On Relation of Linear Diophantine Equation Systems with Commutative Grammars

Dmitry Korzun

Petrozavodsk State University (Russia)

RuFiDiM — Third Russian Finnish Symposium on Discrete Mathematics
September 15-18, 2014, Petrozavodsk, Russa

Linear Diophantine Equation Systems

Let \mathbb{Z} and \mathbb{Z}_{+}be the set of integers and nonnegative integers
Homogenous linear Diophantine equation system (n equations, m unknowns)

$$
\begin{equation*}
A x=\mathbb{O}, \quad \text { where } A \in \mathbb{Z}^{n \times m}, x \in \mathbb{Z}_{+}^{m} . \tag{1}
\end{equation*}
$$

Diophantine monoid $M_{A}=\left\{x \in \mathbb{Z}_{+}^{m} \mid A x=\mathbb{O}\right\}$
The set \mathcal{H} of all irreducible solutions to (1) is called Hilbert basis

- \mathcal{H} is finite and unique
- "linear independence" is inappropriate here
- minimality: $\forall h \in \mathcal{H}$ there exists no $x \in M_{A}(x \neq h, x \neq \mathbb{O})$ s.t. $x \leq h$
- $|\mathcal{H}|$ is not polynomial-bounded by the system input size

The general solution to (1) is $\quad x=\sum_{h \in \mathcal{H}} c_{h} h$ for some $c_{h} \in \mathbb{Z}_{+}$.
Non-unique decomposition for some $x \in M_{A}$

LDE Systems in Non-negative Form

Known technique: any $a \in \mathbb{Z}$ can be codified $a=a^{\prime}-a^{\prime \prime}$ for $a^{\prime}, a^{\prime \prime} \in \mathbb{Z}_{+}$
Primary representation: $\min \left\{a^{\prime}, a^{\prime \prime}\right\}=0$
or, in other words, $a^{\prime}=\max \{a, 0\}$ and $a^{\prime \prime}=-\min \{a, 0\}$

Let $A=A^{\prime}-A^{\prime \prime}$, where $A^{\prime}, A^{\prime \prime} \in \mathbb{Z}_{+}^{n \times m}$. Then equivalent system to (1)

$$
\begin{equation*}
\sum_{j=1}^{m} a_{i j}^{\prime} x_{j}=\sum_{j=1}^{m} a_{i j}^{\prime \prime} x_{j}, \quad i=1,2, \ldots, n, \tag{2}
\end{equation*}
$$

where $\min \left\{a_{i j}^{\prime}, a_{i j}^{\prime \prime}\right\}=0$ for any i, j. Solutions $x \in \mathbb{Z}_{+}^{m}$

System (2) can be used for modeling

Application Areas for LDE Models

$$
\begin{equation*}
\sum_{j=1}^{m} a_{i j}^{\prime} x_{j}=\sum_{j=1}^{m} a_{i j}^{\prime \prime} x_{j}, \quad i=1,2, \ldots, n, \tag{2}
\end{equation*}
$$

- Routing (in computer networks)
- Structure discovery (in network traffic)
- Structural ranking (in networks)
- Loop parallelization (in array-processing programs)
- Memory control (caching strategies)
- Verification (for network protocols and parallel processes)
- Unification (automated deduction)

Algorithm Complexity Problems

$$
\begin{equation*}
\sum_{j=1}^{m} a_{i j}^{\prime} x_{j}=\sum_{j=1}^{m} a_{i j}^{\prime \prime} x_{j}, \quad i=1,2, \ldots, n \tag{2}
\end{equation*}
$$

- Searching a solution x to a non-homogenous LDE system is NP-complete
- Searching a solution x to (2) can be done in polynomial time (find a rational solution and multiply to the common denominator)
- Deciding, given a solution x, if $x \in \mathcal{H}$ is coNP-complete
- Searching the Hilbert basis \mathcal{H} employs enumerative algorithms, which take exponential time on n, m, and $\|A\|$
- Counting problem $|\mathcal{H}|=$? is \#P-complex and belongs to \#NP

Analysis of particular cases of $A^{\prime \prime}$

Commutative Context-Free Grammars: Languages with Free Word Order

Given a finite alphabet Π, a commutative string (word) over Π is $\left\{\pi^{a_{\pi}}\right\}_{\pi \in \Pi}$, where $a_{\pi} \in \mathbb{Z}_{+}$is the number of occurrences of π.

