
On Relation of Linear Diophantine
Equation Systems with Commutative

Grammars

Dmitry Korzun

Petrozavodsk State University (Russia)

RuFiDiM — Third Russian Finnish Symposium

on Discrete Mathematics

September 15–18, 2014, Petrozavodsk, Russa

Linear Diophantine Equation Systems

Let Z and Z+ be the set of integers and nonnegative integers

Homogenous linear Diophantine equation system (n equations, m unknowns)

Ax = O, where A ∈ Z
n×m, x ∈ Z

m
+ . (1)

Diophantine monoid MA = {x ∈ Zm
+ | Ax = O}

The set H of all irreducible solutions to (1) is called Hilbert basis

• H is finite and unique

• “linear independence” is inappropriate here

• minimality: ∀h ∈ H there exists no x ∈ MA (x 6= h, x 6= O) s.t. x ≤ h

• |H| is not polynomial-bounded by the system input size

The general solution to (1) is x =
∑

h∈H

chh for some ch ∈ Z+.

Non-unique decomposition for some x ∈ MA

2

LDE Systems in Non-negative Form

Known technique: any a ∈ Z can be codified a = a′ − a′′ for a′, a′′ ∈ Z+

Primary representation: min{a′, a′′} = 0
or, in other words, a′ = max{a, 0} and a′′ = −min{a, 0}

Let A = A′ − A′′, where A′, A′′ ∈ Z
n×m
+ . Then equivalent system to (1)

m∑

j=1

a′ijxj =
m∑

j=1

a′′ijxj, i = 1, 2, . . . , n, (2)

where min{a′ij, a
′′
ij} = 0 for any i, j. Solutions x ∈ Zm

+

System (2) can be used for modeling

3

Application Areas for LDE Models

m∑

j=1

a′ijxj =
m∑

j=1

a′′ijxj, i = 1, 2, . . . , n, (2)

• Routing (in computer networks)

• Structure discovery (in network traffic)

• Structural ranking (in networks)

• Loop parallelization (in array-processing programs)

• Memory control (caching strategies)

• Verification (for network protocols and parallel processes)

• Unification (automated deduction)

4

Algorithm Complexity Problems

m∑

j=1

a′ijxj =
m∑

j=1

a′′ijxj, i = 1, 2, . . . , n, (2)

• Searching a solution x to a non-homogenous LDE system is NP-complete

• Searching a solution x to (2) can be done in polynomial time (find a

rational solution and multiply to the common denominator)

• Deciding, given a solution x, if x ∈ H is coNP-complete

• Searching the Hilbert basis H employs enumerative algorithms, which

take exponential time on n, m, and ||A||

• Counting problem |H| =? is #P-complex and belongs to #NP

Analysis of particular cases of A′′

5

Commutative Context-Free Grammars:

Languages with Free Word Order

Given a finite alphabet Π , a commutative string (word) over Π is {πaπ}π∈Π ,

where aπ ∈ Z+ is the number of occurrences of π.

• the order of symbols is ignored and α is a multiset of symbols

• Π∗, Π+
 Π⊛, Π⊕

• Parikh mapping from Π∗ to Z
|Π|
+ :

#[α] = a ∈ Z
|Π|
+ , #π[α] = aπ ∈ Z+ for π ∈ Π

Denote also ⋆[a] = {πaπ}π∈Π

Commutative Context-Free (CCF)

6

CCF-Grammars: Definition

A commutative CF-grammar without a start symbol is a 3-tuple

G = (N,Σ,R)

• nonterminals N and terminals Σ are finite disjoint sets

• rules R are a finite subset of N ×Σ∗N∗, where each rule r ∈ R is

u → τρ, where u ∈ N , τ ∈ Σ∗, ρ ∈ N∗

The derivation (parsing) problem for a given CCF-grammar G:

Deciding κ
′α ⇒∗

κ
′′β for given κ

′α ∈ Σ∗N∗ and κ
′′β ∈ Σ∗N∗

Theorem 1 (Dung T. Huynh, 1983) The problem is NP-complete for the case

u ⇒∗ τ , where u ∈ N and τ ∈ Σ∗.

