Complexity of checking whether two automata are synchronized by the same language

Marina Maslennikova

RuFiDiM 2014 Petrozavodsk, Russia, September 15–18, 2014

Institute of Mathematics and Computer Science Ural Federal University, Ekaterinburg, Russia

- A deterministic finite automaton (DFA) is a triple
 - $\mathscr{A} = \langle Q, \Sigma, \delta \rangle$, where
 - Q is the state set;
 - $\boldsymbol{\Sigma}$ is the input alphabet;
 - $-\delta: Q \times \Sigma \to Q$ is totally defined transition function. We do not need any initial and final states.
- Σ^* stands for the set of all words over Σ including the empty word.
- The function δ uniquely extends to a function $Q \times \Sigma^* \to Q$ still denoted by δ .
- We often write $q \cdot w$ for $\delta(q, w)$ and $P \cdot w$ for $\delta(P, w) = \{\delta(q, w) \mid q \in P\}.$

- A deterministic finite automaton (DFA) is a triple
 - $\mathscr{A} = \langle Q, \Sigma, \delta \rangle$, where
 - Q is the state set;
 - $\boldsymbol{\Sigma}$ is the input alphabet;
 - $$\label{eq:alpha} \begin{split} &-\delta:Q\times\Sigma\to Q \text{ is totally defined transition function.}\\ & \text{We do not need any initial and final states.} \end{split}$$
- Σ^* stands for the set of all words over Σ including the empty word.
- The function δ uniquely extends to a function $Q \times \Sigma^* \to Q$ still denoted by δ .

御 と く ヨ と く ヨ と

• We often write $q \cdot w$ for $\delta(q, w)$ and $P \cdot w$ for $\delta(P, w) = \{\delta(q, w) \mid q \in P\}.$

- A deterministic finite automaton (DFA) is a triple
 - $\mathscr{A} = \langle Q, \Sigma, \delta \rangle$, where
 - Q is the state set;
 - Σ is the input alphabet;
 - $\label{eq:generalized} \begin{array}{l} -\delta:Q\times\Sigma\to Q \text{ is totally defined transition function.} \\ \text{We do not need any initial and final states.} \end{array}$
- Σ^* stands for the set of all words over Σ including the empty word.
- The function δ uniquely extends to a function $Q \times \Sigma^* \to Q$ still denoted by δ .

御 と く ヨ と く ヨ と

• We often write $q \cdot w$ for $\delta(q, w)$ and $P \cdot w$ for $\delta(P, w) = \{\delta(q, w) \mid q \in P\}.$

- A *deterministic finite automaton* (DFA) is a triple
 - $\mathscr{A} = \langle Q, \Sigma, \delta \rangle$, where
 - -Q is the state set;
 - Σ is the input alphabet;
 - $\label{eq:generalized} \begin{array}{l} \ \delta: Q \times \Sigma \to Q \ \text{is totally defined transition function.} \end{array}$ We do not need any initial and final states.
- Σ^* stands for the set of all words over Σ including the empty word.
- The function δ uniquely extends to a function $Q \times \Sigma^* \to Q$ still denoted by δ .
- We often write $q \cdot w$ for $\delta(q, w)$ and $P \cdot w$ for $\delta(P, w) = \{\delta(q, w) \mid q \in P\}.$

- A DFA 𝒴 = ⟨Q, Σ, δ⟩ is called synchronizing if there exists a word w ∈ Σ* whose action resets 𝒴, that is |Q.w| = 1.
- Any word with this property is said to be *reset* for the DFA *A*.
- $Syn(\mathscr{A})$ is the language of all reset words for \mathscr{A} .

- A DFA 𝒜 = ⟨Q, Σ, δ⟩ is called synchronizing if there exists a word w ∈ Σ* whose action resets 𝒜, that is |Q.w| = 1.
- Any word with this property is said to be *reset* for the DFA *A*.
- $Syn(\mathscr{A})$ is the language of all reset words for \mathscr{A} .

Example

A reset word is w = baab. Indeed, $Q \cdot w = \{1\}$. In fact this is the shortest reset word for this automaton.

3

-<- ⊒ →

<ロト <回ト < 三ト

A language I ⊆ Σ* is called a *two-sided ideal* (or simply an *ideal*) if I ≠ Ø and I = Σ*IΣ*.

