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Linear Diophantine Equation Systems

Let Z and Z, be the set of integers and nonnegative integers

Homogenous linear Diophantine equation system (n equations, m unknowns)

Ar =0, where A e Z""™, xe€Z". (1)

Diophantine monoid My = {x € Z7' | Ax = O}
The set H of all irreducible solutions to (1) 1s called Hilbert basis

e 7 is finite and unique

e “linear independence” 1s inappropriate here

e minimality: V/ € H there existsnox € My (x £ h,x # Q) s.t. x < h

e |7 | is not polynomial-bounded by the system input size
The general solutionto (1)1s =z = Z cph for some cp, € Z,.

heH
Non-unique decomposition for some x € M 4
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LDE Systems in Non-negative Form

Known technique: any a € Z can be codified a = ' — a” fora’,d"” € Z..

Primary representation: min{a’, a”} = 0
or, in other words, ¢’ = max{a,0} and ¢ = — min{a, 0}

Let A=A"— A", where A’) A" € 7Z""*™. Then equivalent system to (1)

m m

» apmy =) afw;, i=1,2,...n 2)

J=1 g=1

where min{a; = 0 for any ¢, j. Solutions = € Z'"

177 Z]

System (2) can be used for modeling




Application Areas for LDE Models

m m

Za;jxj :Za;’jxj, i =1,2,....n, (2)

j=1 j=1
¢ Routing (in computer networks)

e Structure discovery (in network traffic)

e Structural ranking (in networks)

e Loop parallelization (in array-processing programs)

e Memory control (caching strategies)

e Verification (for network protocols and parallel processes)

e Unification (automated deduction)




Algorithm Complexity Problems

m m

Za;jxj :Za;’jazj, i =1,2,....n, (2)

j=1 j=1
e Searching a solution x to a non-homogenous LDE system 1s NP-complete

e Searching a solution x to (2) can be done in polynomial time (find a
rational solution and multiply to the common denominator)

e Deciding, given a solution x, if x € H 1s coNP-complete

e Searching the Hilbert basis H employs enumerative algorithms, which
take exponential time on n, m, and || A||

e Counting problem |H| =7 is #P-complex and belongs to #NP




Commutative Context-Free Grammars:
Languages with Free Word Order

Given a finite alphabet I/, a commutative string (word) over I7 is {7% } <1,
where a, € 7 1s the number of occurrences of 7.

e the order of symbols 1s ignored and « 1s a multiset of symbols
o [I*, [T ~ II%, II®
e Parikh mapping from /7 to Z‘f’:

#la]=aeZ!,  #.la]=a, €Z, form eIl

Denote also x|a| = {7}, cp




CCF-Grammars: Definition

A commutative CF-grammar without a start symbol 1s a 3-tuple
G =(N,Y R)
e nonterminals /V and terminals 2. are finite disjoint sets
e rules R are a finite subset of NV x 2*N*, where each rule r € R 1s

u— 7p, Whereu e N, 7€ X", pe N*

The derivation (parsing) problem for a given CCF-grammar G:

Deciding s/’ =* »"5 for given s/a € X*N* and »' € J*N*

Theorem 1 (Dung T. Huynh, 1983) The problem is NP-complete for the case
uw="*T1, whereu € N and ™ € ).




CCF-Grammars: The Case of
Homogenous LDE System

Remove terminals 2* from G

Letn = |N|and m = |R|
R,={reR|r=(u—p),pr =*[(ay)pen]} forue N

Construct the homogenous LDE system

Z%r% — Z Ty, ueN (3)

reR reR,

Unknowns are interpreted as the number of rule applications in cycles:

v =#la =" a], wherea € N*

R, N R, = g ~- the right-hand side of (3) consists of partitioned unknowns




CCF-Grammars: Hilbert Basis

Derivation o« =* «vis acycle foraw € N7

A cycle 1s simple if 1t does not contain a proper cycle

Theorem 2 (Korzun, 1997) x € H if and only if x corresponds to a simple

cycle u =1 u for some u € N

Recall LDE systems (2) and (3):

m m

/ L " .. .
E aijxj—g a;xi, 1=1,2,...,n,

J=1 g=1

Zamxr: Zxr, ue N

reR reR,

Hence, Ax = E(R)x for specific {0, 1} matrix F(R)

(2)

3)




CCF-Grammars: LDE Systems Subclass

Arx = F(R)x /
1...7T0 ()‘ ‘() ()‘
\0...0 0...0 -+ 1...1 )

Theorem 3 (Korzun, 1999) Given a homogenous LDE system with unknowns
x and Hilbert basis H, one can construct the system

()= ()

) and Hilbert basis HC such that

{1 )]

X

with unknowns (y
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Routing Problem (in computer networks)

Network of /N nodes. Routing from s to d exploits intermediaries u
Routing table (neighbors): Node u keeps 7;,, C N for direct communication

