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Outline of the talk

• Wang tiles

• Aperiodicity. An aperiodic tile set of 14 Wang tiles

• Tiles to simulate piecewise affine transformations

• Undecidability of the tiling problem

• The tiling problem on the hyperbolic plane



Wang tiles

A Wang tile is a unit square tile with colored edges. A tile set

T is a finite collection of such tiles. A valid tiling is an

assignment

Z
2 −→ T

of tiles on infinite square lattice so that the abutting edges of

adjacent tiles have the same color.
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A Wang tile is a unit square tile with colored edges. A tile set

T is a finite collection of such tiles. A valid tiling is an

assignment

Z
2 −→ T

of tiles on infinite square lattice so that the abutting edges of

adjacent tiles have the same color.

For example, consider Wang tiles
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With copies of the given four tiles we can properly tile a 5× 5

square. . .
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. . . and since the colors on the borders match this square can

be repeated to form a valid periodic tiling of the plane.



The tiling problem of Wang tiles is the decision problem to

determine if a given finite set of Wang tiles admits a valid

tiling of the plane.

Theorem (R.Berger 1966): The tiling problem of Wang

tiles is undecidable.



Aperiodicity

A tiling is called periodic if it is invariant under some

non-zero translation of the plane.

A Wang tile set that admits a periodic tiling also admits a

doubly periodic tiling: a tiling with a horizontal and a vertical

period:



Aperiodicity

A tiling is called periodic if it is invariant under some

non-zero translation of the plane.

A Wang tile set that admits a periodic tiling also admits a

doubly periodic tiling: a tiling with a horizontal and a vertical

period:



Conjecture by H. Wang in the 50’s:

T admits tiling =⇒ T admits periodic tiling.
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There is a tile set that admits a tiling but does not admit

periodic tilings.

Such tile sets are called aperiodic.



Conjecture by H. Wang in the 50’s:

T admits tiling =⇒ T admits periodic tiling.

R. Berger: conjecture is false:

There is a tile set that admits a tiling but does not admit

periodic tilings.

Such tile sets are called aperiodic.

Berger’s aperiodic tile set contained 20,426 tiles.

Current record: 13 tiles (by K. Culik) based on the method

of this talk.



Remark: If Wang’s conjecture had been true then the tiling

problem would be decidable:

Try all possible tilings of larger and larger rectangles until

either

(a) a rectangle is found that can not be tiled (so no

tiling of the plane exists), or

(b) a tiling of a rectangle is found that can be

repeated periodically to form a periodic tiling.

Only aperiodic tile sets fail to reach either (a) or (b). . .



Remark: If Wang’s conjecture had been true then the tiling

problem would be decidable:

Try all possible tilings of larger and larger rectangles until

either

(a) a rectangle is found that can not be tiled (so no

tiling of the plane exists), or

(b) a tiling of a rectangle is found that can be

repeated periodically to form a periodic tiling.

Only aperiodic tile sets fail to reach either (a) or (b). . .

Any undecidability proof of the tiling problem must contain

(explicitly or implicitly) a construction of an aperiodic tile set.
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The colors in our Wang tiles are real numbers, for example
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14 tile aperiodic set

The colors in our Wang tiles are real numbers, for example
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We say that tile n

s

ew

multiplies by number q ∈ R if

qn+ w = s+ e.

(The ”input” n comes from the north, and the ”carry-in” w

from the west is added to the product qn. The result is split

between the ”output” s to the south and the ”carry-out” e

to the east.)



14 tile aperiodic set

The colors in our Wang tiles are real numbers, for example

1

0-1

2

-1

1

11
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2

0 1

0 -1 00

We say that tile n

s

ew

multiplies by number q ∈ R if

qn+ w = s+ e.

The four sample tiles above all multiply by q = 2.



Suppose we have a correctly tiled horizontal segment where all

tiles multiply by the same q.
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Suppose we have a correctly tiled horizontal segment where all

tiles multiply by the same q.
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Adding up

qn1 + w1 = s1 + e1

qn2 + w2 = s2 + e2
...

qnk + wk = sk + ek,

taking into account that ei = wi+1 gives

q(n1 + n2 + . . .+ nk) +w1 = (s1 + s2 + . . .+ sk) + ek.



