
Complexity of checking whether two automata

are synchronized by the same language

Marina Maslennikova

RuFiDiM 2014
Petrozavodsk, Russia, September 15–18, 2014

Institute of Mathematics and Computer Science
Ural Federal University, Ekaterinburg, Russia

Marina Maslennikova



Definitions

A deterministic finite automaton (DFA) is a triple
A = 〈Q,Σ, δ〉, where
– Q is the state set;
– Σ is the input alphabet;
– δ : Q× Σ → Q is totally defined transition function.
We do not need any initial and final states.

Σ∗ stands for the set of all words over Σ including the empty
word.

The function δ uniquely extends to a function Q× Σ∗ → Q

still denoted by δ.

We often write q . w for δ(q, w) and P .w for
δ(P,w) = {δ(q, w) | q ∈ P}.

Marina Maslennikova



Definitions

A deterministic finite automaton (DFA) is a triple
A = 〈Q,Σ, δ〉, where
– Q is the state set;
– Σ is the input alphabet;
– δ : Q× Σ → Q is totally defined transition function.
We do not need any initial and final states.

Σ∗ stands for the set of all words over Σ including the empty
word.

The function δ uniquely extends to a function Q× Σ∗ → Q

still denoted by δ.

We often write q . w for δ(q, w) and P .w for
δ(P,w) = {δ(q, w) | q ∈ P}.

Marina Maslennikova



Definitions

A deterministic finite automaton (DFA) is a triple
A = 〈Q,Σ, δ〉, where
– Q is the state set;
– Σ is the input alphabet;
– δ : Q× Σ → Q is totally defined transition function.
We do not need any initial and final states.

Σ∗ stands for the set of all words over Σ including the empty
word.

The function δ uniquely extends to a function Q× Σ∗ → Q

still denoted by δ.

We often write q . w for δ(q, w) and P .w for
δ(P,w) = {δ(q, w) | q ∈ P}.

Marina Maslennikova



Definitions

A deterministic finite automaton (DFA) is a triple
A = 〈Q,Σ, δ〉, where
– Q is the state set;
– Σ is the input alphabet;
– δ : Q× Σ → Q is totally defined transition function.
We do not need any initial and final states.

Σ∗ stands for the set of all words over Σ including the empty
word.

The function δ uniquely extends to a function Q× Σ∗ → Q

still denoted by δ.

We often write q . w for δ(q, w) and P .w for
δ(P,w) = {δ(q, w) | q ∈ P}.

Marina Maslennikova



Definitions

A DFA A = 〈Q,Σ, δ〉 is called synchronizing if there exists a
word w ∈ Σ∗ whose action resets A , that is |Q .w| = 1.

Any word with this property is said to be reset for the DFA A .

Syn(A ) is the language of all reset words for A .

Marina Maslennikova



Definitions

A DFA A = 〈Q,Σ, δ〉 is called synchronizing if there exists a
word w ∈ Σ∗ whose action resets A , that is |Q .w| = 1.

Any word with this property is said to be reset for the DFA A .

Syn(A ) is the language of all reset words for A .

Marina Maslennikova



Example

0

2

1
a

a b

a

b

b

A reset word is w = baab. Indeed, Q .w = {1}. In fact this is the
shortest reset word for this automaton.

Marina Maslennikova



Ideals and Synchronizing Automata

A language I ⊆ Σ∗ is called a two-sided ideal (or simply an
ideal) if I 6= ∅ and I = Σ∗IΣ∗.

For every synchronizing automaton A it holds

Σ∗ Syn(A )Σ∗ = Syn(A ).

Marina Maslennikova



Ideals and Synchronizing Automata

A language I ⊆ Σ∗ is called a two-sided ideal (or simply an
ideal) if I 6= ∅ and I = Σ∗IΣ∗.

For every synchronizing automaton A it holds

Σ∗ Syn(A )Σ∗ = Syn(A ).

Marina Maslennikova



Ideals and Synchronizing Automata

A language I ⊆ Σ∗ is called a two-sided ideal (or simply an
ideal) if I 6= ∅ and I = Σ∗IΣ∗.

For every synchronizing automaton A it holds

Σ∗ Syn(A )Σ∗ = Syn(A ).