- the order of symbols is ignored and α is a multiset of symbols
- $\Pi^{*}, \Pi^{+} \rightsquigarrow \Pi^{\circledast}, \Pi^{\oplus}$
- Parikh mapping from Π^{*} to $\mathbb{Z}_{+}^{|\Pi|}$:

$$
\#[\alpha]=a \in \mathbb{Z}_{+}^{|\Pi|}, \quad \# \pi[\alpha]=a_{\pi} \in \mathbb{Z}_{+} \text {for } \pi \in \Pi
$$

Denote also $\star[a]=\left\{\pi^{a \pi}\right\}_{\pi \in \Pi}$

Commutative Context-Free (CCF)

CCF-Grammars: Definition

A commutative CF-grammar without a start symbol is a 3-tuple

$$
G=(N, \Sigma, R)
$$

- nonterminals N and terminals Σ are finite disjoint sets
- rules R are a finite subset of $N \times \Sigma^{*} N^{*}$, where each rule $r \in R$ is

$$
u \rightarrow \tau \rho, \text { where } u \in N, \tau \in \Sigma^{*}, \rho \in N^{*}
$$

The derivation (parsing) problem for a given CCF-grammar G :
Deciding $\varkappa^{\prime} \alpha \Rightarrow^{*} \varkappa^{\prime \prime} \beta$ for given $\varkappa^{\prime} \alpha \in \Sigma^{*} N^{*}$ and $\varkappa^{\prime \prime} \beta \in \Sigma^{*} N^{*}$

Theorem 1 (Dung T. Huynh, 1983) The problem is NP-complete for the case $u \Rightarrow^{*} \tau$, where $u \in N$ and $\tau \in \Sigma^{*}$.

CCF-Grammars: The Case of Homogenous LDE System

Remove terminals Σ^{*} from G
Let $n=|N|$ and $m=|R|$
$R_{u}=\left\{r \in R \mid r=\left(u \rightarrow \rho_{r}\right), \rho_{r}=\star\left[\left(a_{v r}\right)_{v \in N}\right]\right\}$ for $u \in N$
Construct the homogenous LDE system

$$
\begin{equation*}
\sum_{r \in R} a_{u r} x_{r}=\sum_{r \in R_{u}} x_{r}, \quad u \in N \tag{3}
\end{equation*}
$$

Unknowns are interpreted as the number of rule applications in cycles:

$$
x=\#\left[\alpha \Rightarrow^{+} \alpha\right], \quad \text { where } \alpha \in N^{+}
$$

$R_{u} \cap R_{v}=\varnothing \rightsquigarrow$ the right-hand side of (3) consists of partitioned unknowns

CCF-Grammars: Hilbert Basis

Derivation $\alpha \Rightarrow^{*} \alpha$ is a cycle for $\alpha \in N^{+}$
A cycle is simple if it does not contain a proper cycle
Theorem 2 (Korzun, 1997) $x \in \mathcal{H}$ if and only if x corresponds to a simple cycle $u \Rightarrow^{+} u$ for some $u \in N$

Recall LDE systems (2) and (3):

$$
\begin{gather*}
\sum_{j=1}^{m} a_{i j}^{\prime} x_{j}=\sum_{j=1}^{m} a_{i j}^{\prime \prime} x_{j}, \quad i=1,2, \ldots, n, \\
\sum_{r \in R} a_{u r} x_{r}=\sum_{r \in R_{u}} x_{r}, \quad u \in N \tag{3}
\end{gather*}
$$

Hence, $A x=E(R) x$ for specific $\{0,1\}$ matrix $E(R)$

CCF-Grammars: LDE Systems Subclass

$$
E(R) \rightsquigarrow\left(\begin{array}{cccc}
\overbrace{1 \ldots 1}^{m_{1}} & \overbrace{0 \ldots 0}^{m_{2}} & \ldots & \overbrace{0 \ldots 0}^{m_{n}} \\
0 \ldots 0 & 1 \ldots 1 & \cdots & 0 \ldots 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 \ldots 0 & 0 \ldots 0 & \cdots & 1 \ldots 1
\end{array}\right), \quad m_{1}+\cdots+m_{n}=m
$$

Theorem 3 (Korzun, 1999) Given a homogenous LDE system with unknowns x and Hilbert basis \mathcal{H}, one can construct the system

$$
A\binom{x}{y}=E(R)\binom{x}{y}
$$

with unknowns $\binom{x}{y}$ and Hilbert basis \mathcal{H}^{c} such that

$$
\mathcal{H}=\left\{x \left\lvert\,\binom{ x}{y} \in \mathcal{H}^{c}\right.\right\}
$$

Routing Problem (in computer networks)

