mathing hypothesis reexamined. J. Personality Soc. Psychol. 1986 N 51, 673-682.
6. Mazalov V., Falko A. Nash equilibrium in two-sided mate choice problem. International Game Theory Review. Vol. 10, N 4. 2008, 421-435.
7. Konovalchikova, E. Model of mutual choice with age preferences. Mathematical Analysis and Applications. Transbaikal State University, 2012. 10-25 (in Russian).

THANK YOU FOR YOUR ATTENTION