Suppose we have a correctly tiled horizontal segment where all

tiles multiply by the same q.
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If, moreover, the segment begins and ends in the same color

(w1 = ek) then

q(n1 + n2 + . . .+ nk) = (s1 + s2 + . . .+ sk).



For example, our sample tiles that multiply by q = 2 admit the

segment
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0
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The sum of the bottom labels is twice the sum of the top

labels.



An aperiodic 14 tile set: four tiles that all multiply by 2, and

10 tiles that all multiply by 2

3
.
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Let us call these two tile sets T2 and T2/3. Vertical colors are

disjoint, so every horizontal row of a tiling comes entirely from

one of the two sets.



No periodic tiling exists.

Suppose the contrary: A rectangle can be tiled whose top and

bottom rows match and left and right sides match.
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Denote by ni the sum of the numbers on the i’th row. The

tiles of the i’th row multiply by qi ∈ {2, 2

3
}.
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Denote by ni the sum of the numbers on the i’th row. The

tiles of the i’th row multiply by qi ∈ {2, 2

3
}.

Then ni+1 = qini, for all i.
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No periodic tiling exists.

Suppose the contrary: A rectangle can be tiled whose top and

bottom rows match and left and right sides match.

n

1
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3

k+1

k

n

n

n

n

So we have n1q1q2q3 . . . qk = nk+1 = n1.

Clearly n1 > 0, so we have q1q2q3 . . . qk = 1.

But this is not possible since 2 and 3 are relatively prime: No

product of numbers 2 and 2

3
can equal 1.



Next step: Proof that a valid tiling of the plane exists.

We use sturmian or balanced representations of real

numbers as bi-infinite sequences of two closest integers.

The representation of any α ∈ R is the sequence B(α) whose

k’th element is

Bk(α) = ⌊kα⌋ − ⌊(k − 1)α⌋.
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Next step: Proof that a valid tiling of the plane exists.

We use sturmian or balanced representations of real

numbers as bi-infinite sequences of two closest integers.

The representation of any α ∈ R is the sequence B(α) whose

k’th element is

Bk(α) = ⌊kα⌋ − ⌊(k − 1)α⌋.

For example,

B( 1
3
) = . . . 0 0 1 0 0 1 0 0 1 0 0 1 . . .

B( 7
5
) = . . . 1 1 2 1 2 1 1 2 1 2 1 1 . . .

B(
√
2) = . . . 1 1 2 1 2 1 2 1 1 2 1 1 . . .
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The first tile set T2 admits a tiling of every infinite horizontal

strip whose top and bottom labels read B(α) and B(2α), for

all α ∈ R satisfying

0 ≤ α ≤ 1, and

1 ≤ 2α ≤ 2.

For example, with α = 3

4
:
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The first tile set T2 admits a tiling of every infinite horizontal

strip whose top and bottom labels read B(α) and B(2α), for

all α ∈ R satisfying

0 ≤ α ≤ 1, and

1 ≤ 2α ≤ 2.







⇐⇒ 1

2
≤ α ≤ 1

For example, with α = 3

4
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This is guaranteed by including in the tile set for every
1

2
≤ α ≤ 1 and every k ∈ Z the following tile

2⌊(k − 1)α⌋ − ⌊2(k − 1)α⌋ 2⌊kα⌋ − ⌊2kα⌋

Bk(2α)

Bk(α)
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This is guaranteed by including in the tile set for every
1

2
≤ α ≤ 1 and every k ∈ Z the following tile

2⌊(k − 1)α⌋ − ⌊2(k − 1)α⌋ 2⌊kα⌋ − ⌊2kα⌋

Bk(2α)

Bk(α)

(1) For fixed α the tiles for consecutive k ∈ Z match so that a

horizontal row can be formed whose top and bottom labels

read the balanced representations of α and 2α, respectively.
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This is guaranteed by including in the tile set for every
1

2
≤ α ≤ 1 and every k ∈ Z the following tile

2⌊(k − 1)α⌋ − ⌊2(k − 1)α⌋ 2⌊kα⌋ − ⌊2kα⌋

Bk(2α)

