Minimum number of input clues in an associative memory

Ville Junnila and Tero Laihonen

Department of Mathematics and Statistics, University of Turku, Finland

Introduction

- Yaakobi and Bruck (2012): How to retrieve information from associative memories
- An associative memory is modeled by a graph.
- Let $G=(V, E)$ be a simple, undirected and connected graph
- $d(u, v)$ the graphic distance
- the ball of radius t

$$
B_{t}(x)=\{v \in V \mid d(x, v) \leq t\} .
$$

Introduction

- Information units are stored in vertices
- an edge means associations between information units
- We say that $u \in V$ and $v \in V$ are t-associated if $d(u, v) \leq t$.
- $B_{t}(x)$ is the set of vertices t-associated to x.
- A reference set $C \subseteq V$. It is nonempty and we call it a code and its elements codewords.

Retrieval of information unit

- Suppose we wish to retrieve an (unknown) information unit $x \in V$.
- We receive input clues from C, which are t-associated to x.
- In other words, input clues come from

$$
I_{t}(x)=B_{t}(x) \cap C .
$$

- Input clues come one after another

Retrieval of information unit

- After receiving a new input clue, we check which vertices are t-associated to all input clues so far
- Suppose that $U \subseteq I_{t}(x)$ has been received. We calculate an output set

$$
S_{t}(U)=\bigcap_{c \in U} B_{t}(c) .
$$

- Clearly, $x \in S_{t}(U)$
- It is convenient to define $S_{t}(\emptyset)=V$.

Limit on uncertainty

- We set a limit $N \geq 1$ called uncertainty.
- We want to know x with (small) uncertainty

$$
\left|S_{t}(U)\right| \leq N
$$

or uniquely

$$
S_{t}(U)=\{x\}
$$

- Number of input clues needed?

Number of input clues

- For each $x \in V$ we define a function $m_{t}^{N}(x)=m_{t}^{N}(C ; x)$.
- We set

$$
m_{t}^{N}(x)=\infty
$$

if $\left|S_{t}\left(I_{t}(x)\right)\right|>N$

- in this case, even the full set of input clues is not enough to meet the desired uncertainty
- If $\left|S_{t}\left(I_{t}(x)\right)\right| \leq N$, then we define

$$
m_{t}^{N}(x)=s
$$

where s is the minimum integer such that for any $U \subseteq I_{t}(x)$ with $|U|=s$ we have $\left|S_{t}(U)\right| \leq N$.

An example

- The case $N=1$ and $t=1$. Now $m_{1}^{1}(x)=\infty$, because $\left|S_{1}\left(I_{1}(x)\right)\right|=3$.

An example

- It is always enough to listen to at most s input clues
- $m_{1}^{1}(x)=3$.

Definition

- Naturally we want to find every $x \in V$ with given uncertainty N
- A code C gives an $\mathcal{S A M}_{G}(t ; N)$ if

$$
m_{t}^{N}(x)<\infty
$$

for all $x \in V$.

- Given t and N, we optimize
- upper bound m_{u} where $m_{t}^{N}(x) \leq m_{u}$ for all x
- $m_{a v}=\frac{1}{|V|} \sum_{x \in V} m_{t}^{N}(x)$
- fixed m with $m_{t}^{N}(x)=m$ for all x
- Given m and t find minimum N
- Codes giving an $\mathcal{S} \mathcal{A} \mathcal{M}_{G}(t ; N)$ have been studied in
- binary Hamming spaces \mathbb{F}^{n}
- infinite square grid
- infinite king grid
- Grassmann graphs
- General (undirected) graphs for $N=1$ and $t=1$.

Hamming space and $N=1$

- The binary Hamming space:
- $\mathbb{F}=\{0,1\}$.
- a vertex (a word) $x_{1} x_{2} \ldots x_{n} \in \mathbb{F}^{n}$
- An edge between x and y if they differ in exactly one coordinate
- \mathbb{F}^{3}

Structure for $N=1$ and $t \geq 2$

- Let C give an $\mathcal{S A M}(t, 1)$. If $U \subseteq I_{t}(x)$ and $|U| \geq m_{t}(x)$, then there are $c_{1}, c_{2}, c_{3} \in U$ such that $d\left(c_{1}, x\right)=d\left(c_{2}, x\right)=t$ and $t-1 \leq d\left(c_{3}, x\right) \leq t$.

Structure for $N=1$ and $t \geq 2$

- Let C give an $\mathcal{S A M}(t, 1)$. If $U \subseteq I_{t}(x)$ and $|U| \geq m_{t}(x)$, then there are $c_{1}, c_{2}, c_{3} \in U$ such that $d\left(c_{1}, x\right)=d\left(c_{2}, x\right)=t$ and $t-1 \leq d\left(c_{3}, x\right) \leq t$.

Structure for $N=1$ and $t \geq 2$

- Let C give an $\mathcal{S A M}(t, 1)$. If $U \subseteq I_{t}(x)$ and $|U| \geq m_{t}(x)$, then there are $c_{1}, c_{2}, c_{3} \in U$ such that $d\left(c_{1}, x\right)=d\left(c_{2}, x\right)=t$ and $t-1 \leq d\left(c_{3}, x\right) \leq t$.

Let $x=000 \ldots$.
If $\mathbf{c}=00111 \ldots 0001$, then $y=001000 \ldots$.
Now $\left|S_{t}\left(I_{t}(x)\right)\right| \geq 2$.