Network of N nodes. Routing from s to d exploits intermediaries u
Routing table (neighbors): Node u keeps $T_{u} \subset N$ for direct communication
Let a packet targeted to d arrive at u

- Base forwarding: exactly one node v in T_{u} is selected
- Retransmissions: u sends to v, - if no ack then u retransmits ($\#$ attempt $=a_{v}$)
- Sequential forwarding: next-hop candidates $v_{1}, v_{2}, \ldots, v_{k}$,
- initially, u sends to v_{1}
- if no ack, sequentially to v_{2}, v_{3}, and so on up to v_{k}
$-\#$ attempts $=a_{i}=a\left(v_{i}\right), i=1,2, \ldots, k$
- Parallel forwarding: u sends simultaneously to $v_{1}, v_{2}, \ldots, v_{k}$
- Path completion: the packet is not forwarded further

Routing: Paths and Routes

- Network topology
- digraph with outgoing links T_{u}; arcs $u \rightarrow v$
- hypergraph: arc $\left\{u, v_{1}, \ldots, v_{k}\right\}$, weight $\left(a_{1}, \ldots, a_{k}\right)$
- $u \rightarrow v_{1}^{a_{1}} v_{2}^{a_{2}} \cdots v_{k}^{a_{k}}$
- When s sends a packet
- there is a path in the digraph for each copy
- atomic route is all paths

$$
s \Rightarrow^{*} d_{1}^{b_{1}^{+}} \cdots d_{k}^{b_{k}^{+}} \quad(\text { not a tree in general) }
$$

- When s_{1}, \ldots, s_{l} send $b_{1}^{-}, \ldots, b_{l}^{-}$packets

- aggregated route $s_{1}^{b_{1}^{-}} \cdots s_{l}^{b_{l}^{-}} \Rightarrow^{*} d_{1}^{b_{1}^{+}} \cdots d_{k}^{b_{k}^{+}}$
$-s_{1}, \ldots, s_{l}$ act independently \rightsquigarrow context-firee

Routing Grammar: topology

A grammar rule describes a forwarding option
Base forwarding with retransmissions:

$$
u \rightarrow v^{a_{v}}
$$

Sequential and parallel forwarding:

$$
u \rightarrow v_{1}^{a_{1}} v_{2}^{a_{2}} \cdots v_{k}^{a_{k}}
$$

Path completion:

$$
u \rightarrow \varepsilon
$$

Routing Grammar: example

- $\operatorname{Nodes} N=\left\{s_{1}, s_{2}, \ldots, s_{5}\right\}$
- Clockwise links (ring): $r_{1}, r_{3}, r_{4}, r_{5}, r_{7}$
- Parallel: r_{2} (dashed, blue)
- Sequential: r_{6} (dotted, green)
- $\sigma_{\text {seq }}$ and $\sigma_{\text {par }}$ mark sequential and parallel forwarding rules

$$
\begin{array}{ll}
r_{1}, r_{2}: & s_{1} \rightarrow s_{2} \mid \sigma_{\mathrm{seq}} s_{3} s_{5} \\
r_{3}: & s_{2} \rightarrow s_{3} \\
r_{4}: & s_{3} \rightarrow s_{4} \\
r_{5}, r_{6}: & s_{4} \rightarrow s_{5} \mid \sigma_{\mathrm{par}} s_{2} s_{5} \\
r_{7}: & s_{5} \rightarrow s_{1}
\end{array}
$$

Routing Grammar: example, cont.

$$
\begin{array}{ll}
r_{1}, r_{2}: & s_{1} \rightarrow s_{2} \mid \sigma_{\mathrm{seq}} s_{3} s_{5} \\
r_{3}: & s_{2} \rightarrow s_{3} \\
r_{4}: & s_{3} \rightarrow s_{4} \\
r_{5}, r_{6}: & s_{4} \rightarrow s_{5} \mid \sigma_{\mathrm{par}} s_{2} s_{5} \\
r_{7}: & s_{5} \rightarrow s_{1} \\
r_{8}: & s_{1} \rightarrow \varepsilon
\end{array}
$$

$$
e^{2}+2
$$

Cycles $(1,0,0,0,0) \Rightarrow^{+}(1,0,0,0,0)$
$s_{1} \stackrel{r_{1}}{\Rightarrow} s_{2} \stackrel{r_{3}}{\Rightarrow} s_{3} \stackrel{r_{4}}{\Rightarrow}$
$\Rightarrow s_{4} \stackrel{r_{5}}{\Rightarrow} s_{5} \stackrel{r_{7}}{\Rightarrow} s_{1}$