個 と く ヨ と く ヨ と

• For every synchronizing automaton \mathscr{A} it holds $\Sigma^* \operatorname{Syn}(\mathscr{A})\Sigma^* = \operatorname{Syn}(\mathscr{A}).$

- A language I ⊆ Σ* is called a *two-sided ideal* (or simply an *ideal*) if I ≠ Ø and I = Σ*IΣ*.
- For every synchronizing automaton \mathscr{A} it holds

$$\Sigma^*\operatorname{Syn}(\mathscr{A})\Sigma^* = \operatorname{Syn}(\mathscr{A}).$$

Ideals and Synchronizing Automata

- A language I ⊆ Σ* is called a *two-sided ideal* (or simply an *ideal*) if I ≠ Ø and I = Σ*IΣ*.
- For every synchronizing automaton \mathscr{A} it holds

$$\Sigma^*\operatorname{Syn}(\mathscr{A})\Sigma^* = \operatorname{Syn}(\mathscr{A}).$$

 Every regular ideal language I is a language of reset words for some synchronizing automaton *A* (e.g. for its minimal recognizing automaton)

$$L[\mathscr{A}] = I = \Sigma^* a \Sigma^* = \operatorname{Syn}(\mathscr{A})$$

Reset Complexity

- The *state complexity* sc(I) of a regular language I is the number of sates in the minimal automaton recognizing I.
- The reset complexity rc(I) of an ideal language I is the minimal possible number of states in a synchronizing automaton B such that Syn(B) = I.
 Every such automaton B is called minimal synchronizing automaton (for brevity, MSA).

- The *state complexity* sc(I) of a regular language I is the number of sates in the minimal automaton recognizing I.
- The reset complexity rc(I) of an ideal language I is the minimal possible number of states in a synchronizing automaton B such that Syn(B) = I.
 Every such automaton B is called minimal synchronizing automaton (for brevity, MSA).

- The *state complexity* sc(I) of a regular language I is the number of sates in the minimal automaton recognizing I.
- The reset complexity rc(I) of an ideal language I is the minimal possible number of states in a synchronizing automaton B such that Syn(B) = I.
 Every such automaton B is called minimal synchronizing automaton (for brevity, MSA).

Reset Complexity VS State Complexity

• For every ideal language $rc(I) \leq sc(I)$.

•
$$L[\mathscr{A}] = I = \Sigma^* a \Sigma^* = \operatorname{Syn}(\mathscr{A})$$

 ${\ensuremath{\, \circ }}$ ${\ensuremath{ \mathscr A}}$ is an MSA for I

• \mathscr{A} is the minimal automaton recognizing I

•
$$rc(I) = sc(I) = 2$$

Theorem [M.,2012]

For every $n \ge 3$ there are ideals I_n s.t. $rc(I_n) = n$, and $sc(I_n) = 2^n - n$.

Marina Maslennikova

Reset Complexity VS State Complexity

• For every ideal language $rc(I) \leq sc(I)$.

•
$$L[\mathscr{A}] = I = \Sigma^* a \Sigma^* = \operatorname{Syn}(\mathscr{A})$$

• \mathscr{A} is an MSA for I

• \mathscr{A} is the minimal automaton recognizing I

•
$$rc(I) = sc(I) = 2$$

Theorem [M.,2012]

For every $n \ge 3$ there are ideals I_n s.t. $rc(I_n) = n$, and $sc(I_n) = 2^n - n$.

Reset Complexity VS State Complexity

• For every ideal language $rc(I) \leq sc(I)$.

•
$$L[\mathscr{A}] = I = \Sigma^* a \Sigma^* = \operatorname{Syn}(\mathscr{A})$$

• \mathscr{A} is an MSA for I

• \mathscr{A} is the minimal automaton recognizing I

•
$$rc(I) = sc(I) = 2$$

Theorem [M.,2012]

For every $n \geq 3$ there are ideals I_n s.t. $rc(I_n) = n$, and $sc(I_n) = 2^n - n$.

Reset Complexity

- The representation of an ideal language by an MSA can be exponentially more succinct than using the standard minimal recognizing automaton.
- We do not know how to compute rc(I), and how to build the corresponding automaton. One difficulty is that such automaton is not unique.