Every regular ideal language I is a language of reset words for
some synchronizing automaton A (e.g. for its minimal
recognizing automaton)

sq0

b

a

a, b

L[A ] = I = Σ∗aΣ∗ = Syn(A )

Marina Maslennikova



Reset Complexity

AI = 〈Q1,Σ, δ1, q0, F 〉

w ∈ I ⇔ q0.w ∈ F

B = 〈Q2,Σ, δ2〉 : Syn(B) = I

w ∈ I ⇔ |Q2 . w| = 1

Ideal I

NewClassical

The state complexity sc(I) of a regular language I is the
number of sates in the minimal automaton recognizing I.

The reset complexity rc(I) of an ideal language I is the
minimal possible number of states in a synchronizing
automaton B such that Syn(B) = I.

Every such automaton B is called minimal synchronizing

automaton (for brevity, MSA).

Marina Maslennikova



Reset Complexity

AI = 〈Q1,Σ, δ1, q0, F 〉

w ∈ I ⇔ q0.w ∈ F

B = 〈Q2,Σ, δ2〉 : Syn(B) = I

w ∈ I ⇔ |Q2 . w| = 1

Ideal I

NewClassical

The state complexity sc(I) of a regular language I is the
number of sates in the minimal automaton recognizing I.

The reset complexity rc(I) of an ideal language I is the
minimal possible number of states in a synchronizing
automaton B such that Syn(B) = I.

Every such automaton B is called minimal synchronizing

automaton (for brevity, MSA).

Marina Maslennikova



Reset Complexity

AI = 〈Q1,Σ, δ1, q0, F 〉

w ∈ I ⇔ q0.w ∈ F

B = 〈Q2,Σ, δ2〉 : Syn(B) = I

w ∈ I ⇔ |Q2 . w| = 1

Ideal I

NewClassical

The state complexity sc(I) of a regular language I is the
number of sates in the minimal automaton recognizing I.

The reset complexity rc(I) of an ideal language I is the
minimal possible number of states in a synchronizing
automaton B such that Syn(B) = I.

Every such automaton B is called minimal synchronizing

automaton (for brevity, MSA).

Marina Maslennikova



Reset Complexity VS State Complexity

For every ideal language rc(I) ≤ sc(I).

sq0

b

a

a, b

L[A ] = I = Σ∗aΣ∗ = Syn(A )

A is an MSA for I

A is the minimal automaton recognizing I

rc(I) = sc(I) = 2

Theorem [M.,2012]

For every n ≥ 3 there are ideals In s.t. rc(In) = n, and
sc(In) = 2n − n.

Marina Maslennikova



Reset Complexity VS State Complexity

For every ideal language rc(I) ≤ sc(I).

sq0

b

a

a, b

L[A ] = I = Σ∗aΣ∗ = Syn(A )

A is an MSA for I

A is the minimal automaton recognizing I

rc(I) = sc(I) = 2

Theorem [M.,2012]

For every n ≥ 3 there are ideals In s.t. rc(In) = n, and
sc(In) = 2n − n.

Marina Maslennikova



Reset Complexity VS State Complexity

For every ideal language rc(I) ≤ sc(I).

sq0

b

a

a, b

L[A ] = I = Σ∗aΣ∗ = Syn(A )

A is an MSA for I

A is the minimal automaton recognizing I

rc(I) = sc(I) = 2

Theorem [M.,2012]

For every n ≥ 3 there are ideals In s.t. rc(In) = n, and
sc(In) = 2n − n.

Marina Maslennikova



Reset Complexity

The representation of an ideal language by an MSA can be
exponentially more succinct than using the standard minimal
recognizing automaton.

We do not know how to compute rc(I), and how to build the
corresponding automaton. One difficulty is that such
automaton is not unique.

sq0 q1 q2

b a

a b a

a, b

b

q1 q0

q2

q3

b

b

a
a

a

b

b

a

Automaton A1 Automaton A2

I = Syn(A1) = Syn(A2) = Σ∗abaΣ∗.

A1 and A2 are MSA’s for I.

Marina Maslennikova



Reset Complexity

The representation of an ideal language by an MSA can be
exponentially more succinct than using the standard minimal
recognizing automaton.

We do not know how to compute rc(I), and how to build the
corresponding automaton. One difficulty is that such
automaton is not unique.

sq0 q1 q2

b a

a b a

a, b

b

q1 q0

q2

q3

b

b

a
a

a

b

b

a

Automaton A1 Automaton A2

I = Syn(A1) = Syn(A2) = Σ∗abaΣ∗.