7

CCF-Grammars: The Case of

Homogenous LDE System

Remove terminals Σ∗ from G

Let n = |N | and m = |R|
Ru = {r ∈ R | r = (u → ρr), ρr = ⋆[(avr)v∈N]} for u ∈ N

Construct the homogenous LDE system

∑

r∈R

aurxr =
∑

r∈Ru

xr, u ∈ N (3)

Unknowns are interpreted as the number of rule applications in cycles:

x = #[α ⇒+ α], where α ∈ N+

Ru ∩ Rv = ∅ the right-hand side of (3) consists of partitioned unknowns

8

CCF-Grammars: Hilbert Basis

Derivation α ⇒∗ α is a cycle for α ∈ N+

A cycle is simple if it does not contain a proper cycle

Theorem 2 (Korzun, 1997) x ∈ H if and only if x corresponds to a simple

cycle u ⇒+ u for some u ∈ N

Recall LDE systems (2) and (3):

m∑

j=1

a′ijxj =
m∑

j=1

a′′ijxj, i = 1, 2, . . . , n, (2)

∑

r∈R

aurxr =
∑

r∈Ru

xr, u ∈ N (3)

Hence, Ax = E(R)x for specific {0, 1} matrix E(R)

9

CCF-Grammars: LDE Systems Subclass

Ax = E(R)x

E(R)









m1
︷ ︸︸ ︷

1 . . . 1

m2
︷ ︸︸ ︷

0 . . . 0 · · ·

mn

︷ ︸︸ ︷

0 . . . 0
0 . . . 0 1 . . . 1 · · · 0 . . . 0

...
...

. . .
...

0 . . . 0 0 . . . 0 · · · 1 . . . 1









, m1 + · · ·+mn = m

Theorem 3 (Korzun, 1999) Given a homogenous LDE system with unknowns

x and Hilbert basis H, one can construct the system

A

(
x

y

)

= E(R)

(
x

y

)

with unknowns

(
x

y

)

and Hilbert basis Hc such that

H =

{

x |

(
x

y

)

∈ Hc

}

10

Routing Problem (in computer networks)

Network of N nodes. Routing from s to d exploits intermediaries u

Routing table (neighbors): Node u keeps Tu ⊂ N for direct communication

Let a packet targeted to d arrive at u

• Base forwarding: exactly one node v in Tu is selected

• Retransmissions: u sends to v,

– if no ack then u retransmits (#attempt = av)

• Sequential forwarding: next-hop candidates v1, v2, . . . , vk,

– initially, u sends to v1
– if no ack, sequentially to v2, v3, and so on up to vk
– #attempts = ai = a(vi), i = 1, 2, . . . , k

• Parallel forwarding: u sends simultaneously to v1, v2, . . . , vk

• Path completion: the packet is not forwarded further

11

Routing: Paths and Routes

• Network topology

– digraph with outgoing links Tu; arcs u → v

– hypergraph: arc {u, v1, . . . , vk}, weight (a1, . . . , ak)

– u → va11 va22 · · · vakk

• When s sends a packet

– there is a path in the digraph for each copy

– atomic route is all paths

s ⇒∗ d
b+1
1 · · · d

b+
k

k (not a tree in general)

• When s1, . . . , sl send b−1 , . . . , b
−
l packets

– aggregated route s
b−1
1 · · · s

b−
l

l ⇒∗ d
b+1
1 · · · d

b+
k

k

– s1, . . . , sl act independently context-free

s

2 vkv1 ...