Automaton \mathscr{A}_1

Automaton \mathscr{A}_2

b

 q_1

a

 q_2

 q_3

b

a

b

a

 q_0

- $I = \operatorname{Syn}(\mathscr{A}_1) = \operatorname{Syn}(\mathscr{A}_2) = \Sigma^* aba\Sigma^*.$
- \mathscr{A}_1 and \mathscr{A}_2 are MSA's for I.

Reset Complexity

- The representation of an ideal language by an MSA can be exponentially more succinct than using the standard minimal recognizing automaton.
- We do not know how to compute rc(I), and how to build the corresponding automaton. One difficulty is that such automaton is not unique.

a

• \mathscr{A}_1 and \mathscr{A}_2 are MSA's for I.

• An ideal I is presented by a DFA \mathscr{A} with $\operatorname{Syn}(\mathscr{A}) = I$. Let $rc(I) \leq k$. It means that there exists some automaton \mathscr{B} with at most k states s.t. $\operatorname{Syn}(\mathscr{B}) = I$.

Question 1

How hard is it to verify the equality $\operatorname{Syn}(\mathscr{A}) = \operatorname{Syn}(\mathscr{B})$?

Question 2

How hard is it to verify the inequality $rc(I) \leq k$?

- \bullet DFA's case: the equality $L[\mathscr{A}]=L[\mathscr{B}]$ can be checked easily.
- $Syn(\mathscr{A})$ and $Syn(\mathscr{B})$ are regular languages.
- Obstacle: the minimal automaton recognizing Syn(A) has up to 2ⁿ n states, where n is the size of A.

< 日 > < 四 > < 回 > < 回 > < 回 > <

• An ideal I is presented by a DFA \mathscr{A} with $\operatorname{Syn}(\mathscr{A}) = I$. Let $rc(I) \leq k$. It means that there exists some automaton \mathscr{B} with at most k states s.t. $\operatorname{Syn}(\mathscr{B}) = I$.

Question 1

How hard is it to verify the equality $\operatorname{Syn}(\mathscr{A}) = \operatorname{Syn}(\mathscr{B})$?

Question 2

How hard is it to verify the inequality $rc(I) \leq k$?

- \bullet DFA's case: the equality $L[\mathscr{A}]=L[\mathscr{B}]$ can be checked easily.
- $Syn(\mathscr{A})$ and $Syn(\mathscr{B})$ are regular languages.
- Obstacle: the minimal automaton recognizing Syn(A) has up to 2ⁿ n states, where n is the size of A.

イロン イ部 とくほど くほとう ほ

• An ideal I is presented by a DFA \mathscr{A} with $\operatorname{Syn}(\mathscr{A}) = I$. Let $rc(I) \leq k$. It means that there exists some automaton \mathscr{B} with at most k states s.t. $\operatorname{Syn}(\mathscr{B}) = I$.

Question 1

How hard is it to verify the equality $\operatorname{Syn}(\mathscr{A}) = \operatorname{Syn}(\mathscr{B})$?

Question 2

How hard is it to verify the inequality $rc(I) \leq k$?

- \bullet DFA's case: the equality $L[\mathscr{A}]=L[\mathscr{B}]$ can be checked easily.
- $Syn(\mathscr{A})$ and $Syn(\mathscr{B})$ are regular languages.
- Obstacle: the minimal automaton recognizing Syn(A) has up to 2ⁿ n states, where n is the size of A.

• An ideal I is presented by a DFA \mathscr{A} with $\operatorname{Syn}(\mathscr{A}) = I$. Let $rc(I) \leq k$. It means that there exists some automaton \mathscr{B} with at most k states s.t. $\operatorname{Syn}(\mathscr{B}) = I$.

Question 1

How hard is it to verify the equality $\operatorname{Syn}(\mathscr{A}) = \operatorname{Syn}(\mathscr{B})$?

Question 2

How hard is it to verify the inequality $rc(I) \leq k$?

- \bullet DFA's case: the equality $L[\mathscr{A}]=L[\mathscr{B}]$ can be checked easily.
- $Syn(\mathscr{A})$ and $Syn(\mathscr{B})$ are regular languages.
- Obstacle: the minimal automaton recognizing Syn(A) has up to 2ⁿ n states, where n is the size of A.