Let a packet targeted to d arrive at u

e Base forwarding: exactly one node v in 7, 1s selected

e Retransmissions: wu sends to v,
— 1f no ack then u retransmits (#Fattempt = a,)

e Sequential forwarding: next-hop candidates vy, v, ..., Vg,
— initially, u sends to v;
— 1f no ack, sequentially to v9, v3, and so on up to vy,
— #attempts = a; = a(v;), i =1,2,...,k

e Parallel forwarding: wu sends simultaneously to vy, v, ..., Vg

e Path completion: the packet is not forwarded further
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Routing: Paths and Routes

e Network topology
— digraph with outgoing links 7,; arcs u — v

— hypergraph: arc {u, vy, ..., v}, weight (aq,..., a;)

—u — v{'vy? vk S
e When s sends a packet M\
— there 1s a path 1n the digraph for each copy V2 o Vk

hel
— atomic route 1s all paths /\ /\ /\

bt b .
s ="d;' ---dS (nota tree in general)

e When sy,...,s,send b, ..., b, packets

by ow bt
— aggregated route s;' ---s,' =" d;' ---d,

- S1, ..., 57 act independently ~~
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Routing Grammar: topology

A grammar rule describes a forwarding option

Base forwarding with retransmissions.: @\@

u — v

Sequential and parallel forwarding: @/ @

Path completion:

u—e X

ai . .as ag
u%vl UQ "'/Uk
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Routing Grammar: example

e Nodes N = {s1,59,...,S5}

e Clockwise links (ring): 71, 13, 74, 75, 77
e Parallel: 5 (dashed, blue)

e Sequential: r¢ (dotted, green)

® 0. and oy, mark sequential
and parallel forwarding rules

1,72 . S1 — S92 ‘ TseqS3S5

T3 : So — S3
T4 : S3 — S4
5,76 1 S4 — S5 | OparS2Ss
T S5 — S1
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Routing Grammar: example, cont.

7
r Cycles (1,0,0,0,0) =7 (1,0,0,0,0
@f@\ 1 yeles ( ) = ( |
“’TZI
3 pooeees -~ I,

\ @ I
\ /r 51582;%83% @ é
3 — Sy =3 S5 =< 51 rS% /I’

Iy
1,72 . S1 — S9 ‘ OseqS3S5 r
2
s - S9 —» S3 X1
. r r r ‘*’sz
ry S3 —> S4 S = §4 =% S5 —

5,76 S4 — S | TparS2Ss

S1 |
r \
S5Z$81:>8 's !
T S5 — S1 \@

rs S1 — &€
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Routing: Context-Free and
Context-Dependent Forwarding Rules

by b+ b by,
Route 52 --- s/ =+ % ...’

Advanced structure is due to hyper-arcs (u; vy, ..., V),

in contrast to digraph arcs u — v

Intermediaries u perform context-free forwarding rules u — vy'v5* - - - v;*

17 /7 /7 / / /

. . a a a a a a
Generalization: - us2 -+ - u,! — V02 v,"
1 Ug k 1 Yg k
/ !/
E Aoy Ty = E Tp, UWEN ~» E Q,, Ty = E Ay Try, W E N
reR reR, reR reR,

Or, since R, and R, may overlap for u,v € N,

m m

Zagjxj :Za;’jxj, 1 =1,2,...,n, (2)

j=1 j=1
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Grammars and LDE Systems

/7 /7 / / /

ai a l ap Qo ayg

uy ug? UZ
Close to Petri nets (equivalently, to Vector Addition Systems)
1. N 1s a set of places
2. R 1s a set of transitions

3. W(u,r): N x R — Z, is an input function (A", a/ .

/
ur

4. W(r,u) : N x R — Z. is an output function (A’, a

/ L 17
E a,, Ty = E Ay Try U E N

reR reR,

Solutions to (4) are “invariants’ of Petr1 net

(4)
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Cyclic Structures in Routing

by b+ b by,
Route 52 -5/ =+ % ...’

If s; = d; we have bidirectional communication

e Simple case: s =" d =7 s (one cycle covers multiple d)

e All-to-all workload: (8)seny = (8)sen

In general:
" + (b )

(Sb“)seN — (5 ° )seN

LDE system:
Ar+b = A"z +b"
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Conclusion

e General grammar-based case of LDE systems

Z a{urxr — Z a’erT? ue N (4)

reR reR,

e Practical algorithms (for Hilbert basis)
e Cyclic structures

— particularization of A” (e.g., sparse networks)
— the role 1n routing
— analysis (which elements of Hilbert basis)

— construction as a composition of grammar sub-derivations
(e.g.,in CF-case: u =" v, u =1 u, u =7 ¢)
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THANK YOU!

Dmitry Korzun
dkorzun@cs.karelia.ru

QUESTIONS?
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