A1 and A2 are MSA’s for I.

Marina Maslennikova



Main questions

An ideal I is presented by a DFA A with Syn(A ) = I. Let
rc(I) ≤ k. It means that there exists some automaton B with
at most k states s.t. Syn(B) = I.

Question 1

How hard is it to verify the equality Syn(A ) = Syn(B)?

Question 2

How hard is it to verify the inequality rc(I) ≤ k?

DFA’s case: the equality L[A ] = L[B] can be checked easily.

Syn(A ) and Syn(B) are regular languages.

Obstacle: the minimal automaton recognizing Syn(A ) has up
to 2n − n states, where n is the size of A .

Marina Maslennikova



Main questions

An ideal I is presented by a DFA A with Syn(A ) = I. Let
rc(I) ≤ k. It means that there exists some automaton B with
at most k states s.t. Syn(B) = I.

Question 1

How hard is it to verify the equality Syn(A ) = Syn(B)?

Question 2

How hard is it to verify the inequality rc(I) ≤ k?

DFA’s case: the equality L[A ] = L[B] can be checked easily.

Syn(A ) and Syn(B) are regular languages.

Obstacle: the minimal automaton recognizing Syn(A ) has up
to 2n − n states, where n is the size of A .

Marina Maslennikova



Main questions

An ideal I is presented by a DFA A with Syn(A ) = I. Let
rc(I) ≤ k. It means that there exists some automaton B with
at most k states s.t. Syn(B) = I.

Question 1

How hard is it to verify the equality Syn(A ) = Syn(B)?

Question 2

How hard is it to verify the inequality rc(I) ≤ k?

DFA’s case: the equality L[A ] = L[B] can be checked easily.

Syn(A ) and Syn(B) are regular languages.

Obstacle: the minimal automaton recognizing Syn(A ) has up
to 2n − n states, where n is the size of A .

Marina Maslennikova



Main questions

An ideal I is presented by a DFA A with Syn(A ) = I. Let
rc(I) ≤ k. It means that there exists some automaton B with
at most k states s.t. Syn(B) = I.

Question 1

How hard is it to verify the equality Syn(A ) = Syn(B)?

Question 2

How hard is it to verify the inequality rc(I) ≤ k?

DFA’s case: the equality L[A ] = L[B] can be checked easily.

Syn(A ) and Syn(B) are regular languages.

Obstacle: the minimal automaton recognizing Syn(A ) has up
to 2n − n states, where n is the size of A .

Marina Maslennikova



Main questions

An ideal I is presented by a DFA A with Syn(A ) = I. Let
rc(I) ≤ k. It means that there exists some automaton B with
at most k states s.t. Syn(B) = I.

Question 1

How hard is it to verify the equality Syn(A ) = Syn(B)?

Question 2

How hard is it to verify the inequality rc(I) ≤ k?

DFA’s case: the equality L[A ] = L[B] can be checked easily.

Syn(A ) and Syn(B) are regular languages.

Obstacle: the minimal automaton recognizing Syn(A ) has up
to 2n − n states, where n is the size of A .

Marina Maslennikova



Main questions

An ideal I is presented by a DFA A with Syn(A ) = I. Let
rc(I) ≤ k. It means that there exists some automaton B with
at most k states s.t. Syn(B) = I.

Question 1

How hard is it to verify the equality Syn(A ) = Syn(B)?

Question 2

How hard is it to verify the inequality rc(I) ≤ k?

DFA’s case: the equality L[A ] = L[B] can be checked easily.

Syn(A ) and Syn(B) are regular languages.

Obstacle: the minimal automaton recognizing Syn(A ) has up
to 2n − n states, where n is the size of A .

Marina Maslennikova



Problems

SYN-EQUALITY
–Input: synchronizing automata A and B.
–Question: is Syn(A ) = Syn(B)?
RESET-COMPLEXITY (≤)
–Input: a synchronizing automaton A , k ∈ N.

–Question: is rc(I) ≤ k, where I = Syn(A )?

Marina Maslennikova



Problems

SYN-EQUALITY
–Input: synchronizing automata A and B.
–Question: is Syn(A ) = Syn(B)?
RESET-COMPLEXITY (≤)
–Input: a synchronizing automaton A , k ∈ N.