• An ideal I is presented by a DFA \mathscr{A} with $\operatorname{Syn}(\mathscr{A}) = I$. Let $rc(I) \leq k$. It means that there exists some automaton \mathscr{B} with at most k states s.t. $\operatorname{Syn}(\mathscr{B}) = I$.

Question 1

How hard is it to verify the equality $\operatorname{Syn}(\mathscr{A}) = \operatorname{Syn}(\mathscr{B})$?

Question 2

How hard is it to verify the inequality $rc(I) \leq k$?

- \bullet DFA's case: the equality $L[\mathscr{A}]=L[\mathscr{B}]$ can be checked easily.
- $Syn(\mathscr{A})$ and $Syn(\mathscr{B})$ are regular languages.
- Obstacle: the minimal automaton recognizing Syn(A) has up to 2ⁿ n states, where n is the size of A.

• An ideal I is presented by a DFA \mathscr{A} with $\operatorname{Syn}(\mathscr{A}) = I$. Let $rc(I) \leq k$. It means that there exists some automaton \mathscr{B} with at most k states s.t. $\operatorname{Syn}(\mathscr{B}) = I$.

Question 1

How hard is it to verify the equality $\operatorname{Syn}(\mathscr{A}) = \operatorname{Syn}(\mathscr{B})$?

Question 2

How hard is it to verify the inequality $rc(I) \leq k$?

- \bullet DFA's case: the equality $L[\mathscr{A}]=L[\mathscr{B}]$ can be checked easily.
- $Syn(\mathscr{A})$ and $Syn(\mathscr{B})$ are regular languages.
- Obstacle: the minimal automaton recognizing Syn(A) has up to 2ⁿ n states, where n is the size of A.

SYN-EQUALITY

-Input: synchronizing automata \mathscr{A} and \mathscr{B} .

-Question: is $Syn(\mathscr{A}) = Syn(\mathscr{B})$? RESET-COMPLEXITY (<)

-Input: a synchronizing automaton $\mathscr{A}, k \in \mathbb{N}$. -Question: is $rc(I) \leq k$, where $I = \text{Syn}(\mathscr{A})$?

個 と く ヨ と く ヨ と

SYN-EQUALITY

-Input: synchronizing automata \mathscr{A} and \mathscr{B} . -Question: is $Syn(\mathscr{A}) = Syn(\mathscr{B})$? RESET-COMPLEXITY (\leq)

-Input: a synchronizing automaton $\mathscr{A}, k \in \mathbb{N}$. -Question: is $rc(I) \leq k$, where $I = Syn(\mathscr{A})$?

- **□** ► < **□** ►

SYN-INCLUSION

-Input: synchronizing automata \mathscr{A} and \mathscr{B} . -Question: is $Syn(\mathscr{A}) \subseteq Syn(\mathscr{B})$?

Theorem 1. SYN-INCLUSION is in **PSPAC**I

Corollary 1.

SYN-EQUALITY, RESET-COMPLEXITY (\leq) are in **PSPACE**.

<ロ> (四) (四) (三) (三) (三) (三)

Marina Maslennikova

SYN-INCLUSION

-Input: synchronizing automata \mathscr{A} and \mathscr{B} . -Question: is $\operatorname{Syn}(\mathscr{A}) \subseteq \operatorname{Syn}(\mathscr{B})$?

Theorem 1.

SYN-INCLUSION is in **PSPACE**.

Corollary 1.

SYN-EQUALITY, RESET-COMPLEXITY (\leq) are in **PSPACE**.

イロン イ部 とくほど くほとう ほ

Marina Maslennikova

SYN-INCLUSION

-Input: synchronizing automata \mathscr{A} and \mathscr{B} . -Question: is $Syn(\mathscr{A}) \subseteq Syn(\mathscr{B})$?

Theorem 1.

SYN-INCLUSION is in **PSPACE**.

Corollary 1.

SYN-EQUALITY, RESET-COMPLEXITY (\leq) are in **PSPACE**.

イロン イヨン イヨン ・ ヨン

2

-Input: given n DFAs $M_i = \langle Q_i, \Sigma, \delta_i, q_i, F_i \rangle$, for i = 1, ..., n. -Question: is $\bigcap_i L[M_i] \neq \emptyset$?

