Minimum number of input clues in an associative memory

Ville Junnila and Tero Laihonen

Department of Mathematics and Statistics, University of Turku, Finland

Lineaarialgebra (muut ko) – p. 1/19

Introduction

- Yaakobi and Bruck (2012): How to retrieve information from associative memories
- An associative memory is modeled by a graph.
- Let G = (V, E) be a simple, undirected and connected graph
- d(u, v) the graphic distance
- the ball of radius t

 $B_t(x) = \{ v \in V \mid d(x, v) \le t \}.$

Introduction

- Information units are stored in vertices
- an edge means associations between information units
- We say that $u \in V$ and $v \in V$ are *t*-associated if $d(u, v) \leq t$.
- $B_t(x)$ is the set of vertices *t*-associated to *x*.
- A reference set C ⊆ V. It is nonempty and we call it a code and its elements codewords.

Retrieval of information unit

- Suppose we wish to retrieve an (unknown) information unit $x \in V$.
- We receive **input clues** from *C*, which are *t*-associated to *x*.
- In other words, input clues come from

 $I_t(x) = B_t(x) \cap C.$

Input clues come one after another

Retrieval of information unit

- After receiving a new input clue, we check which vertices are *t*-associated to all input clues so far
- Suppose that $U \subseteq I_t(x)$ has been received. We calculate an output set

$$S_t(U) = \bigcap_{c \in U} B_t(c).$$

- Clearly, $x \in S_t(U)$
- It is convenient to define $S_t(\emptyset) = V$.

Limit on uncertainty

- We set a limit $N \ge 1$ called **uncertainty**.
- We want to know x with (small) uncertainty

 $|S_t(U)| \le N$

or uniquely

 $S_t(U) = \{x\}.$

• Number of input clues needed?

Number of input clues

- For each $x \in V$ we define a function $m_t^N(x) = m_t^N(C;x)$.
- We set

$$m_t^N(x) = \infty$$

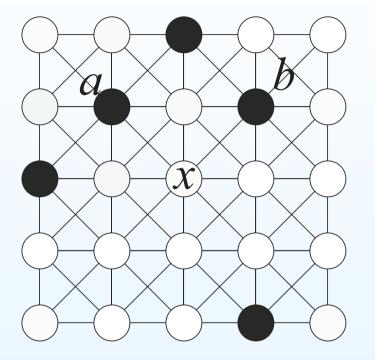
if $|S_t(I_t(x))| > N$

- in this case, even the full set of input clues is not enough to meet the desired uncertainty
- If $|S_t(I_t(x))| \leq N$, then we define

$$m_t^N(x) = s$$

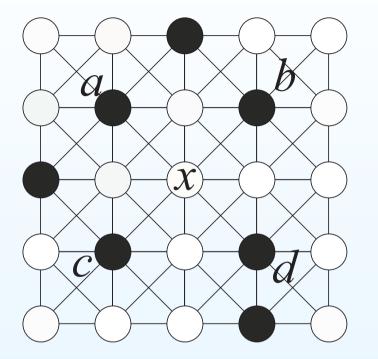
where *s* is the minimum integer such that for any $U \subseteq I_t(x)$ with |U| = s we have $|S_t(U)| \leq N$.

An example



• The case N = 1 and t = 1. Now $m_1^1(x) = \infty$, because $|S_1(I_1(x))| = 3$.

An example



- It is always enough to listen to at most *s* input clues
- $m_1^1(x) = 3$.

Definition

- Naturally we want to find every $x \in V$ with given uncertainty N
- A code C gives an $\mathcal{SAM}_G(t;N)$ if

$$m_t^N(x) < \infty$$

for all $x \in V$.

- Given t and N, we optimize
 - \circ upper bound m_u where $m_t^N(x) \leq m_u$ for all x

$$\circ m_{av} = \frac{1}{|V|} \sum_{x \in V} m_t^N(x)$$

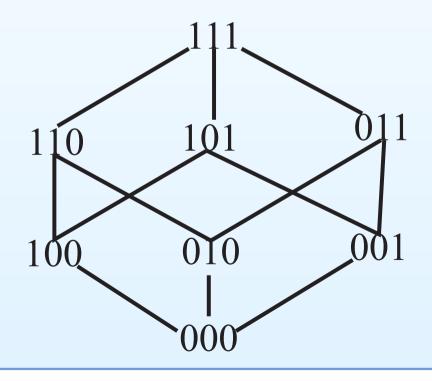
- \circ fixed m with $m_t^N(x) = m$ for all x
- Given m and t find minimum N

- Codes giving an $\mathcal{SAM}_G(t; N)$ have been studied in
 - $^{\circ}\,$ binary Hamming spaces \mathbb{F}^n
 - infinite square grid
 - infinite king grid
 - Grassmann graphs
- General (undirected) graphs for N = 1 and t = 1.