Bk(α)

(2) A direct calculation shows that the tile multiplies by 2,

that is,

2n+ w = s+ e.
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This is guaranteed by including in the tile set for every
1

2
≤ α ≤ 1 and every k ∈ Z the following tile

2⌊(k − 1)α⌋ − ⌊2(k − 1)α⌋ 2⌊kα⌋ − ⌊2kα⌋

Bk(2α)

Bk(α)

(3) There are only finitely many such tiles, even though there

are infinitely many k ∈ Z and α. These are the four tiles in T2.
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The four tiles can be also interpreted as edges of a finite

state transducer whose states are the vertical colors and

input/output symbols of transitions are the top and the

bottom colors:

-1 0

1/1

0/1

1/21/2

A tiling of an infinite horizontal strip is a bi-infinite path

whose input symbols and output symbols read the top and

bottom colors of the strip. We have enough transitions to

allow the transducer to convert B(α) into B(2α).



An analogous construction can be done for any rational

multiplier q. We can construct the following tiles for all

k ∈ Z and all α in the domain interval:

q⌊(k − 1)α⌋ − ⌊q(k − 1)α⌋ q⌊kα⌋ − ⌊qkα⌋

Bk(qα)

Bk(α)

The tiles multiply by q, and they admit a tiling of a horizontal

strip whose top and bottom labels read B(α) and B(qα).



An analogous construction can be done for any rational

multiplier q. We can construct the following tiles for all

k ∈ Z and all α in the domain interval:

q⌊(k − 1)α⌋ − ⌊q(k − 1)α⌋ q⌊kα⌋ − ⌊qkα⌋

Bk(qα)

Bk(α)

The tiles multiply by q, and they admit a tiling of a horizontal

strip whose top and bottom labels read B(α) and B(qα).

Our second tile set T2/3 was constructed in this way for

q = 2

3
and interval 1 ≤ α ≤ 2.
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The tiles admit valid tilings of the plane that simulate

iterations of the piecewise linear dynamical system

f : [
1

2
, 2] −→ [

1

2
, 2]

where

f(x) =







2x, if x ≤ 1, and

2

3
x, if x > 1.

Balanced representation of f(x)

Balanced representation of x
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The tiles admit valid tilings of the plane that simulate

iterations of the piecewise linear dynamical system

f : [
1

2
, 2] −→ [

1

2
, 2]

where

f(x) =







2x, if x ≤ 1, and

2

3
x, if x > 1.

Balanced representation of x

Balanced representation of f  (x)4



Undecidability of the tiling problem

Similar construction can be effectively carried out for any

piecewise linear function on a union of finite intervals of R, as

long as the multiplications are with rational numbers q.



Undecidability of the tiling problem

Similar construction can be effectively carried out for any

piecewise linear function on a union of finite intervals of R, as

long as the multiplications are with rational numbers q.

In order to prove undecidability results concerning tilings

we want to simulate more complex dynamical systems that can

carry out Turing computations.

We generalize the construction in two ways:

• from linear maps to affine maps, and

• from R to R
2, (or Rd for any d).



Immortality of piecewise affine maps

Consider a system of finitely many pairs (Ui, fi) where

• Ui are disjoint unit squares of the plane with integer

corners,

• fi are affine transformations with rational coefficients.

Square Ui serves as the domain where fi may be applied.



The system determines a function

f : D −→ R
2

whose domain is

D =
⋃

i

Ui

and

f(~x) = fi(~x) for all ~x ∈ Ui.



The orbit of ~x ∈ D is the iteration of f starting at point ~x.

The iteration can be continued as long as the point remains in

the domain D.
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The orbit of ~x ∈ D is the iteration of f starting at point ~x.

The iteration can be continued as long as the point remains in

the domain D.



But if the point goes outside of the domain, the system halts.

If the iteration always halts, regardless of the starting point ~x,

the system is mortal. Otherwise it is immortal: there is an

immortal point ~x ∈ D from which a non-halting orbit begins.



Immortality problem: Is a given system of affine maps

immortal?

Proposition: The immortality problem is undecidable.



Immortality problem: Is a given system of affine maps

immortal?