• It is assumed that $|\Sigma| = 2$.

• We construct the DFA $\mathscr{A} = \langle Q, \Delta, \varphi, \rangle$ with $Q = \bigcup_{i=1}^{n} Q_i \cup \{s, h\}$ and $\Delta = \Sigma \cup \{x, y, z\}$.

• $I = L_1 \cup L_2; L_1 = (\Sigma \cup \{x\})^* y \Delta^*; L_2 = (\Sigma \cup \{x\})^* z \Delta^+.$

- * @ * * 注 * * 注 * ……注

$$\bigcap_{i=1}^{n} L[M_i] = \emptyset \text{ iff } \operatorname{Syn}(\mathscr{A}) = I.$$

-Input: given n DFAs $M_i = \langle Q_i, \Sigma, \delta_i, q_i, F_i \rangle$, for i = 1, ..., n. -Question: is $\bigcap_i L[M_i] \neq \emptyset$?

- It is assumed that $|\Sigma| = 2$.
- We construct the DFA $\mathscr{A} = \langle Q, \Delta, \varphi, \rangle$ with $Q = \bigcup_{i=1}^{n} Q_i \cup \{s, h\}$ and $\Delta = \Sigma \cup \{x, y, z\}$.
- $I = L_1 \cup L_2; L_1 = (\Sigma \cup \{x\})^* y \Delta^*; L_2 = (\Sigma \cup \{x\})^* z \Delta^+.$

· < @ > < 문 > < 문 > · · 문

$$\bigcap_{i=1}^{n} L[M_i] = \emptyset \text{ iff } \operatorname{Syn}(\mathscr{A}) = I.$$

-Input: given n DFAs $M_i = \langle Q_i, \Sigma, \delta_i, q_i, F_i \rangle$, for i = 1, ..., n. -Question: is $\bigcap_i L[M_i] \neq \emptyset$?

- It is assumed that $|\Sigma| = 2$.
- We construct the DFA $\mathscr{A} = \langle Q, \Delta, \varphi, \rangle$ with $Q = \bigcup_{i=1}^{n} Q_i \cup \{s, h\}$ and $\Delta = \Sigma \cup \{x, y, z\}$.

• $I = L_1 \cup L_2; L_1 = (\Sigma \cup \{x\})^* y \Delta^*; L_2 = (\Sigma \cup \{x\})^* z \Delta^+.$

イロン イ部 とくほど くほとう ほ

$$\bigcap_{i=1}^{n} L[M_i] = \emptyset \text{ iff } \operatorname{Syn}(\mathscr{A}) = I.$$

-Input: given n DFAs $M_i = \langle Q_i, \Sigma, \delta_i, q_i, F_i \rangle$, for i = 1, ..., n. -Question: is $\bigcap_i L[M_i] \neq \emptyset$?

- It is assumed that $|\Sigma| = 2$.
- We construct the DFA $\mathscr{A} = \langle Q, \Delta, \varphi, \rangle$ with $Q = \bigcup_{i=1}^{n} Q_i \cup \{s, h\}$ and $\Delta = \Sigma \cup \{x, y, z\}$.

•
$$I = L_1 \cup L_2; L_1 = (\Sigma \cup \{x\})^* y \Delta^*; L_2 = (\Sigma \cup \{x\})^* z \Delta^+.$$

<ロ> (四) (四) (三) (三) (三) (三)

$$\bigcap_{i=1}^{n} L[M_i] = \emptyset \text{ iff } \operatorname{Syn}(\mathscr{A}) = I.$$

-Input: given n DFAs $M_i = \langle Q_i, \Sigma, \delta_i, q_i, F_i \rangle$, for i = 1, ..., n. -Question: is $\bigcap_i L[M_i] \neq \emptyset$?

- It is assumed that $|\Sigma| = 2$.
- We construct the DFA $\mathscr{A} = \langle Q, \Delta, \varphi, \rangle$ with $Q = \bigcup_{i=1}^{n} Q_i \cup \{s, h\}$ and $\Delta = \Sigma \cup \{x, y, z\}$.
- $I = L_1 \cup L_2; L_1 = (\Sigma \cup \{x\})^* y \Delta^*; L_2 = (\Sigma \cup \{x\})^* z \Delta^+.$

イロン イ部 とくほど くほとう ほ

Lemma 1.

$$\bigcap_{i=1}^{n} L[M_i] = \emptyset \text{ iff } \operatorname{Syn}(\mathscr{A}) = I.$$

PSPACE-completeness: automaton *B*

Lemma 2.

