On vertices of degree k in minimal k-connected graphs

Dmitri Karpov

16.09.2014

Notations

For a graph G we use the following notations:
$V(G)$ denote the set of vertices;
$V_{k}(G)$ denote the set of vertices of degree k;
$v(G)=|V(G)| \quad$ and $\quad v_{k}(G)=\left|V_{k}(G)\right| ;$
$E(G)$ denote the set of edges;
$d_{G}(x)$ denote the degree of a vertex x in the graph G;
$\Delta(G)$ denote the maximal vertex degree of the graph G.

Notations and definitions

k-connected graphs

definition
A graph is called k-connected if $v(G) \geq k+2$ and G remains connected after deleting any its k vertices.
definition
A k-connected graph is called minimal, if it becomes not k-connected after deleting any edge.

Clearly, all vertices of a k-connected graph have degree at least k.

Minimal biconnected graphs

On vertices of degree k in minimal k-connected graphs
Dmitri Karpov

Notations and

definitions

Minimal

k-connected
graphs

$$
v_{2}(G) \geq \frac{v(G)+4}{3}
$$

for a minimal biconnected graph G.

Minimal k-connected graphs

On vertices of degree k in minimal k-connected graphs

W. Mader (1979):

$$
\begin{equation*}
v_{k}(G) \geq \frac{(k-1) v(G)+2 k}{2 k-1} \tag{1}
\end{equation*}
$$

Notations and

for a minimal k-connected graph G.
This bound is tight. Clearly, the equality in (1) is possible only for $v(G) \equiv 2(\bmod 2 k-1)$.

Extremal minimal k-connected graphs

definition

A minimal k-connected graph G is extremal if

$$
v_{k}(G)=\left\lceil\frac{(k-1) v(G)+2 k}{2 k-1}\right\rceil .
$$

Denote by $\mathrm{GM}_{k}(n)$ the set of all extremal minimal k-connected graphs on n vertices.
definition
Let $f(G)=(2 k-1) v_{k}(G)-(k-1) v(G)-2 k$ be the defect of a minimal k-connected graph G.
It follows from the Mader's inequlity that $f(G) \geq 0$. If G is extremal then $f(G) \leq 2 k$. More precisely,

$$
f(G) \equiv-(k-1) v(G)-2 k \quad(\bmod 2 k-1)
$$

Graphs $G_{k, T}$

definition

Let $k \geq 2$ and T be a tree with $\Delta(T) \leq k+1$. The graph $G_{k, T}$ is constructed from k disjoint copies T_{1}, \ldots, T_{k} of the tree T. For any vertex $a \in V(T)$ we denote by a_{i} the correspondent vertex of the copy T_{i}. If $d_{G}(a)=j$ then we add $k+1-j$ new vertices of degree k that are adjacent to $\left\{a_{1}, \ldots, a_{k}\right\}$.

T

Figure: A tree T and correspondent extremal minimal biconnected graph $G_{2, T}$.

Characterization of $\operatorname{GM}((2 k-1) t+2)$

The Mader's inequality turns to equality only for the graphs of the set $\mathrm{GM}_{k}((2 k-1) t+2)$.
Clearly, if $v(T)=t$ then $v\left(G_{k}, T\right)=(2 k-1) t+2$. It is not difficult to verify that $G_{k, T}$ is an extremal minimal k-connected graph. That is $\left.\left.G_{k, T} \in \operatorname{GM}_{k}(2 k-1) t+2\right)\right)$.

Theorem
(DK, 01.2014).
The set $\left.\mathrm{GM}_{k}(2 k-1) t+2\right)$ consists of all graphs G_{k}, T where T is a tree with $\Delta(T) \leq k+1$ and $v(T)=t$.

Algorithm of constructing extremal minimal graphs

J. G. Oxley (1982):

- any extremal minimal biconnected graph can be constructed by several opreations of substituting a vertex of degree 2 by $K_{2,2}$ (see fig. a) from some initial graph. The initial graphs are $K_{2,3}\left(\right.$ for $\left.\mathrm{GM}_{2}(3 t+2)\right)$, K_{3}, three graphs with more complicated structure and two infinite series of graphs;

- any extremal minimal triconnected graph of the set $\mathrm{GM}_{3}(5 t+2)$ can be constructed from $K_{3,4}$ by several opreations of substituting a vertex of degree 3 by $K_{3,3}$ (see fig. b).

Algorithm of constructing of extremal minimal graphs

Corollary
(DK, 2014)
Let $G \in \operatorname{GM}((2 k-1) t+2)$. Then G can be constructed from $K_{k, k+1}$ by several opreations of substituting a vertex of degree k by $K_{k, k}$.

Note, that $K_{k, k+1}$ is isomorphic to the graph $G_{k, T}$ for a 1 -vertex tree T.

More about $\operatorname{GM}(3 t+1)$

On vertices of degree k in minimal
k-connected graphs

Theorem
(DK,2013) Let $t \geq 2$. Then the following statements hold.

1) The set $\mathrm{GM}(3 t+1)$ consists of all graphs $G_{2, T} \cdot x y$, where T is a tree with $v(T)=t$ and $\Delta(T) \leq 3$, $x, y \in V_{3}\left(G_{2, T}\right)$ and $x y \in E\left(G_{T}\right)$.
2) For any graph $G \in \operatorname{GM}(3 k+1)$ the representation of type $G_{T} \cdot x y$ is unique up to isomorphism.