Structure for $N=1$ and $t \geq 2$

- Let C give an $\mathcal{S A M}(t, 1)$. If $U \subseteq I_{t}(x)$ and $|U| \geq m_{t}(x)$, then there are $c_{1}, c_{2}, c_{3} \in U$ such that $d\left(c_{1}, x\right)=d\left(c_{2}, x\right)=t$ and $t-1 \leq d\left(c_{3}, x\right) \leq t$.

Structure for $N=1$ and $t \geq 2$

- Let C give an $\mathcal{S A M}(t, 1)$. If $U \subseteq I_{t}(x)$ and $|U| \geq m_{t}(x)$, then there are $c_{1}, c_{2}, c_{3} \in U$ such that $d\left(c_{1}, x\right)=d\left(c_{2}, x\right)=t$ and $t-1 \leq d\left(c_{3}, x\right) \leq t$.

If $\mathbf{c}_{1}=100100 \ldots$ and $\mathbf{c}_{2}=0000011100 \ldots$ choose $y=10000100 \ldots$

Structure for $N=1$ and $t \geq 2$

- Let C give an $\mathcal{S A M}(t, 1)$. If $U \subseteq I_{t}(x)$ and $|U| \geq m_{t}(x)$, then there are $c_{1}, c_{2}, c_{3} \in U$ such that $d\left(c_{1}, x\right)=d\left(c_{2}, x\right)=t$ and $t-1 \leq d\left(c_{3}, x\right) \leq t$.
- $m_{u} \geq 4$ if $t \geq 2$ and $m_{u} \geq 5$ for $t \geq 4$.

$N=1$ and $t=2$: Constructing codes

- For $t=2$ we can utilize the Hamming codes \mathcal{H}_{r} of length $n=2^{r}-1$:

Distance ≥ 3. No $\mathbf{c}_{1}=11000 \ldots$ and $\mathbf{c}_{2}=10001 \ldots$ For such codewords, three intersect uniquely in x.

$N=1$ and $t=2$: Constructing codes

- For $t=2$ we can utilize the Hamming codes \mathcal{H}_{r} of length $n=2^{r}-1$:
- $C=\mathcal{H}_{r} \cup\left(10000 \ldots 0+\mathcal{H}_{r}\right)$

$N=1$ and $t=2$: Constructing codes

- For $t=2$ we can utilize the Hamming codes \mathcal{H}_{r} of length $n=2^{r}-1$:
- $C=\mathcal{H}_{r} \cup\left(10000 \ldots 0+\mathcal{H}_{r}\right)$
- Gives $m_{u} \leq 5$.
- For linear codes $m_{u}=5$ is optimal and we can get it for each n
- For $t=1$ we have $m_{u}=3$ optimal.

$N=1$ and $t=3$:Constructing codes

- Let $t=3$. For the punctured Preparata code \mathcal{P}_{r} of length $n=2^{2 r}-1, r \geq 2$ we have

Now the distance ≥ 5.

$N=1$ and $t=3$:Constructing codes

- Let $t=3$. For the punctured Preparata code \mathcal{P}_{r} of length $n=2^{2 r}-1, r \geq 2$ we have
- $C=\mathcal{P}_{r} \cup\left(11000 \ldots 0+\mathcal{P}_{r}\right) \cup\left(00110 \ldots 0+\mathcal{P}_{r}\right)$
- Gives $m_{u} \leq 7$.
- We can use also primitive two-error correcting BCH codes of length $n=2^{2 r+1}-1, r \geq 2$
- Shortening method gives other lengths.
- A code giving $\mathcal{S A M}(t ; 1)$ gives also $\mathcal{S A M}(n-t-1 ; 1)$.

Undirected graph G : Fixed m

- If G admits an $\mathcal{S A M}(1,1)$, then

$$
3 \leq m \leq \delta+1
$$

- These can be attained:
- Any 3 -fold covering in a graph with girth ≥ 5.
- The complete bipartite graph $K_{s, r}$ admits an $\mathcal{S A M}(1,1)$

$$
\text { if } s=r \text { and } m=s+1, s \geq 2 \text {. }
$$

- We have

$$
m \geq \frac{\triangle(\triangle+1)}{\triangle(\triangle+1)-\delta \Omega}
$$

where $\Omega=\min _{x \sim y}\left|B_{1}(x) \cap B_{1}(y)\right|$.

- This can be attained: K_{n} minus a perfect matching

Fixed m and Forced vertices

- A vertex is a forced codeword if it belongs to all reference set giving $\mathcal{S A M}(1,1)$.
- A vertex is a forced non-codeword if it does not belong to all reference set giving $\mathcal{S A} \mathcal{M}(1,1)$.

Here w is forced non-codeword, because of u_{1}, u_{2} and u_{3}.

Forced vertices

- Let $|C|=K$. How many vertices can be forced non-codewords in a graph?
- There exist graphs with $\binom{K}{m}-K$ forced non-codewords and K forced codewords for any $m \geq 3$ and $K \geq m+2$. This is the maximum also.

Average $m_{a v}$

- In the infinite king grid we have:
- optimal $m_{a v}=35 / 13$ for $N=2$ and $t=1$.
- optimal $m_{a v}=8 / 3$ for $N=3$ and $t=1$

For general t we have

$$
2 t / 3 \lesssim m_{t}^{3}(x) \lesssim 2 t-\sqrt{2 t} .
$$

Thank you!