 $\operatorname{Syn}(\mathscr{B}) = I.$

 $I = L_1 \cup L_2; L_1 = (\Sigma \cup \{x\})^* y \Delta^*; L_2 = (\Sigma \cup \{x\})^* z \Delta^+.$

PSPACE-completeness: automaton *B*

Lemma 2.

 $\operatorname{Syn}(\mathscr{B})=I.$

・ロト ・回ト ・ヨト ・ヨトー

æ

 $I = L_1 \cup L_2; L_1 = (\Sigma \cup \{x\})^* y \Delta^*; L_2 = (\Sigma \cup \{x\})^* z \Delta^+.$

Lemma 3.

$$\bigcap_{i=1}^{n} L[M_i] = \emptyset \text{ iff } \operatorname{Syn}(\mathscr{A}) = \operatorname{Syn}(\mathscr{B}).$$

Theorem 2.

SYN-EQUALITY is **PSPACE**-complete.

- Polynomial reduction from the negation of FINITE AUTOMATA INTERSECTION to SYN-EQUALITY.
- \mathscr{B} is an MSA for I.
- *B* is a particular 3-state synchronizing automaton with a sink state.

個 と く ヨ と く ヨ と

Theorem 2.

SYN-EQUALITY is **PSPACE**-complete.

- Polynomial reduction from the negation of FINITE AUTOMATA INTERSECTION to SYN-EQUALITY.
- \mathscr{B} is an MSA for I.
- *B* is a particular 3-state synchronizing automaton with a sink state.

個 と く ヨ と く ヨ と

Theorem 2.

SYN-EQUALITY is **PSPACE**-complete.

- Polynomial reduction from the negation of FINITE AUTOMATA INTERSECTION to SYN-EQUALITY.
- \mathscr{B} is an MSA for I.
- *B* is a particular 3-state synchronizing automaton with a sink state.

- Let $\mathscr{A} = \langle Q, \Sigma, \delta \rangle$ and $I = \operatorname{Syn}(\mathscr{A})$.
- The inequality $rc(I) \leq 2$ can be checked in polynomial of the size of $\mathscr A$ time.
- RESET-COMPLEXITY (\leq) is in **PSPACE**.
- We have constructed for each instance of FINITE AUTOMATA INTERSECTION the corresponding automaton *A*. Let I = Syn(*A*).
- If ∩ⁿ_{i=1} L[M_i] = Ø, then I = J, where J is the language of reset words of a 3-state automaton ℬ. In this case rc(I) ≤ 3.
- If $\bigcap_{i=1}^{n} L[M_i] \neq \emptyset$, then I does not serve as the language of reset words for some automaton \mathscr{B} with at most three states. In this case rc(I) > 3.

Theorem 3.

- Let $\mathscr{A} = \langle Q, \Sigma, \delta \rangle$ and $I = \operatorname{Syn}(\mathscr{A})$.
- The inequality $rc(I) \leq 2$ can be checked in polynomial of the size of $\mathscr A$ time.
- RESET-COMPLEXITY (\leq) is in **PSPACE**.
- We have constructed for each instance of FINITE AUTOMATA INTERSECTION the corresponding automaton *A*. Let I = Syn(*A*).
- If ∩ⁿ_{i=1} L[M_i] = Ø, then I = J, where J is the language of reset words of a 3-state automaton ℬ. In this case rc(I) ≤ 3.
- If $\bigcap_{i=1}^{n} L[M_i] \neq \emptyset$, then I does not serve as the language of reset words for some automaton \mathscr{B} with at most three states. In this case rc(I) > 3.

Theorem 3.

