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Introduction

* Yaakobi and Bruck (2012): How to retrieve information from
associative memories

* An associative memory is modeled by a graph.

°* Let G = (V, E) be a simple, undirected and connected graph
* d(u,v) the graphic distance

* the ball of radius ¢

Bi(x) ={v eV |d(zx,v) <t}
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Introduction

* Information units are stored in vertices

* an edge means associations between information units

°* We say that w € V and v € V are t-associated if d(u,v) < ¢.
* B(z) is the set of vertices t-associated to z.

* Areference set C' C V. It is nonempty and we call it a code
and its elements codewords.
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Retrieval of information unit

® Suppose we wish to retrieve an (unknown) information unit
xeV.

* We receive input clues from C, which are t-associated to z.
* |n other words, input clues come from

* |nput clues come one after another

Lineaarialgebra (muut ko) — p. 4/19



Retrieval of information unit

* After receiving a new input clue, we check which vertices
are t-associated to all input clues so far

* Suppose that U C I;(x) has been received. We calculate an
output set

S(U) = () Bilc).

ceU
* Clearly, z € S¢(U)
* Itis convenient to define S;(0) = V.
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Limit on uncertainty

* We setalimit N > 1 called uncertainty.
* We want to know x with (small) uncertainty

1S:(U)| < N

or uniquely
5i(U) = {z}.
* Number of input clues needed?
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Number of input clues

* For each x € V we define a function m}" (z) = m}* (C; z).

* We set

m¥ (z) = oo

if |S,(Iy(z))| > N

* In this case, even the full set of input clues is not enough to
meet the desired uncertainty

° If |Sy(I;(x))| < N, then we define

m;iv(:c) = s

where s is the minimum integer such that for any U C I;(x)
with |[U| = s we have |S;(U)| < N.
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An example
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°* Thecase N = 1andt = 1. Now mi(z) = oo, because
[S1(11(x))] = 3.
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An example
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* |tis always enough to listen to at most s input clues

* mi(x) = 3.
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Definition

* Naturally we want to find every x € V with given uncertainty
N

* A code C gives an SAM(t; N) if

m¥ (z) < 0o

forallz € V.

* Givent and N, we optimize

° upper bound m,, where m;' (z) < m,, for all x

© May = ﬁ Zg;ev mi\f(x)

o fixed m with my¥ (z) = m for all x

* Given m and ¢t find minimum N
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* Codes giving an SAM(t; N) have been studied in
° binary Hamming spaces F"
° Infinite square grid
° Infinite king grid
© Grassmann graphs
* General (undirected) graphs for N =1and ¢t = 1.
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Hamming space and N =1

* The binary Hamming space:
o F={0,1}.
o avertex (aword) x1zo...x, € F"

° An edge between = and y if they differ in exactly one
coordinate

o 3
111
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Structure for N = land ¢t > 2

* Let C give an SAM(t,1). If U C I;(x) and |U| > my(x), then
there are ¢, co,c3 € U such that d(cq,x) = d(ce,z) =t and
t—1<d(c3,x) <t.

<t-1
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Structure for N = land ¢t > 2

* Let C give an SAM(t,1). If U C I;(x) and |U| > my(x), then
there are ¢, co,c3 € U such that d(cq,x) = d(ce,z) =t and
t—1<d(c3,x) <t.

Let x = 000....
If c = 00111...0001, then y = 001000....
Now |S;(I(x))| > 2.
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Structure for N = land ¢t > 2
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Structure for N = land ¢t > 2

* Let C give an SAM(t,1). If U C I;(x) and |U| > my(x), then
there are ¢, co,c3 € U such that d(cq,x) = d(ce,z) =t and
t—1<d(c3,x) <t.

If c; = 100100... and c, = 0000011100... choose
y = 10000100. ..
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Structure for N = land ¢t > 2

* Let C give an SAM(t,1). If U C I;(x) and |U| > my(x), then
there are ¢, co,c3 € U such that d(cq,x) = d(ce,z) =t and
t—1<d(c3,x) <t.

®* m, >4i1ft > 2and m, > 5 fort > 4.

Lineaarialgebra (muut ko) — p. 12/19



N = 1 and t = 2: Constructing codes

* For t = 2 we can utilize the Hamming codes #,. of length
n=2"—1:

X X

Distance > 3. Noc; = 11000... and ¢y = 10001. ..
For such codewords, three intersect uniquely in z.
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N = 1 and t = 2: Constructing codes

* For t = 2 we can utilize the Hamming codes #,. of length
n=2"—1:

° C =%, U(10000...0+ H,)
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N = 1 and t = 2: Constructing codes

* For t = 2 we can utilize the Hamming codes #,. of length
n=2"—1:

° C'="H,U(10000...0+ H,)
* Gives m, < 5.

* For linear codes m,, = 5 Is optimal and we can get it for
each n

* Fort =1 we have m, = 3 optimal.
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N = 1 and t = 3:Constructing codes

* Lett = 3. For the punctured Preparata code P, of length
n=2°"—1,r>2we have

<t-1 <] <t-1

X X X

Now the distance > 5.
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N = 1 and t = 3:Constructing codes

* Lett = 3. For the punctured Preparata code P, of length
n=2% —1,r>2we have

* C'=7P,U(11000...0+ P,) U (00110...0 + P;)
* Gives m, < T.

* We can use also primitive two-error correcting BCH codes
of length n = 2271 — 1, r > 2

* Shortening method gives other lengths.
* A code giving SAM(t;1) gives also SAM(n —t —1;1).
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Undirected graph G: Fixed m

* If G admits an SAM(1,1), then
3<m< o+ 1.

* These can be attained:
° Any 3-fold covering in a graph with girth > 5.
© The complete bipartite graph K, admits an SAM(1,1)
fs=randm=s+1, s > 2.

* \We have

BB+
= AL +1)— 09

where Q) = min,, |Bi(x) N Bi(y)|.
* This can be attained: K,, minus a perfect matching
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Fixed m and Forced vertices

* Avertex is a forced codeword if it belongs to all reference
set giving SAM(1,1).

* Avertex is a forced non-codeword if it does not belong to
all reference set giving SAM(1,1).

u, U,

(@ ()
I
e
\

Here w is forced non-codeword, because of uq, us and us.
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Forced vertices

* Let |C'| = K. How many vertices can be forced
non-codewords in a graph?

* There exist graphs with (%) — K forced non-codewords and

K forced codewords forany m >3 and K > m + 2. This Is
the maximum also.
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Average M,

* In the infinite king grid we have:
o optimal my, = 35/13 for N =2 and t = 1.
o optimal my, =8/3for N =3andt =1
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For general ¢ we have

2t/3 < mj(z) < 2t — /2t
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Thank you!
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