On vertices of degree k in minimal k-connected graphs

Dmitri Karpov

16.09.2014

On vertices of degree k in minimal k-connected graphs

Dmitri Karpov

Notations and definitions

Minimal k-connected graphs

Extremal minimal *k*-connected graphs

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ うへぐ

Notations

For a graph *G* we use the following notations: V(G) denote the set of vertices; $V_k(G)$ denote the set of vertices of degree *k*; v(G) = |V(G)| and $v_k(G) = |V_k(G)|$;

E(G) denote the set of edges;

 $d_G(x)$ denote the degree of a vertex x in the graph G;

 $\Delta(G)$ denote the maximal vertex degree of the graph G.

Dmitri Karpov

Notations and definitions

Minimal k-connected graphs

k-connected graphs

definition

A graph is called *k*-connected if $v(G) \ge k + 2$ and *G* remains connected after deleting any its *k* vertices.

definition

A *k*-connected graph is called *minimal*, if it becomes not *k*-connected after deleting any edge.

Clearly, all vertices of a k-connected graph have degree at least k.

On vertices of degree k in minimal k-connected graphs

Dmitri Karpov

Notations and definitions

Minimal k-connected graphs

Minimal biconnected graphs

G. A. Dirac (1967), M. D. Plummer (1968):

$$v_2(G) \geq \frac{v(G)+4}{3}$$

for a minimal biconnected graph G.

On vertices of degree k in minimal k-connected graphs

Dmitri Karpov

Minimal k-connected graphs

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ● ●

Minimal *k*-connected graphs

W. Mader (1979):

$$v_k(G) \geq \frac{(k-1)v(G)+2k}{2k-1}$$

for a minimal k-connected graph G.

This bound is tight. Clearly, the equality in (1) is possible only for $v(G) \equiv 2 \pmod{2k-1}$.

On vertices of degree k in minimal k-connected graphs

Dmitri Karpov

Notations and definitions

Minimal k-connected graphs

(1)

Extremal minimal k-connected graphs

・ロト・日本・日本・日本・日本・日本

Extremal minimal k-connected graphs

definition

A minimal k-connected graph G is extremal if

$$v_k(G) = \left\lceil rac{(k-1)v(G)+2k}{2k-1}
ight
ceil$$

Denote by $GM_k(n)$ the set of all extremal minimal *k*-connected graphs on *n* vertices.

definition

Let $f(G) = (2k-1)v_k(G) - (k-1)v(G) - 2k$ be the *defect* of a minimal *k*-connected graph *G*.

It follows from the Mader's inequility that $f(G) \ge 0$. If G is extremal then $f(G) \le 2k$. More precisely,

 $f(G) \equiv -(k-1)v(G) - 2k \pmod{2k-1}.$

On vertices of degree k in minimal k-connected graphs

Dmitri Karpov

Notations and definitions

Vinimal k-connected graphs

Graphs $G_{k,T}$

definition

Let $k \ge 2$ and T be a tree with $\Delta(T) \le k + 1$. The graph $G_{k,T}$ is constructed from k disjoint copies T_1, \ldots, T_k of the tree T. For any vertex $a \in V(T)$ we denote by a_i the correspondent vertex of the copy T_i . If $d_G(a) = j$ then we add k + 1 - j new vertices of degree k that are adjacent to $\{a_1, \ldots, a_k\}$.

Figure: A tree T and correspondent extremal minimal biconnected graph $G_{2,T}$.

On vertices of degree k in minimal k-connected graphs

Dmitri Karpov

Notations and definitions

Minimal k-connected graphs

Characterization of GM((2k-1)t+2)

The Mader's inequality turns to equality only for the graphs of the set $GM_k((2k-1)t+2)$. Clearly, if v(T) = t then $v(G_{k,T}) = (2k-1)t+2$. It is not difficult to verify that $G_{k,T}$ is an extremal minimal *k*-connected graph. That is $G_{k,T} \in GM_k(2k-1)t+2$).