- Let $\mathscr{A} = \langle Q, \Sigma, \delta \rangle$ and $I = \operatorname{Syn}(\mathscr{A})$.
- The inequality $rc(I) \leq 2$ can be checked in polynomial of the size of $\mathscr A$ time.
- RESET-COMPLEXITY (\leq) is in **PSPACE**.
- We have constructed for each instance of FINITE AUTOMATA INTERSECTION the corresponding automaton \mathscr{A} . Let $I = \operatorname{Syn}(\mathscr{A})$.
- If ∩ⁿ_{i=1} L[M_i] = Ø, then I = J, where J is the language of reset words of a 3-state automaton ℬ. In this case rc(I) ≤ 3.
- If $\bigcap_{i=1}^{n} L[M_i] \neq \emptyset$, then I does not serve as the language of reset words for some automaton \mathscr{B} with at most three states. In this case rc(I) > 3.

Theorem 3.

- Let $\mathscr{A} = \langle Q, \Sigma, \delta \rangle$ and $I = \operatorname{Syn}(\mathscr{A})$.
- The inequality $rc(I) \leq 2$ can be checked in polynomial of the size of $\mathscr A$ time.
- RESET-COMPLEXITY (\leq) is in **PSPACE**.
- We have constructed for each instance of FINITE AUTOMATA INTERSECTION the corresponding automaton *A*. Let I = Syn(*A*).
- If $\bigcap_{i=1}^{n} L[M_i] = \emptyset$, then I = J, where J is the language of reset words of a 3-state automaton \mathscr{B} . In this case $rc(I) \leq 3$.

• If $\bigcap_{i=1}^{n} L[M_i] \neq \emptyset$, then I does not serve as the language of reset words for some automaton \mathscr{B} with at most three states. In this case rc(I) > 3.

Theorem 3.

- Let $\mathscr{A} = \langle Q, \Sigma, \delta \rangle$ and $I = \operatorname{Syn}(\mathscr{A})$.
- The inequality $rc(I) \leq 2$ can be checked in polynomial of the size of $\mathscr A$ time.
- RESET-COMPLEXITY (\leq) is in **PSPACE**.
- We have constructed for each instance of FINITE AUTOMATA INTERSECTION the corresponding automaton *A*. Let I = Syn(*A*).
- If $\bigcap_{i=1}^{n} L[M_i] = \emptyset$, then I = J, where J is the language of reset words of a 3-state automaton \mathscr{B} . In this case $rc(I) \leq 3$.
- If $\bigcap_{i=1}^{n} L[M_i] \neq \emptyset$, then I does not serve as the language of reset words for some automaton \mathscr{B} with at most three states. In this case rc(I) > 3.

Theorem 3.

- Let $\mathscr{A} = \langle Q, \Sigma, \delta \rangle$ and $I = \operatorname{Syn}(\mathscr{A})$.
- The inequality $rc(I) \leq 2$ can be checked in polynomial of the size of $\mathscr A$ time.
- RESET-COMPLEXITY (\leq) is in **PSPACE**.
- We have constructed for each instance of FINITE AUTOMATA INTERSECTION the corresponding automaton \mathscr{A} . Let $I = Syn(\mathscr{A})$.
- If $\bigcap_{i=1}^{n} L[M_i] = \emptyset$, then I = J, where J is the language of reset words of a 3-state automaton \mathscr{B} . In this case $rc(I) \leq 3$.
- If $\bigcap_{i=1}^{n} L[M_i] \neq \emptyset$, then I does not serve as the language of reset words for some automaton \mathscr{B} with at most three states. In this case rc(I) > 3.

Theorem 3.

- Computational complexity of RESET-COMPLEXITY (\leq) for a non-unary alphabet of size less than five.
- Studying the reset complexity w.r.t. boolean operations: intersection, union, concatenation.
- Representation of ideal languages by non-deterministic finite automata.

母 と く ヨ と く ヨ と

- Computational complexity of RESET-COMPLEXITY (\leq) for a non-unary alphabet of size less than five.
- Studying the reset complexity w.r.t. boolean operations: intersection, union, concatenation.
- Representation of ideal languages by non-deterministic finite automata.

御 と く ヨ と く ヨ と

- Computational complexity of RESET-COMPLEXITY (\leq) for a non-unary alphabet of size less than five.
- Studying the reset complexity w.r.t. boolean operations: intersection, union, concatenation.
- Representation of ideal languages by non-deterministic finite automata.

同 と く ヨ と く ヨ と