Proposition: The immortality problem is undecidable.

Follows from a standard simulation of Turing machines by

two-dimensional piecewise affine transformations, and from:

Theorem (Hooper 1966): It is undecidable if a given

Turing machine has any immortal configurations.



Next: We effectively construct Wang tiles that are forced to

simulate iterations of given piecewise affine maps.

Then the undecidability of the tiling problem follows: a valid

tiling exists if and only if the dynamical system has an infinite

orbit (which is undecidable).



Next: We effectively construct Wang tiles that are forced to

simulate iterations of given piecewise affine maps.

Then the undecidability of the tiling problem follows: a valid

tiling exists if and only if the dynamical system has an infinite

orbit (which is undecidable).

The construction is very similar to the earlier construction of

14 aperiodic tiles.



The colors in our Wang tiles are elements of R2.

Let f : R2 −→ R
2 be an affine function. We say that tile

n

w

s

e

computes function f if

f(~n) + ~w = ~s+ ~e.



Suppose we have a correctly tiled horizontal segment of length

n where all tiles compute the same f .

Average =

e

s

n

w

Average =

It easily follows that

f(~n) +
1

n
~w = ~s+

1

n
~e,

where ~n and ~s are the averages of the top and the bottom

labels.



Suppose we have a correctly tiled horizontal segment of length

n where all tiles compute the same f .

Average =

e

s

n

w

Average =

It easily follows that

f(~n) +
1

n
~w = ~s+

1

n
~e,

where ~n and ~s are the averages of the top and the bottom

labels.

As the segment is made longer, the effect of the carry-in and

carry-out labels ~w and ~e vanish.



Consider a system of affine maps fi and unit squares Ui.

For each i we construct a set Ti of Wang tiles

• that compute function fi, and

• whose top edge labels ~n are in Ui.

We also make sure that tiles of different sets Ti and Tj cannot

be mixed on any horizontal row of tiles. Let

T =
⋃

i

Ti.



Claim: If such T admits a valid tiling then the system of

affine maps has an immortal point.

Indeed: An immortal point is obtained as the average of the

top labels on a horizontal row of the tiling. The averages on

subsequent horizontal rows below are the iterates of that point

under the dynamical system.



Claim: If such T admits a valid tiling then the system of

affine maps has an immortal point.

Indeed: An immortal point is obtained as the average of the

top labels on a horizontal row of the tiling. The averages on

subsequent horizontal rows below are the iterates of that point

under the dynamical system.

Small technicality: If the average over an infinite horizontal

row does not exist then we take an accumulation point of

averages of finite segments instead. . . this always exists.



We still have to detail how to choose the tiles so that also the

converse is true: any immortal orbit of the affine maps gives

a valid tiling.



The tile set corresponding to a rational affine map

fi(~x) = M~x+~b

and its domain square Ui consists of all tiles

fi(⌊(k − 1)~x⌋)
−⌊(k − 1)fi(~x)⌋

+(k − 1)~b

fi(⌊k~x⌋)
−⌊kfi(~x)⌋

+k~b

Bk(fi(~x))

Bk(~x)

where k ∈ Z and ~x ∈ Ui.



fi(⌊(k − 1)~x⌋)
−⌊(k − 1)fi(~x)⌋

+(k − 1)~b

fi(⌊k~x⌋)
−⌊kfi(~x)⌋

+k~b

Bk(fi(~x))

Bk(~x)

where k ∈ Z and ~x ∈ Ui.

(1) For fixed ~x ∈ Ui the tiles for consecutive k ∈ Z match so

that a horizontal row can be formed whose top and bottom

labels read the balanced representations of ~x and fi(~x),

respectively.



fi(⌊(k − 1)~x⌋)
−⌊(k − 1)fi(~x)⌋

+(k − 1)~b

fi(⌊k~x⌋)
−⌊kfi(~x)⌋

+k~b

Bk(fi(~x))

Bk(~x)

where k ∈ Z and ~x ∈ Ui.