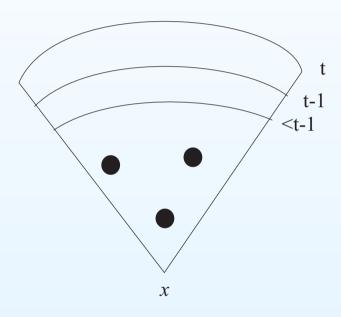
Hamming space and ${\cal N}=1$

- The binary Hamming space:
 - $\circ \mathbb{F} = \{0,1\}.$
 - \circ a vertex (a word) $x_1x_2\ldots x_n\in \mathbb{F}^n$
 - $^{\circ}\,$ An edge between x and y if they differ in exactly one coordinate

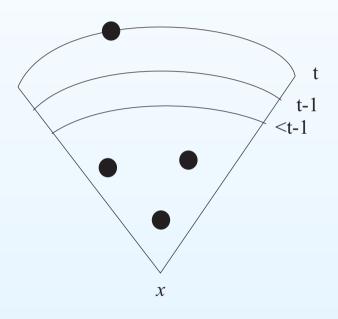
• \mathbb{F}^3



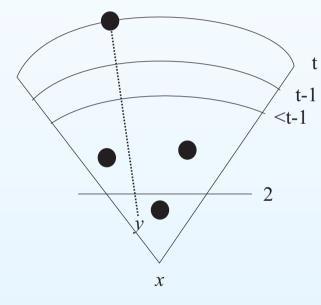
• Let *C* give an $\mathcal{SAM}(t, 1)$. If $U \subseteq I_t(x)$ and $|U| \ge m_t(x)$, then there are $c_1, c_2, c_3 \in U$ such that $d(c_1, x) = d(c_2, x) = t$ and $t-1 \le d(c_3, x) \le t$.



• Let C give an $\mathcal{SAM}(t,1)$. If $U \subseteq I_t(x)$ and $|U| \ge m_t(x)$, then there are $c_1, c_2, c_3 \in U$ such that $d(c_1, x) = d(c_2, x) = t$ and $t-1 \le d(c_3, x) \le t$.

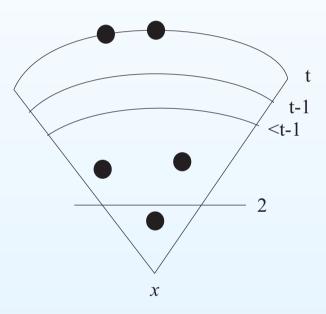


• Let *C* give an $\mathcal{SAM}(t, 1)$. If $U \subseteq I_t(x)$ and $|U| \ge m_t(x)$, then there are $c_1, c_2, c_3 \in U$ such that $d(c_1, x) = d(c_2, x) = t$ and $t-1 \le d(c_3, x) \le t$.

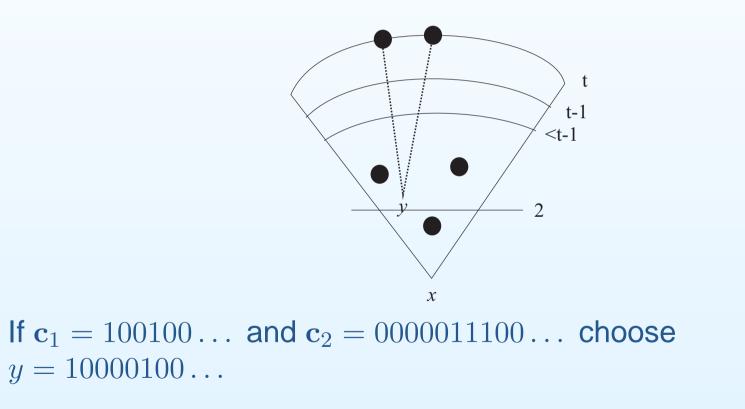


Let $x = 000 \dots$ If $c = 00111 \dots 0001$, then $y = 001000 \dots$ Now $|S_t(I_t(x))| \ge 2$.