Theorem (DK, 01.2014). The set $GM_k(2k-1)t+2$) consists of all graphs $G_{k,T}$ where T is a tree with $\Delta(T) \leq k+1$ and v(T) = t. On vertices of degree k in minimal k-connected graphs

Dmitri Karpov

Notations and definitions

Vinimal k-connected graphs

Extremal minimal k-connected graphs

・ロト・日本・日本・日本・日本・日本

Algorithm of constructing extremal minimal graphs

J. G. Oxley (1982):

• any extremal minimal biconnected graph can be constructed by several opreations of substituting a vertex of degree 2 by $K_{2,2}$ (see fig. a) from some initial graph. The initial graphs are $K_{2,3}$ (for $GM_2(3t + 2)$), K_3 , three graphs with more complicated structure and two infinite series of graphs;

• any extremal minimal triconnected graph of the set $GM_3(5t+2)$ can be constructed from $K_{3,4}$ by several opreations of substituting a vertex of degree 3 by $K_{3,3}$ (see fig. b).

On vertices of degree k in minimal k-connected graphs

Dmitri Karpov

Notations and definitions

Minimal k-connected graphs

Algorithm of constructing of extremal minimal graphs

Corollary (DK, 2014) Let $G \in GM((2k-1)t+2)$. Then G can be constructed from $K_{k,k+1}$ by several opreations of substituting a vertex of degree k by $K_{k,k}$.

Note, that $K_{k,k+1}$ is isomorphic to the graph $G_{k,T}$ for a 1-vertex tree T.

On vertices of degree k in minimal k-connected graphs

Dmitri Karpov

Notations and definitions

Minimal k-connected graphs

Extremal minimal k-connected graphs

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ うへぐ

Theorem

(DK,2013) Let $t \ge 2$. Then the following statements hold.

1) The set GM(3t + 1) consists of all graphs $G_{2,T} \cdot xy$, where T is a tree with v(T) = t and $\Delta(T) \leq 3$, $x, y \in V_3(G_{2,T})$ and $xy \in E(G_T)$.

2) For any graph $G \in GM(3k + 1)$ the representation of type $G_T \cdot xy$ is unique up to isomorphism.

On vertices of degree k in minimal k-connected graphs

Dmitri Karpov

Notations and definitions

Minimal k-connected graphs

More about GM(3t)

Theorem

(DK,2013) Let $t \ge 2$. Then the set GM(3t) consists of graphs of three types of graphs listed below:

1° graphs $G_T \cdot xy \cdot zt$, where T is a tree with v(T) = t and $\Delta(T) \leq 3$, and $xy, zt \in E(G_T)$ are two distinct edges which ends have degree 3 in the graph G_T (these two edges may have a common end);

2° graphs, obtained from a graph $G_T - xy$ (where T is a tree with v(T) = t - 1 and $\Delta(T) \le 3$, and $xy \in E(G_T)$) after adding a new vertex of degree 2, adjacent to x and y;

3° graphs $G_{T,a}$, where T is a tree with v(T) = t and $\Delta(T) = 3$, and $a \in V(T)$ is a vertex of degree 3.

On vertices of degree k in minimal k-connected graphs

Dmitri Karpov

Notations and definitions

Minimal k-connected graphs

Extremal minimal k-connected graphs

▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト 二臣 … のへで

The case $k \ge 3$

The situation is quite different for $k \geq 3$.

Theorem (W. Mader, 1979.) $GM_k((2k-1)t+4) = \emptyset$ for $k \ge 3$ and positive integer t.

Conjecture (W. Mader, 1979.) Let $v(G) = (2k - 1)t + 2\ell$ where $2 \le \ell \le k - 1$ and t is a positive integer. Then

$$v_k(G) \geq \left\lceil rac{(k-1)v(G)+2k}{2k-1}
ight
ceil+1.$$

On vertices of degree k in minimal k-connected graphs

Dmitri Karpov

Notations and definitions

Minimal k-connected graphs

Extremal minimal k-connected graphs

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへぐ

Mader's conjecture

Mader's conjecture means that

 $\operatorname{GM}_k((2k-1)t+2\ell) = \emptyset$

for $2 \le \ell \le k - 1$ and any positive integer t. Mader has shown that $GM_k((2k - 1)t + p) \ne \emptyset$ for all other positive integer p < 2k - 1.