. . .

v

12

Routing Grammar: topology

A grammar rule describes a forwarding option

Base forwarding with retransmissions:

u → vav

Sequential and parallel forwarding:

u → va11 va22 · · · vakk

Path completion:

u → ε

u v

k

. . .
v

v

v

1

2u

u X

13

Routing Grammar: example

• Nodes N = {s1, s2, . . . , s5}

• Clockwise links (ring): r1, r3, r4, r5, r7

• Parallel: r2 (dashed, blue)

• Sequential: r6 (dotted, green)

• σseq and σpar mark sequential

and parallel forwarding rules

s2

s5

r1

r3

r4

r5

r7

r6

s4

r2

s3

s1

r1, r2 : s1 → s2 | σseqs3s5
r3 : s2 → s3
r4 : s3 → s4
r5, r6 : s4 → s5 | σpars2s5
r7 : s5 → s1

14

Routing Grammar: example, cont.

s2

s5

r1

r3

r4

r5

r7

r6

s4

r2

s3

s1

r1, r2 : s1 → s2 | σseqs3s5
r3 : s2 → s3
r4 : s3 → s4
r5, r6 : s4 → s5 | σpars2s5
r7 : s5 → s1
r8 : s1 → ε

Cycles (1, 0, 0, 0, 0) ⇒+ (1, 0, 0, 0, 0)

s1
r1⇒ s2

r3⇒ s3
r4⇒

⇒ s4
r5⇒ s5

r7⇒ s1
s2

s5

r1

r3

r4

r5

r7

s4 s3

s1

s1
r2⇒ σseq

s3
r4⇒ s4

r5⇒ s5
r7⇒ s1

s5
r7⇒ s1 ⇒ ε

2 x

s5

r4

r5

s4

r2

s3

s1
r7

15

Routing: Context-Free and

Context-Dependent Forwarding Rules

Route s
b−1
1 · · · s

b−
l

l ⇒+ d
b+1
1 · · · d

b+
k

k

Advanced structure is due to hyper-arcs (u; v1, . . . , vk),
in contrast to digraph arcs u → v

Intermediaries u perform context-free forwarding rules u → va11 va22 · · · vakk

Generalization: u
a′′1
1 u

a′′2
2 · · · u

a′′
l

k → v
a′1
1 v

a′2
2 · · · v

a′
k

k

∑

r∈R

aurxr =
∑

r∈Ru

xr, u ∈ N

∑

r∈R

a′urxr =
∑

r∈Ru

a′′urxr, u ∈ N

Or, since Ru and Rv may overlap for u, v ∈ N ,
m∑

j=1

a′ijxj =
m∑

j=1

a′′ijxj, i = 1, 2, . . . , n, (2)

16

Grammars and LDE Systems

u
a′′1
1 u

a′′2
2 · · · u

a′′
l

k → v
a′1
1 v

a′2
2 · · · v

a′
k

k

Close to Petri nets (equivalently, to Vector Addition Systems)

1. N is a set of places

2. R is a set of transitions

3. W (u, r) : N ×R → Z+ is an input function (A′′, a′′ur)

4. W (r, u) : N ×R → Z+ is an output function (A′, a′ur)

∑

r∈R

a′urxr =
∑

r∈Ru

a′′urxr, u ∈ N (4)

Solutions to (4) are “invariants” of Petri net

17

Cyclic Structures in Routing

Route s
b−1
1 · · · s

b−
l

l ⇒+ d
b+1
1 · · · d

b+
k

k

If si = dj we have bidirectional communication

• Simple case: s ⇒+ d ⇒+ s (one cycle covers multiple d)

• All-to-all workload: (s)s∈N ⇒+ (s)s∈N

In general:

(sb
−

u)s∈N ⇒+ (sb
+
s)s∈N

LDE system:

A′x+ b− = A′′x+ b+

18

Conclusion

• General grammar-based case of LDE systems

∑

r∈R

a′urxr =
∑

r∈Ru

a′′urxr, u ∈ N (4)

• Practical algorithms (for Hilbert basis)

• Cyclic structures

– particularization of A′′ (e.g., sparse networks)

– the role in routing

– analysis (which elements of Hilbert basis)

– construction as a composition of grammar sub-derivations

(e.g., in CF-case: u ⇒+ v, u ⇒+ u, u ⇒+ ε)

19

THANK YOU!

Dmitry Korzun

dkorzun@cs.karelia.ru

QUESTIONS?

20