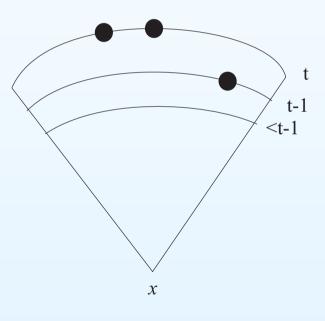
• Let C give an $\mathcal{SAM}(t,1)$. If $U \subseteq I_t(x)$ and $|U| \ge m_t(x)$, then there are $c_1, c_2, c_3 \in U$ such that $d(c_1, x) = d(c_2, x) = t$ and $t-1 \le d(c_3, x) \le t$.



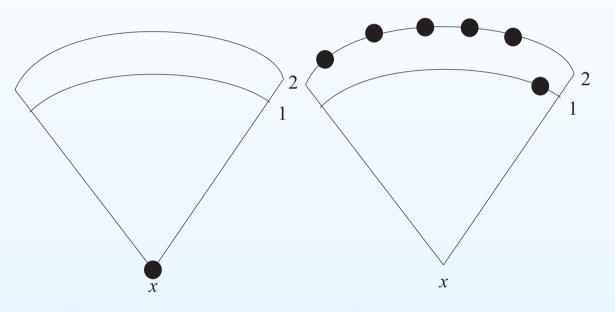
• Let C give an $\mathcal{SAM}(t,1)$. If $U \subseteq I_t(x)$ and $|U| \ge m_t(x)$, then there are $c_1, c_2, c_3 \in U$ such that $d(c_1, x) = d(c_2, x) = t$ and $t-1 \le d(c_3, x) \le t$.



- Let C give an $\mathcal{SAM}(t,1)$. If $U \subseteq I_t(x)$ and $|U| \ge m_t(x)$, then there are $c_1, c_2, c_3 \in U$ such that $d(c_1, x) = d(c_2, x) = t$ and $t-1 \le d(c_3, x) \le t$.
- $m_u \ge 4$ if $t \ge 2$ and $m_u \ge 5$ for $t \ge 4$.



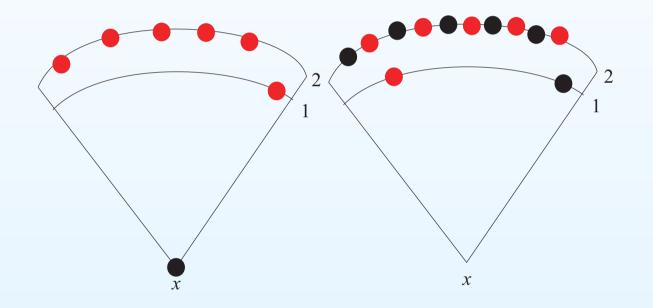
- N = 1 and t = 2: Constructing codes
 - For t = 2 we can utilize the Hamming codes \mathcal{H}_r of length $n = 2^r 1$:



Distance ≥ 3 . No $c_1 = 11000...$ and $c_2 = 10001...$ For such codewords, three intersect uniquely in x.

N = 1 and t = 2: Constructing codes

- For t = 2 we can utilize the Hamming codes \mathcal{H}_r of length $n = 2^r 1$:
- $C = \mathcal{H}_r \cup (10000 \dots 0 + \mathcal{H}_r)$

