On Relation of Linear Diophantine Equation Systems with Commutative Grammars

Dmitry Korzun

Petrozavodsk State University (Russia)

RuFiDiM — Third Russian Finnish Symposium on Discrete Mathematics September 15–18, 2014, Petrozavodsk, Russa

Linear Diophantine Equation Systems

Let \mathbb{Z} and \mathbb{Z}_+ be the set of integers and nonnegative integers

Homogenous linear Diophantine equation system (n equations, m unknowns)

$$Ax = \mathbb{O}, \quad \text{where} \ A \in \mathbb{Z}^{n \times m}, \ x \in \mathbb{Z}^m_+.$$
 (1)

Diophantine monoid $M_A = \{x \in \mathbb{Z}^m_+ \mid Ax = \mathbb{O}\}$

The set \mathcal{H} of all irreducible solutions to (1) is called Hilbert basis

- \mathcal{H} is finite and unique
- "linear independence" is inappropriate here
- minimality: $\forall h \in \mathcal{H}$ there exists no $x \in M_A$ ($x \neq h, x \neq \mathbb{O}$) s.t. $x \leq h$
- $|\mathcal{H}|$ is not polynomial-bounded by the system input size

The general solution to (1) is $x = \sum_{h \in \mathcal{H}} c_h h$ for some $c_h \in \mathbb{Z}_+$.

Non-unique decomposition for some $x \in M_A$

LDE Systems in Non-negative Form

Known technique: any $a \in \mathbb{Z}$ can be codified a = a' - a'' for $a', a'' \in \mathbb{Z}_+$

Primary representation: $\min\{a', a''\} = 0$ or, in other words, $a' = \max\{a, 0\}$ and $a'' = -\min\{a, 0\}$

Let A = A' - A'', where $A', A'' \in \mathbb{Z}_+^{n \times m}$. Then equivalent system to (1)

$$\sum_{j=1}^{m} a'_{ij} x_j = \sum_{j=1}^{m} a''_{ij} x_j, \quad i = 1, 2, \dots, n,$$
(2)

where $\min\{a'_{ij}, a''_{ij}\} = 0$ for any i, j. Solutions $x \in \mathbb{Z}^m_+$

System (2) can be used for modeling

Application Areas for LDE Models

$$\sum_{j=1}^{m} a'_{ij} x_j = \sum_{j=1}^{m} a''_{ij} x_j, \quad i = 1, 2, \dots, n,$$
(2)

- Routing (in computer networks)
- Structure discovery (in network traffic)
- Structural ranking (in networks)
- Loop parallelization (in array-processing programs)
- Memory control (caching strategies)
- Verification (for network protocols and parallel processes)
- Unification (automated deduction)

Algorithm Complexity Problems

$$\sum_{j=1}^{m} a'_{ij} x_j = \sum_{j=1}^{m} a''_{ij} x_j, \quad i = 1, 2, \dots, n,$$
(2)

- Searching a solution x to a non-homogenous LDE system is NP-complete
- Searching a solution x to (2) can be done in polynomial time (find a rational solution and multiply to the common denominator)
- Deciding, given a solution x, if $x \in \mathcal{H}$ is coNP-complete
- Searching the Hilbert basis \mathcal{H} employs enumerative algorithms, which take exponential time on n, m, and ||A||
- Counting problem $|\mathcal{H}| = ?$ is #P-complex and belongs to #NP

Analysis of particular cases of A''

Commutative Context-Free Grammars: Languages with Free Word Order

Given a finite alphabet Π , a commutative string (word) over Π is $\{\pi^{a_{\pi}}\}_{\pi \in \Pi}$, where $a_{\pi} \in \mathbb{Z}_+$ is the number of occurrences of π .

- the order of symbols is ignored and α is a multiset of symbols
- $\Pi^*, \Pi^+ \rightsquigarrow \Pi^*, \Pi^\oplus$
- Parikh mapping from Π^* to $\mathbb{Z}_+^{|\Pi|}$:

$$#[\alpha] = a \in \mathbb{Z}_+^{|\Pi|}, \quad #_{\pi}[\alpha] = a_{\pi} \in \mathbb{Z}_+ \text{ for } \pi \in \Pi$$

Denote also $\star[a] = {\pi^{a_{\pi}}}_{\pi \in \Pi}$

Commutative Context-Free (CCF)

CCF-Grammars: Definition

A commutative CF-grammar without a start symbol is a 3-tuple

 $G = (N, \Sigma, R)$

- \bullet nonterminals N and terminals \varSigma are finite disjoint sets
- rules R are a finite subset of $N \times \Sigma^* N^*$, where each rule $r \in R$ is

 $u \to \tau \rho$, where $u \in N, \tau \in \Sigma^*, \rho \in N^*$

The derivation (parsing) problem for a given CCF-grammar G:

Deciding $\varkappa' \alpha \Rightarrow^* \varkappa'' \beta$ for given $\varkappa' \alpha \in \Sigma^* N^*$ and $\varkappa'' \beta \in \Sigma^* N^*$

Theorem 1 (Dung T. Huynh, 1983) *The problem is NP-complete for the case* $u \Rightarrow^* \tau$, where $u \in N$ and $\tau \in \Sigma^*$.