(2) A direct calculation shows that the tile computes function

fi, that is,

fi(~n) + ~w = ~s+ ~e.



fi(⌊(k − 1)~x⌋)
−⌊(k − 1)fi(~x)⌋

+(k − 1)~b

fi(⌊k~x⌋)
−⌊kfi(~x)⌋

+k~b

Bk(fi(~x))

Bk(~x)

where k ∈ Z and ~x ∈ Ui.

(3) Because fi is rational, there are only finitely many such

tiles (even though there are infinitely many k ∈ Z and ~x ∈ Ui).

The tiles can be effectively constructed.



If there is an infinite orbit then a tiling exists where the labels

of the horizontal rows read the balanced representations of the

points of the orbit:

Balanced representation of f(x)

Balanced representation of x
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If there is an infinite orbit then a tiling exists where the labels

of the horizontal rows read the balanced representations of the

points of the orbit:

3Balanced representation of f  (x)

Balanced representation of x



If there is an infinite orbit then a tiling exists where the labels

of the horizontal rows read the balanced representations of the

points of the orbit:

Balanced representation of x

Balanced representation of f  (x)4



Conclusion: the tile set admits a tiling of the plane if and

only if the system of affine maps is immortal. Undecidability

of the tiling problem follows from the undecidability of the

immortality problem.



The hyperbolic plane

The technique works well also in the hyperbolic plane.



The role of the Euclidean Wang square tile will be played by a

hyperbolic pentagon.



The pentagons can tile a ”horizontal row”.



”Beneath” each pentagon fits two identical pentagons.



Infinitely many ”horizontal rows” fill the lower part of the half

plane.



Similarily the upper part can be filled. We see that the

pentagons tile the hyperbolic plane (in an uncountable number

of different ways, in fact.)



On the hyperbolic plane Wang tiles are pentagons with colored

edges. Pentagons may be placed adjacent if the edge colors

match.



A given set of pentagons tiles the hyperbolic plane if a tiling

exists where the color constraint is everywhere satisfied.



The hyperbolic tiling problem asks whether a given finite

collection of colored pentagons admits a valid tiling.

Theorem. The tiling problem of the hyperbolic plane is

undecidable.



We say that pentagon

r

n

ew

l

computes the affine transformation f : R2 −→ R
2 if

f(~n) + ~w =
~l + ~r

2
+ ~e.

(Difference to Euclidean Wang tiles: The ”output” is now

divided between ~l and ~r.)



s

w e

Average = n

Average =

In a horizontal segment of length n where all tiles compute the

same f holds

f(~n) +
1

n
~w = ~s+

1

n
~e,

where ~n and ~s are the averages of the top and the bottom

labels.



For a given system of affine maps fi and unit squares Ui we

construct for each i a set Ti of pentagons

• that compute function fi, and

• whose top edge labels ~n are in Ui.

It follows, exactly as in the Euclidean case, that valid tilings

correspond to iterations of the piecewise affine maps.



The tiles constructed admit a valid tiling iff the system of

affine maps has an immortal point:

Balanced representation of f(x)

Balanced representation of xBalanced representation of x



The tiles constructed admit a valid tiling iff the system of

affine maps has an immortal point:

Balanced representation of xBalanced representation of x

Balanced representation of f  (x)2



The tiles constructed admit a valid tiling iff the system of

affine maps has an immortal point:

Balanced representation of xBalanced representation of x

Balanced representation of f  (x)3



The tiles constructed admit a valid tiling iff the system of

affine maps has an immortal point:

Balanced representation of xBalanced representation of x

Balanced representation of f  (x)4



Conclusion

Sturmian representations of real numbers admit concise

simulations of piecewise affine maps on 2D tilings.

=⇒ small aperiodic sets of Wang tiles

=⇒ simple undecidability proof of the tiling problem

=⇒ technique scales to the hyperbolic plane
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Conclusion

Sturmian representations of real numbers admit concise

simulations of piecewise affine maps on 2D tilings.

=⇒ small aperiodic sets of Wang tiles

=⇒ simple undecidability proof of the tiling problem

=⇒ technique scales to the hyperbolic plane

Can we use the idea in other setups ? Tilings on other Cayley

graphs ?

On which groups is the tiling problem decidable ?

• Decidable on virtually free groups.

• Undecidable on Baumslag-Solitar groups (JK,

N.Aubrun).