–Question: is rc(I) ≤ k, where I = Syn(A )?

Marina Maslennikova



Belonging to PSPACE

SYN-INCLUSION
–Input: synchronizing automata A and B.

–Question: is Syn(A ) ⊆ Syn(B)?

Theorem 1.

SYN-INCLUSION is in PSPACE.

Corollary 1.

SYN-EQUALITY, RESET-COMPLEXITY (≤) are in PSPACE.

Marina Maslennikova



Belonging to PSPACE

SYN-INCLUSION
–Input: synchronizing automata A and B.

–Question: is Syn(A ) ⊆ Syn(B)?

Theorem 1.

SYN-INCLUSION is in PSPACE.

Corollary 1.

SYN-EQUALITY, RESET-COMPLEXITY (≤) are in PSPACE.

Marina Maslennikova



Belonging to PSPACE

SYN-INCLUSION
–Input: synchronizing automata A and B.

–Question: is Syn(A ) ⊆ Syn(B)?

Theorem 1.

SYN-INCLUSION is in PSPACE.

Corollary 1.

SYN-EQUALITY, RESET-COMPLEXITY (≤) are in PSPACE.

Marina Maslennikova



PSPACE-completeness: automaton A

FINITE AUTOMATA INTERSECTION
–Input: given n DFAs Mi = 〈Qi,Σ, δi, qi, Fi〉, for i = 1, . . . , n.
–Question: is

⋂
i
L[Mi] 6= ∅?

It is assumed that |Σ| = 2.

We construct the DFA A = 〈Q,∆, ϕ, 〉 with
Q =

⋃
n

i=1
Qi ∪ {s, h} and ∆ = Σ ∪ {x, y, z}.

I = L1 ∪ L2; L1 = (Σ ∪ {x})∗y∆∗; L2 = (Σ ∪ {x})∗z∆+.

Lemma 1.
⋂

n

i=1
L[Mi] = ∅ iff Syn(A ) = I.

Marina Maslennikova



PSPACE-completeness: automaton A

FINITE AUTOMATA INTERSECTION
–Input: given n DFAs Mi = 〈Qi,Σ, δi, qi, Fi〉, for i = 1, . . . , n.
–Question: is

⋂
i
L[Mi] 6= ∅?

It is assumed that |Σ| = 2.

We construct the DFA A = 〈Q,∆, ϕ, 〉 with
Q =

⋃
n

i=1
Qi ∪ {s, h} and ∆ = Σ ∪ {x, y, z}.

I = L1 ∪ L2; L1 = (Σ ∪ {x})∗y∆∗; L2 = (Σ ∪ {x})∗z∆+.

Lemma 1.
⋂

n

i=1
L[Mi] = ∅ iff Syn(A ) = I.

Marina Maslennikova



PSPACE-completeness: automaton A

FINITE AUTOMATA INTERSECTION
–Input: given n DFAs Mi = 〈Qi,Σ, δi, qi, Fi〉, for i = 1, . . . , n.
–Question: is

⋂
i
L[Mi] 6= ∅?

It is assumed that |Σ| = 2.

We construct the DFA A = 〈Q,∆, ϕ, 〉 with
Q =

⋃
n

i=1
Qi ∪ {s, h} and ∆ = Σ ∪ {x, y, z}.

I = L1 ∪ L2; L1 = (Σ ∪ {x})∗y∆∗; L2 = (Σ ∪ {x})∗z∆+.

Lemma 1.
⋂

n

i=1
L[Mi] = ∅ iff Syn(A ) = I.

Marina Maslennikova



PSPACE-completeness: automaton A

FINITE AUTOMATA INTERSECTION
–Input: given n DFAs Mi = 〈Qi,Σ, δi, qi, Fi〉, for i = 1, . . . , n.
–Question: is

⋂
i
L[Mi] 6= ∅?

It is assumed that |Σ| = 2.

We construct the DFA A = 〈Q,∆, ϕ, 〉 with
Q =

⋃
n

i=1
Qi ∪ {s, h} and ∆ = Σ ∪ {x, y, z}.

I = L1 ∪ L2; L1 = (Σ ∪ {x})∗y∆∗; L2 = (Σ ∪ {x})∗z∆+.