More about $\mathrm{GM}(3 t)$

Theorem
(DK,2013) Let $t \geq 2$. Then the set $\mathrm{GM}(3 t)$ consists of graphs of three types of graphs listed below:
1° graphs $G_{T} \cdot x y \cdot z t$, where T is a tree with $v(T)=t$ and $\Delta(T) \leq 3$, and $x y, z t \in E\left(G_{T}\right)$ are two distinct edges which ends have degree 3 in the graph G_{T} (these two edges may have a common end);
2° graphs, obtained from a graph $G_{T}-x y$ (where T is a tree with $v(T)=t-1$ and $\Delta(T) \leq 3$, and $x y \in E\left(G_{T}\right)$) after adding a new vertex of degree 2, adjacent to x and y; 3° graphs $G_{T, a}$, where T is a tree with $v(T)=t$ and $\Delta(T)=3$, and $a \in V(T)$ is a vertex of degree 3 .

The case $k \geq 3$

The situation is quite different for $k \geq 3$.
Theorem
(W. Mader, 1979.)
$\mathrm{GM}_{k}((2 k-1) t+4)=\varnothing$ for $k \geq 3$ and positive integer t.
Conjecture
(W. Mader, 1979.) Let $v(G)=(2 k-1) t+2 \ell$ where
$2 \leq \ell \leq k-1$ and t is a positive integer. Then

$$
v_{k}(G) \geq\left\lceil\frac{(k-1) v(G)+2 k}{2 k-1}\right\rceil+1
$$

Mader's conjecture

Mader's conjecture means that

$$
\operatorname{GM}_{k}((2 k-1) t+2 \ell)=\varnothing
$$

for $2 \leq \ell \leq k-1$ and any positive integer t.
Mader has shown that $\mathrm{GM}_{k}((2 k-1) t+p) \neq \varnothing$ for all other positive integer $p<2 k-1$.

Why the case $v(G)=(2 k-1) t+2 \ell$ for $2 \leq \ell \leq k-1$ differs so much from others?
A graph $G \in \mathrm{GM}_{k}((2 k-1) t+2 \ell)$ must have the defect $f(G)=\ell-1<k-1$. Thus the Mader's conjecture means that if $f(G)>0$ for a minimal k-connected graph G then $f(G) \geq k-1$.

A theorem on Mader's conjecture.

Theorem

(D. Karpov, 08.2014.) Let k, t, ℓ be positive integers such that $k \geq 3$ and $2 \leq \ell<\frac{4 k+7+4 \sqrt{k^{2}-k-2}}{9}$. Let G be a mininal k-connected graph with $v(G)=(2 k-1) t+2 \ell$. Then

$$
v_{k}(G) \geq\left\lceil\frac{(k-1) v(G)+2 k}{2 k-1}\right\rceil+1 .
$$

This bound is also best possible: there are several examples of graphs for which it is attained.

One can easily verify that $\frac{4 k+7+4 \sqrt{k^{2}-k-2}}{9} \geq \frac{8 k+3}{9}$ for $k \geq 3$. That is we have proved Mader's conjecture for $\ell \leq \frac{8 k+3}{9}$.

Extremal examples

Theorem
Let $t_{k} \geq k+1$ and $t_{k+1} \geq k$ be integers, such that

$$
k t_{k} \geq(k+1) t_{k+1}
$$

Then there exists a bipartite minimal k-connected graph G with partitions $V_{k}(G)$ and $V_{k+1}(G)$ of sizes $\left|V_{k}(G)\right|=t_{k}$ and $\left|V_{k+1}(G)\right|=t_{k+1}$.

This theorem helps us to construct examples for which our bounds on vertices of degree k are tight for $v(G)=2 k-1+p$, where

- $\quad p$ is odd and $3 \leq p \leq 2 k-1$;
- $\quad p$ is even and $2 \leq p \leq 2 k-2$;

For $v(G)=(2 k-1) t+p$ where $t \geq 1$ one can construct the extremal graph by t operations of substituting a vertex of degree k by $K_{k, k}$.

Extremal example for $v(G)=2 k-1$.

$$
v_{k}=k+1, \quad v_{k+1}=k-2 .
$$

The graph G is a union of complete bipartite graph with partitions V_{k} and V_{k+1} and a cycle C_{k+1} on the vertices of V_{k}.

Extremal minimal k-connected graphs

Figure: An example for $k=4, v(G)=7$.

Extremal examples for $v(G)=(2 k-1) t+1$.

Let $t \geq 1$ and T be any tree with $\Delta(T) \leq k+1$ and $v(T)=T$, and x, y be adjacent vertices of the graph $G_{k, T}$. Then the graph $G_{k, T} \cdot x y \in \operatorname{GM}((2 k-1) t+1)$.

It is easy to check that $\operatorname{GM}(2 k)=\varnothing$, i.e. there is no minimal k-connected graph on $2 k$ vertices with $v_{k}=k+1$ and $v_{k+1}=k-1$.

Conjecture

Any minimal k-connected graph of the set $\mathrm{GM}((2 k-1) t+1)$ is of type $G_{k, T} \cdot x y$ for some $G_{k, T} \in \operatorname{GM}(((2 k-1) t+2)$.

Dmitri Karpov

Notations and

definitions

Minimal

k-connected

Thank You!

graphs

Extremal minimal k-connected graphs