CCF-Grammars: The Case of Homogenous LDE System

Remove terminals \varSigma^* from G

Let
$$n = |N|$$
 and $m = |R|$
 $R_u = \{r \in R \mid r = (u \rightarrow \rho_r), \rho_r = \star [(a_{vr})_{v \in N}]\}$ for $u \in N$

Construct the homogenous LDE system

$$\sum_{r \in R} a_{ur} x_r = \sum_{r \in R_u} x_r, \quad u \in N$$
(3)

Unknowns are interpreted as the number of rule applications in cycles:

$$x = \#[\alpha \Rightarrow^+ \alpha], \text{ where } \alpha \in N^+$$

 $R_u \cap R_v = \emptyset \rightsquigarrow$ the right-hand side of (3) consists of partitioned unknowns

CCF-Grammars: Hilbert Basis

Derivation $\alpha \Rightarrow^* \alpha$ is a cycle for $\alpha \in N^+$

A cycle is simple if it does not contain a proper cycle

Theorem 2 (Korzun, 1997) $x \in \mathcal{H}$ if and only if x corresponds to a simple cycle $u \Rightarrow^+ u$ for some $u \in N$

Recall LDE systems (2) and (3):

$$\sum_{j=1}^{m} a'_{ij} x_j = \sum_{j=1}^{m} a''_{ij} x_j, \quad i = 1, 2, \dots, n,$$
(2)

$$\sum_{r \in R} a_{ur} x_r = \sum_{r \in R_u} x_r, \quad u \in N$$
(3)

Hence, Ax = E(R)x for specific $\{0, 1\}$ matrix E(R)

CCF-Grammars: LDE Systems Subclass

Theorem 3 (Korzun, 1999) Given a homogenous LDE system with unknowns x and Hilbert basis \mathcal{H} , one can construct the system

$$A\begin{pmatrix}x\\y\end{pmatrix} = E(R)\begin{pmatrix}x\\y\end{pmatrix}$$

with unknowns $\begin{pmatrix} x \\ y \end{pmatrix}$ and Hilbert basis \mathcal{H}^c such that

$$\mathcal{H} = \left\{ x \mid \begin{pmatrix} x \\ y \end{pmatrix} \in \mathcal{H}^c \right\}$$

Routing Problem (in computer networks)

Network of N nodes. Routing from s to d exploits intermediaries uRouting table (neighbors): Node u keeps $T_u \subset N$ for direct communication Let a packet targeted to d arrive at u

- Base forwarding: exactly one node v in T_u is selected
- *Retransmissions:* u sends to v,
 if no ack then u retransmits (#attempt = a_v)
- Sequential forwarding: next-hop candidates v_1, v_2, \ldots, v_k , - initially, u sends to v_1
 - if no ack, sequentially to v_2 , v_3 , and so on up to v_k
 - -#attempts = $a_i = a(v_i), i = 1, 2, ..., k$
- Parallel forwarding: u sends simultaneously to v_1, v_2, \ldots, v_k
- *Path completion:* the packet is not forwarded further

Routing: Paths and Routes

- Network topology
 - digraph with outgoing links T_u ; arcs $u \to v$
 - hypergraph: arc $\{u, v_1, \ldots, v_k\}$, weight (a_1, \ldots, a_k)

$$- u \to v_1^{a_1} v_2^{a_2} \cdots v_k^{a_k}$$

- When s sends a packet
 - there is a path in the digraph for each copy
 - atomic route is all paths $s \Rightarrow^* d_1^{b_1^+} \cdots d_k^{b_k^+}$ (not a tree in general)
- When s_1, \ldots, s_l send b_1^-, \ldots, b_l^- packets
 - aggregated route $s_1^{b_1^-} \cdots s_l^{b_l^-} \Rightarrow^* d_1^{b_1^+} \cdots d_k^{b_k^+}$
 - s_1, \ldots, s_l act independently \rightsquigarrow context-free

Routing Grammar: topology

A grammar rule describes a forwarding option

Sequential and parallel forwarding: $u \to v_1^{a_1} v_2^{a_2} \cdots v_k^{a_k}$ u v_2 \dots v_k