Lemma 1.
⋂

n

i=1
L[Mi] = ∅ iff Syn(A ) = I.

Marina Maslennikova



PSPACE-completeness: automaton A

FINITE AUTOMATA INTERSECTION
–Input: given n DFAs Mi = 〈Qi,Σ, δi, qi, Fi〉, for i = 1, . . . , n.
–Question: is

⋂
i
L[Mi] 6= ∅?

It is assumed that |Σ| = 2.

We construct the DFA A = 〈Q,∆, ϕ, 〉 with
Q =

⋃
n

i=1
Qi ∪ {s, h} and ∆ = Σ ∪ {x, y, z}.

I = L1 ∪ L2; L1 = (Σ ∪ {x})∗y∆∗; L2 = (Σ ∪ {x})∗z∆+.

Lemma 1.
⋂

n

i=1
L[Mi] = ∅ iff Syn(A ) = I.

Marina Maslennikova



PSPACE-completeness: automaton B

Lemma 2.

Syn(B) = I.

sp2

p1

x,Σ

∆

y

∆

z

I = L1 ∪ L2; L1 = (Σ ∪ {x})∗y∆∗; L2 = (Σ ∪ {x})∗z∆+.

Lemma 3.
⋂

n

i=1
L[Mi] = ∅ iff Syn(A ) = Syn(B).

Marina Maslennikova



PSPACE-completeness: automaton B

Lemma 2.

Syn(B) = I.

sp2

p1

x,Σ

∆

y

∆

z

I = L1 ∪ L2; L1 = (Σ ∪ {x})∗y∆∗; L2 = (Σ ∪ {x})∗z∆+.

Lemma 3.
⋂

n

i=1
L[Mi] = ∅ iff Syn(A ) = Syn(B).

Marina Maslennikova



PSPACE-completeness

Theorem 2.

SYN-EQUALITY is PSPACE-complete.

Polynomial reduction from the negation of FINITE
AUTOMATA INTERSECTION to SYN-EQUALITY.

B is an MSA for I.

B is a particular 3-state synchronizing automaton with a sink
state.

Marina Maslennikova



PSPACE-completeness

Theorem 2.

SYN-EQUALITY is PSPACE-complete.

Polynomial reduction from the negation of FINITE
AUTOMATA INTERSECTION to SYN-EQUALITY.

B is an MSA for I.

B is a particular 3-state synchronizing automaton with a sink
state.

Marina Maslennikova



PSPACE-completeness

Theorem 2.

SYN-EQUALITY is PSPACE-complete.

Polynomial reduction from the negation of FINITE
AUTOMATA INTERSECTION to SYN-EQUALITY.

B is an MSA for I.

B is a particular 3-state synchronizing automaton with a sink
state.

Marina Maslennikova



Checking the inequality rc(I) ≤ k

Let A = 〈Q,Σ, δ〉 and I = Syn(A ).

The inequality rc(I) ≤ 2 can be checked in polynomial of the
size of A time.

RESET-COMPLEXITY (≤) is in PSPACE.

We have constructed for each instance of FINITE
AUTOMATA INTERSECTION the corresponding automaton
A . Let I = Syn(A ).

If
⋂

n

i=1
L[Mi] = ∅, then I = J, where J is the language of

reset words of a 3-state automaton B. In this case rc(I) ≤ 3.

If
⋂

n

i=1
L[Mi] 6= ∅, then I does not serve as the language of

reset words for some automaton B with at most three states.
In this case rc(I) > 3.

Theorem 3.

RESET-COMPLEXITY (≤) is PSPACE-complete.

Marina Maslennikova



Checking the inequality rc(I) ≤ k

Let A = 〈Q,Σ, δ〉 and I = Syn(A ).

The inequality rc(I) ≤ 2 can be checked in polynomial of the
size of A time.

RESET-COMPLEXITY (≤) is in PSPACE.

We have constructed for each instance of FINITE
AUTOMATA INTERSECTION the corresponding automaton
A . Let I = Syn(A ).

If
⋂

n

i=1
L[Mi] = ∅, then I = J, where J is the language of

reset words of a 3-state automaton B. In this case rc(I) ≤ 3.

If
⋂

n

i=1
L[Mi] 6= ∅, then I does not serve as the language of

reset words for some automaton B with at most three states.
In this case rc(I) > 3.

Theorem 3.