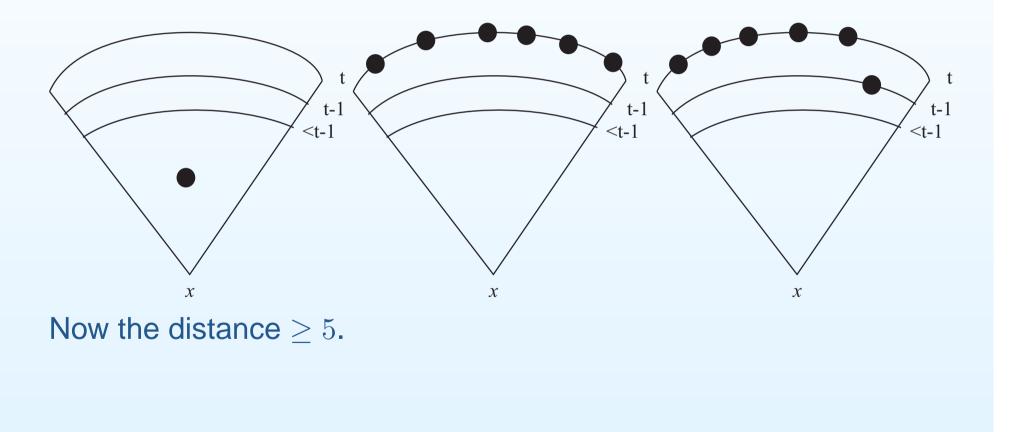


N = 1 and t = 2: Constructing codes

- For t = 2 we can utilize the Hamming codes \mathcal{H}_r of length $n = 2^r 1$:
- $C = \mathcal{H}_r \cup (10000 \dots 0 + \mathcal{H}_r)$
- Gives $m_u \leq 5$.
- For linear codes $m_u = 5$ is optimal and we can get it for each n
- For t = 1 we have $m_u = 3$ optimal.

N = 1 and t = 3:Constructing codes

• Let t = 3. For the punctured Preparata code \mathcal{P}_r of length $n = 2^{2r} - 1$, $r \ge 2$ we have



N = 1 and t = 3:Constructing codes

- Let t = 3. For the punctured Preparata code \mathcal{P}_r of length $n = 2^{2r} 1$, $r \ge 2$ we have
- $C = \mathcal{P}_r \cup (11000 \dots 0 + \mathcal{P}_r) \cup (00110 \dots 0 + \mathcal{P}_r)$
- Gives $m_u \leq 7$.
- We can use also primitive two-error correcting BCH codes of length $n=2^{2r+1}-1, r\geq 2$
- Shortening method gives other lengths.
- A code giving SAM(t;1) gives also SAM(n-t-1;1).

Undirected graph G: Fixed m

• If G admits an $\mathcal{SAM}(1,1)$, then

$$3 \le m \le \delta + 1.$$

- These can be attained:
 - $^{\circ}$ Any 3-fold covering in a graph with girth ≥ 5 .
 - The complete bipartite graph $K_{s,r}$ admits an $\mathcal{SAM}(1,1)$ if s = r and m = s + 1, $s \ge 2$.
- We have

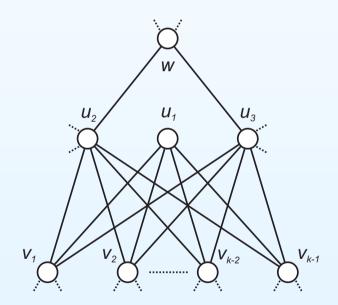
$$m \ge \frac{\triangle(\triangle + 1)}{\triangle(\triangle + 1) - \delta\Omega}$$

where $\Omega = \min_{x \sim y} |B_1(x) \cap B_1(y)|$.

• This can be attained: K_n minus a perfect matching

Fixed \boldsymbol{m} and Forced vertices

- A vertex is a **forced codeword** if it belongs to all reference set giving SAM(1,1).
- A vertex is a forced non-codeword if it does not belong to all reference set giving SAM(1,1).



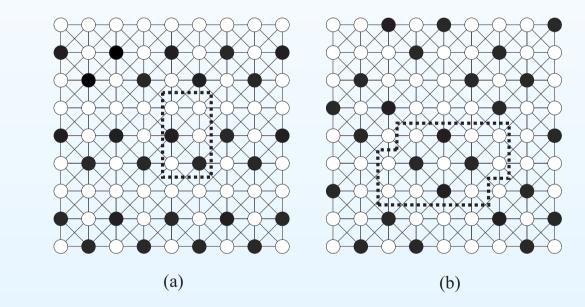
Here w is forced non-codeword, because of u_1 , u_2 and u_3 .

Forced vertices

- Let |C| = K. How many vertices can be forced non-codewords in a graph?
- There exist graphs with $\binom{K}{m} K$ forced non-codewords and K forced codewords for any $m \ge 3$ and $K \ge m + 2$. This is the maximum also.

Average m_{av}

- In the infinite king grid we have:
 - \circ optimal $m_{av} = 35/13$ for N = 2 and t = 1.
 - \circ optimal $m_{av} = 8/3$ for N = 3 and t = 1



For general t we have

$$2t/3 \lesssim m_t^3(x) \lesssim 2t - \sqrt{2t}.$$

Thank you!