Routing: Context-Free and Context-Dependent Forwarding Rules

Route $s_{1}^{b_{1}^{-}} \cdots s_{l}^{b_{l}^{-}} \Rightarrow^{+} d_{1}^{b_{1}^{+}} \cdots d_{k}^{b_{k}^{+}}$
Advanced structure is due to hyper-arcs $\left(u ; v_{1}, \ldots, v_{k}\right)$,
in contrast to digraph arcs $u \rightarrow v$
Intermediaries u perform context-free forwarding rules $u \rightarrow v_{1}^{a_{1}} v_{2}^{a_{2}} \cdots v_{k}^{a_{k}}$
Generalization: $u_{1}^{a_{1}^{\prime \prime}} u_{2}^{a_{2}^{\prime \prime}} \cdots u_{k}^{a_{1}^{\prime \prime}} \rightarrow v_{1}^{a_{1}^{\prime}} v_{2}^{a_{2}^{\prime}} \cdots v_{k}^{a_{k}^{\prime}}$
$\sum_{r \in R} a_{u r} x_{r}=\sum_{r \in R_{u}} x_{r}, \quad u \in N \quad \rightsquigarrow \quad \sum_{r \in R} a_{u r}^{\prime} x_{r}=\sum_{r \in R_{u}} a_{u r}^{\prime \prime} x_{r}, \quad u \in N$
Or, since R_{u} and R_{v} may overlap for $u, v \in N$,

$$
\begin{equation*}
\sum_{j=1}^{m} a_{i j}^{\prime} x_{j}=\sum_{j=1}^{m} a_{i j}^{\prime \prime} x_{j}, \quad i=1,2, \ldots, n, \tag{2}
\end{equation*}
$$

Grammars and LDE Systems

$u_{1}^{a_{1}^{\prime \prime}} u_{2}^{a_{2}^{\prime \prime}} \cdots u_{k}^{a_{1}^{\prime \prime}} \rightarrow v_{1}^{a_{1}^{\prime}} v_{2}^{a_{2}^{\prime}} \cdots v_{k}^{a_{k}^{\prime}}$
Close to Petri nets (equivalently, to Vector Addition Systems)

1. N is a set of places
2. R is a set of transitions
3. $W(u, r): N \times R \rightarrow \mathbb{Z}_{+}$is an input function $\left(A^{\prime \prime}, a_{u r}^{\prime \prime}\right)$
4. $W(r, u): N \times R \rightarrow \mathbb{Z}_{+}$is an output function $\left(A^{\prime}, a_{u r}^{\prime}\right)$

$$
\begin{equation*}
\sum_{r \in R} a_{u r}^{\prime} x_{r}=\sum_{r \in R_{u}} a_{u r}^{\prime \prime} x_{r}, \quad u \in N \tag{4}
\end{equation*}
$$

Solutions to (4) are "invariants" of Petri net

Cyclic Structures in Routing

Route $s_{1}^{b_{1}^{-}} \cdots s_{l}^{b_{l}^{-}} \Rightarrow^{+} d_{1}^{b_{1}^{+}} \cdots d_{k}^{b_{k}^{+}}$
If $s_{i}=d_{j}$ we have bidirectional communication

- Simple case: $s \Rightarrow^{+} d \Rightarrow^{+} s$ (one cycle covers multiple d)
- All-to-all workload: $(s)_{s \in N} \Rightarrow^{+}(s)_{s \in N}$

In general:

$$
\left(s^{b_{u}^{-}}\right)_{s \in N} \Rightarrow^{+}\left(s^{b_{s}^{+}}\right)_{s \in N}
$$

LDE system:

$$
A^{\prime} x+b^{-}=A^{\prime \prime} x+b^{+}
$$

Conclusion

- General grammar-based case of LDE systems

$$
\begin{equation*}
\sum_{r \in R} a_{u r}^{\prime} x_{r}=\sum_{r \in R_{u}} a_{u r}^{\prime \prime} x_{r}, \quad u \in N \tag{4}
\end{equation*}
$$

- Practical algorithms (for Hilbert basis)
- Cyclic structures
- particularization of $A^{\prime \prime}$ (e.g., sparse networks)
- the role in routing
- analysis (which elements of Hilbert basis)
- construction as a composition of grammar sub-derivations (e.g., in CF-case: $u \Rightarrow^{+} v, u \Rightarrow^{+} u, u \Rightarrow^{+} \varepsilon$)

Thank you!

Dmitry Korzun
 dkorzun@cs.karelia.ru

QUESTIONS?