V

U

Path completion:

$$u \to \varepsilon$$

Routing Grammar: example

- Nodes $N = \{s_1, s_2, \dots, s_5\}$
- Clockwise links (ring): r_1 , r_3 , r_4 , r_5 , r_7
- Parallel: r_2 (dashed, blue)
- Sequential: r_6 (dotted, green)
- σ_{seq} and σ_{par} mark sequential and parallel forwarding rules

$$\begin{array}{cccccccccccccc} r_1, r_2 : & s_1 \rightarrow s_2 \mid \sigma_{\text{seq}} s_3 s_5 \\ r_3 : & s_2 \rightarrow s_3 \\ r_4 : & s_3 \rightarrow s_4 \\ r_5, r_6 : & s_4 \rightarrow s_5 \mid \sigma_{\text{par}} s_2 s_5 \\ r_7 : & s_5 \rightarrow s_1 \end{array}$$

Routing Grammar: example, cont.

Cycles
$$(1, 0, 0, 0, 0) \Rightarrow^+ (1, 0, 0, 0, 0)$$

$$s_1 \stackrel{r_1}{\Rightarrow} s_2 \stackrel{r_3}{\Rightarrow} s_3 \stackrel{r_4}{\Rightarrow} \\ \Rightarrow s_4 \stackrel{r_5}{\Rightarrow} s_5 \stackrel{r_7}{\Rightarrow} s_1$$

Routing: Context-Free and Context-Dependent Forwarding Rules

Route $s_1^{b_1^-} \cdots s_l^{b_l^-} \Rightarrow^+ d_1^{b_1^+} \cdots d_k^{b_k^+}$

Advanced structure is due to hyper-arcs $(u; v_1, \ldots, v_k)$, in contrast to digraph arcs $u \to v$

Intermediaries u perform context-free forwarding rules $u \to v_1^{a_1} v_2^{a_2} \cdots v_k^{a_k}$

Generalization: $u_1^{a_1''}u_2^{a_2''}\cdots u_k^{a_l''} \to v_1^{a_1'}v_2^{a_2'}\cdots v_k^{a_k'}$ $\sum_{r\in R} a_{ur}x_r = \sum_{r\in R_u} x_r, \quad u\in N \quad \rightsquigarrow \quad \sum_{r\in R} a_{ur}'x_r = \sum_{r\in R_u} a_{ur}''x_r, \quad u\in N$

Or, since R_u and R_v may overlap for $u, v \in N$,

$$\sum_{j=1}^{m} a'_{ij} x_j = \sum_{j=1}^{m} a''_{ij} x_j, \quad i = 1, 2, \dots, n,$$
(2)

Grammars and LDE Systems

 $u_1^{a_1''}u_2^{a_2''}\cdots u_k^{a_l''} \to v_1^{a_1'}v_2^{a_2'}\cdots v_k^{a_k'}$

Close to Petri nets (equivalently, to Vector Addition Systems)

- 1. *N* is a set of *places*
- 2. *R* is a set of *transitions*
- 3. $W(u,r): N \times R \to \mathbb{Z}_+$ is an input function (A'', a''_{ur})
- 4. $W(r, u) : N \times R \to \mathbb{Z}_+$ is an output function (A', a'_{ur})

$$\sum_{r \in R} a'_{ur} x_r = \sum_{r \in R_u} a''_{ur} x_r, \quad u \in N$$
(4)

Solutions to (4) are "invariants" of Petri net

Cyclic Structures in Routing

Route $s_1^{b_1^-} \cdots s_l^{b_l^-} \Rightarrow^+ d_1^{b_1^+} \cdots d_k^{b_k^+}$

If $s_i = d_j$ we have bidirectional communication

- Simple case: $s \Rightarrow^+ d \Rightarrow^+ s$ (one cycle covers multiple d)
- All-to-all workload: $(s)_{s \in N} \Rightarrow^+ (s)_{s \in N}$

In general:

$$(s^{b_u^-})_{s\in N} \Rightarrow^+ (s^{b_s^+})_{s\in N}$$

LDE system:

$$A'x + b^- = A''x + b^+$$

Conclusion

• General grammar-based case of LDE systems

$$\sum_{r \in R} a'_{ur} x_r = \sum_{r \in R_u} a''_{ur} x_r, \quad u \in N$$
(4)

- Practical algorithms (for Hilbert basis)
- Cyclic structures
 - particularization of A'' (e.g., sparse networks)
 - the role in routing
 - analysis (which elements of Hilbert basis)
 - construction as a composition of grammar sub-derivations (e.g., in CF-case: $u \Rightarrow^+ v, u \Rightarrow^+ u, u \Rightarrow^+ \varepsilon$)

THANK YOU!

Dmitry Korzun dkorzun@cs.karelia.ru

QUESTIONS?