RESET-COMPLEXITY (≤) is PSPACE-complete.

Marina Maslennikova



Checking the inequality rc(I) ≤ k

Let A = 〈Q,Σ, δ〉 and I = Syn(A ).

The inequality rc(I) ≤ 2 can be checked in polynomial of the
size of A time.

RESET-COMPLEXITY (≤) is in PSPACE.

We have constructed for each instance of FINITE
AUTOMATA INTERSECTION the corresponding automaton
A . Let I = Syn(A ).

If
⋂

n

i=1
L[Mi] = ∅, then I = J, where J is the language of

reset words of a 3-state automaton B. In this case rc(I) ≤ 3.

If
⋂

n

i=1
L[Mi] 6= ∅, then I does not serve as the language of

reset words for some automaton B with at most three states.
In this case rc(I) > 3.

Theorem 3.

RESET-COMPLEXITY (≤) is PSPACE-complete.

Marina Maslennikova



Checking the inequality rc(I) ≤ k

Let A = 〈Q,Σ, δ〉 and I = Syn(A ).

The inequality rc(I) ≤ 2 can be checked in polynomial of the
size of A time.

RESET-COMPLEXITY (≤) is in PSPACE.

We have constructed for each instance of FINITE
AUTOMATA INTERSECTION the corresponding automaton
A . Let I = Syn(A ).

If
⋂

n

i=1
L[Mi] = ∅, then I = J, where J is the language of

reset words of a 3-state automaton B. In this case rc(I) ≤ 3.

If
⋂

n

i=1
L[Mi] 6= ∅, then I does not serve as the language of

reset words for some automaton B with at most three states.
In this case rc(I) > 3.

Theorem 3.

RESET-COMPLEXITY (≤) is PSPACE-complete.

Marina Maslennikova



Checking the inequality rc(I) ≤ k

Let A = 〈Q,Σ, δ〉 and I = Syn(A ).

The inequality rc(I) ≤ 2 can be checked in polynomial of the
size of A time.

RESET-COMPLEXITY (≤) is in PSPACE.

We have constructed for each instance of FINITE
AUTOMATA INTERSECTION the corresponding automaton
A . Let I = Syn(A ).

If
⋂

n

i=1
L[Mi] = ∅, then I = J, where J is the language of

reset words of a 3-state automaton B. In this case rc(I) ≤ 3.

If
⋂

n

i=1
L[Mi] 6= ∅, then I does not serve as the language of

reset words for some automaton B with at most three states.
In this case rc(I) > 3.

Theorem 3.

RESET-COMPLEXITY (≤) is PSPACE-complete.

Marina Maslennikova



Checking the inequality rc(I) ≤ k

Let A = 〈Q,Σ, δ〉 and I = Syn(A ).

The inequality rc(I) ≤ 2 can be checked in polynomial of the
size of A time.

RESET-COMPLEXITY (≤) is in PSPACE.

We have constructed for each instance of FINITE
AUTOMATA INTERSECTION the corresponding automaton
A . Let I = Syn(A ).

If
⋂

n

i=1
L[Mi] = ∅, then I = J, where J is the language of

reset words of a 3-state automaton B. In this case rc(I) ≤ 3.

If
⋂

n

i=1
L[Mi] 6= ∅, then I does not serve as the language of

reset words for some automaton B with at most three states.
In this case rc(I) > 3.

Theorem 3.

RESET-COMPLEXITY (≤) is PSPACE-complete.

Marina Maslennikova



Future work

Computational complexity of RESET-COMPLEXITY (≤) for
a non-unary alphabet of size less than five.

Studying the reset complexity w.r.t. boolean operations:
intersection, union, concatenation.

Representation of ideal languages by non-deterministic finite
automata.

Marina Maslennikova



Future work

Computational complexity of RESET-COMPLEXITY (≤) for
a non-unary alphabet of size less than five.

Studying the reset complexity w.r.t. boolean operations:
intersection, union, concatenation.

Representation of ideal languages by non-deterministic finite
automata.

Marina Maslennikova



Future work

Computational complexity of RESET-COMPLEXITY (≤) for
a non-unary alphabet of size less than five.

Studying the reset complexity w.r.t. boolean operations:
intersection, union, concatenation.

Representation of ideal languages by non-deterministic finite
automata.

Marina Maslennikova