Why the case $v(G) = (2k - 1)t + 2\ell$ for $2 \le \ell \le k - 1$ differs so much from others?

A graph $G \in GM_k((2k-1)t+2\ell)$ must have the defect $f(G) = \ell - 1 < k - 1$. Thus the Mader's conjecture means that if f(G) > 0 for a minimal *k*-connected graph *G* then $f(G) \ge k - 1$.

On vertices of degree k in minimal k-connected graphs

Dmitri Karpov

Notations and definitions

Minimal k-connected graphs

A theorem on Mader's conjecture.

Theorem

(D. Karpov, 08.2014.) Let k, t, ℓ be positive integers such that $k \ge 3$ and $2 \le \ell < \frac{4k+7+4\sqrt{k^2-k-2}}{9}$. Let G be a mininal k-connected graph with $v(G) = (2k-1)t + 2\ell$. Then

$$v_k(G) \geq \left\lceil rac{(k-1)v(G)+2k}{2k-1}
ight
ceil+1.$$

On vertices of degree k in minimal k-connected graphs

Dmitri Karpov

Notations and definitions

Minimal k-connected graphs

Extremal minimal k-connected graphs

This bound is also best possible: there are several examples of graphs for which it is attained.

One can easily verify that $\frac{4k+7+4\sqrt{k^2-k-2}}{9} \ge \frac{8k+3}{9}$ for $k \ge 3$. That is we have proved Mader's conjecture for $\ell \le \frac{8k+3}{9}$.

Extremal examples

Theorem Let $t_k \ge k + 1$ and $t_{k+1} \ge k$ be integers, such that

 $kt_k \geq (k+1)t_{k+1}.$

Then there exists a bipartite minimal k-connected graph G with partitions $V_k(G)$ and $V_{k+1}(G)$ of sizes $|V_k(G)| = t_k$ and $|V_{k+1}(G)| = t_{k+1}$.

This theorem helps us to construct examples for which our bounds on vertices of degree k are tight for

v(G) = 2k - 1 + p, where

- $p \text{ is odd and } 3 \leq p \leq 2k-1;$
- p is even and $2 \le p \le 2k 2;$

For v(G) = (2k-1)t + p where $t \ge 1$ one can construct the extremal graph by t operations of substituting a vertex of degree k by $K_{k,k}$.

On vertices of degree k in minimal k-connected graphs

Dmitri Karpov

Notations and definitions

Minimal k-connected graphs

Extremal example for v(G) = 2k - 1.

 $v_k = k + 1$, $v_{k+1} = k - 2$.

The graph G is a union of complete bipartite graph with partitions V_k and V_{k+1} and a cycle C_{k+1} on the vertices of V_k .

Figure: An example for k = 4, v(G) = 7.

On vertices of degree k in minimal k-connected graphs

Dmitri Karpov

Notations and definitions

Minimal k-connected graphs

Extremal minimal k-connected graphs

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Extremal examples for v(G) = (2k - 1)t + 1.

Let $t \ge 1$ and T be any tree with $\Delta(T) \le k+1$ and v(T) = T, and x, y be adjacent vertices of the graph $G_{k,T}$. Then the graph $G_{k,T} \cdot xy \in \text{GM}((2k-1)t+1)$.

It is easy to check that $GM(2k) = \emptyset$, i.e. there is no minimal k-connected graph on 2k vertices with $v_k = k + 1$ and $v_{k+1} = k - 1$.

Conjecture

Any minimal k-connected graph of the set GM((2k-1)t+1) is of type $G_{k,T} \cdot xy$ for some $G_{k,T} \in GM(((2k-1)t+2))$.

On vertices of degree k in minimal k-connected graphs

Dmitri Karpov

Notations and definitions

Minimal k-connected graphs

On vertices of degree k in minimal k-connected graphs

Dmitri Karpov

Notations and definitions

Minimal k-connected graphs

Extremal minimal k-connected graphs

Thank You!

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへぐ