# Complexity of checking whether two automata are synchronized by the same language 

Marina Maslennikova

RuFiDiM 2014<br>Petrozavodsk, Russia, September 15-18, 2014

Institute of Mathematics and Computer Science Ural Federal University, Ekaterinburg, Russia

## Definitions

- A deterministic finite automaton (DFA) is a triple $\mathscr{A}=\langle Q, \Sigma, \delta\rangle$, where
$-Q$ is the state set;
$-\Sigma$ is the input alphabet;
$-\delta: Q \times \Sigma \rightarrow Q$ is totally defined transition function.
We do not need any initial and final states.
- $\Sigma^{*}$ stands for the set of all words over $\Sigma$ including the empty
word.
- The function $\delta$ uniquely extends to a function $Q \times \Sigma^{*} \rightarrow Q$ still denoted by $\delta$
- We often write $q . w$ for $\delta(q, w)$ and $P$.w for $\delta(P, w)=\{\delta(q, w) \mid q \in P\}$.


## Definitions

- A deterministic finite automaton (DFA) is a triple $\mathscr{A}=\langle Q, \Sigma, \delta\rangle$, where
$-Q$ is the state set;
$-\Sigma$ is the input alphabet;
$-\delta: Q \times \Sigma \rightarrow Q$ is totally defined transition function.
We do not need any initial and final states.
- $\Sigma^{*}$ stands for the set of all words over $\Sigma$ including the empty word.
- The function $\delta$ uniquely extends to a function $Q \times \Sigma^{*} \rightarrow Q$ still denoted by $\delta$
- We often write $q \cdot w$ for $\delta(q, w)$ and $P . w$ for $\delta(P, w)=\{\delta(q, w) \mid q \in P\}$


## Definitions

- A deterministic finite automaton (DFA) is a triple $\mathscr{A}=\langle Q, \Sigma, \delta\rangle$, where
$-Q$ is the state set;
$-\Sigma$ is the input alphabet;
$-\delta: Q \times \Sigma \rightarrow Q$ is totally defined transition function.
We do not need any initial and final states.
- $\Sigma^{*}$ stands for the set of all words over $\Sigma$ including the empty word.
- The function $\delta$ uniquely extends to a function $Q \times \Sigma^{*} \rightarrow Q$ still denoted by $\delta$.
- We often write $q \cdot w$ for $\delta(q, w)$ and $P \cdot w$ for $\delta(P, w)=\{\delta(q, w) \mid q \in P\}$


## Definitions

- A deterministic finite automaton (DFA) is a triple $\mathscr{A}=\langle Q, \Sigma, \delta\rangle$, where
- $Q$ is the state set;
$-\Sigma$ is the input alphabet;
$-\delta: Q \times \Sigma \rightarrow Q$ is totally defined transition function.
We do not need any initial and final states.
- $\Sigma^{*}$ stands for the set of all words over $\Sigma$ including the empty word.
- The function $\delta$ uniquely extends to a function $Q \times \Sigma^{*} \rightarrow Q$ still denoted by $\delta$.
- We often write $q . w$ for $\delta(q, w)$ and $P . w$ for $\delta(P, w)=\{\delta(q, w) \mid q \in P\}$.


## Definitions

- A DFA $\mathscr{A}=\langle Q, \Sigma, \delta\rangle$ is called synchronizing if there exists a word $w \in \Sigma^{*}$ whose action resets $\mathscr{A}$, that is $|Q \cdot w|=1$.
- Any word with this property is said to be reset for the DFA $\mathscr{A}$ - $\operatorname{Syn}(\mathscr{A})$ is the language of all reset words for $\mathscr{A}$.


## Definitions

- A DFA $\mathscr{A}=\langle Q, \Sigma, \delta\rangle$ is called synchronizing if there exists a word $w \in \Sigma^{*}$ whose action resets $\mathscr{A}$, that is $|Q . w|=1$.
- Any word with this property is said to be reset for the DFA $\mathscr{A}$.
- $\operatorname{Syn}(\mathscr{A})$ is the language of all reset words for $\mathscr{A}$.


## Example



A reset word is $w=b a a b$. Indeed, $Q . w=\{1\}$. In fact this is the shortest reset word for this automaton.

## Ideals and Synchronizing Automata

- A language $I \subseteq \Sigma^{*}$ is called a two-sided ideal (or simply an ideal) if $I \neq \emptyset$ and $I=\Sigma^{*} I \Sigma^{*}$.
- For every synchronizing automaton $\mathscr{A}$ it holds


## Ideals and Synchronizing Automata

- A language $I \subseteq \Sigma^{*}$ is called a two-sided ideal (or simply an ideal) if $I \neq \emptyset$ and $I=\Sigma^{*} I \Sigma^{*}$.
- For every synchronizing automaton $\mathscr{A}$ it holds

$$
\Sigma^{*} \operatorname{Syn}(\mathscr{A}) \Sigma^{*}=\operatorname{Syn}(\mathscr{A})
$$

## Ideals and Synchronizing Automata

- A language $I \subseteq \Sigma^{*}$ is called a two-sided ideal (or simply an ideal) if $I \neq \emptyset$ and $I=\Sigma^{*} I \Sigma^{*}$.
- For every synchronizing automaton $\mathscr{A}$ it holds

$$
\Sigma^{*} \operatorname{Syn}(\mathscr{A}) \Sigma^{*}=\operatorname{Syn}(\mathscr{A})
$$

- Every regular ideal language $I$ is a language of reset words for some synchronizing automaton $\mathscr{A}$ (e.g. for its minimal recognizing automaton)


$$
L[\mathscr{A}]=I=\Sigma^{*} a \Sigma^{*}=\operatorname{Syn}(\mathscr{A})
$$

## Reset Complexity

$$
\begin{array}{cc}
\mathscr{A}_{I}=\left\langle Q_{1}, \Sigma, \delta_{1}, q_{0}, F\right\rangle & \mathscr{B}=\left\langle Q_{2}, \Sigma, \delta_{2}\right\rangle: \operatorname{Syn}(\mathscr{B})=I \\
w \in I \Leftrightarrow q_{0} \cdot w \in F & w \in I \Leftrightarrow\left|Q_{2} \cdot w\right|=1
\end{array}
$$

- The state complexity $s c(I)$ of a regular language $I$ is the number of sates in the minimal automaton recognizing $I$.
- The reset complexity $r c(I)$ of an ideal language $I$ is the minimal possible number of states in a synchronizing automaton $\mathscr{B}$ such that $\operatorname{Syn}(\mathscr{B})=I$. Every such automaton $\mathscr{B}$ is called minimal synchronizing automaton (for brevity, MSA).


## Reset Complexity

$$
\begin{array}{lc}
\mathscr{A}_{I}=\left\langle Q_{1}, \Sigma, \delta_{1}, q_{0}, F\right\rangle & \mathscr{B}=\left\langle Q_{2}, \Sigma, \delta_{2}\right\rangle: \operatorname{Syn}(\mathscr{B})=I \\
w \in I \Leftrightarrow q_{0} \cdot w \in F & w \in I \Leftrightarrow\left|Q_{2} \cdot w\right|=1
\end{array}
$$

- The state complexity $s c(I)$ of a regular language $I$ is the number of sates in the minimal automaton recognizing $I$.
minimal possible number of states in a synchronizing
automaton $\mathscr{B}$ such that $\operatorname{Syn}(\mathscr{B})=I$.
Every such automaton $\mathscr{B}$ is called minimal synchronizing
automaton (for brevity, MSA).


## Reset Complexity



- The state complexity $s c(I)$ of a regular language $I$ is the number of sates in the minimal automaton recognizing $I$.
- The reset complexity $r c(I)$ of an ideal language $I$ is the minimal possible number of states in a synchronizing automaton $\mathscr{B}$ such that $\operatorname{Syn}(\mathscr{B})=I$.
Every such automaton $\mathscr{B}$ is called minimal synchronizing automaton (for brevity, MSA).


## Reset Complexity VS State Complexity

- For every ideal language $r c(I) \leq s c(I)$.

- $L[\mathscr{A}]=I=\Sigma^{*} a \Sigma^{*}=\operatorname{Syn}(\mathscr{A})$
- $\mathscr{A}$ is an MSA for $I$
- $\mathscr{A}$ is the minimal automaton recognizing $I$
- $r c(I)=s c(I)=2$

```
Theorem [M.,2012] For every \(n>3\) there are ideals \(I_{n}\) s.t. \(\operatorname{rc}\left(I_{n}\right)=n\), and \(s c\left(I_{n}\right)=2^{n}-n\).
```


## Reset Complexity VS State Complexity

- For every ideal language $r c(I) \leq s c(I)$.

- $L[\mathscr{A}]=I=\Sigma^{*} a \Sigma^{*}=\operatorname{Syn}(\mathscr{A})$
- $\mathscr{A}$ is an MSA for $I$
- $\mathscr{A}$ is the minimal automaton recognizing $I$
- $r c(I)=s c(I)=2$


## Theorem [M.,2012]

For every $n>3$ there are ideals $I_{n}$ s.t. $r c\left(I_{n}\right)=n$, and
$s c\left(I_{n}\right)=2^{n}-n$

## Reset Complexity VS State Complexity

- For every ideal language $r c(I) \leq s c(I)$.

- $L[\mathscr{A}]=I=\Sigma^{*} a \Sigma^{*}=\operatorname{Syn}(\mathscr{A})$
- $\mathscr{A}$ is an MSA for $I$
- $\mathscr{A}$ is the minimal automaton recognizing $I$
- $r c(I)=s c(I)=2$


## Theorem [M.,2012]

For every $n \geq 3$ there are ideals $I_{n}$ s.t. $r c\left(I_{n}\right)=n$, and $s c\left(I_{n}\right)=2^{n}-n$.

## Reset Complexity

- The representation of an ideal language by an MSA can be exponentially more succinct than using the standard minimal recognizing automaton.
- We do not know how to compute $r c(I)$, and how to build the corresponding automaton. One difficulty is that such automaton is not unique.


Automaton $\mathscr{A}_{1}$


- $I=\operatorname{Syn}\left(\mathscr{A}_{1}\right)=\operatorname{Syn}\left(\mathscr{A}_{2}\right)=\Sigma^{*} a b a \Sigma^{*}$
- $\mathscr{A}_{1}$ and $\mathscr{A}_{2}$ are MSA's for I.


## Reset Complexity

- The representation of an ideal language by an MSA can be exponentially more succinct than using the standard minimal recognizing automaton.
- We do not know how to compute $r c(I)$, and how to build the corresponding automaton. One difficulty is that such automaton is not unique.


Automaton $\mathscr{A}_{1}$


- $I=\operatorname{Syn}\left(\mathscr{A}_{1}\right)=\operatorname{Syn}\left(\mathscr{A}_{2}\right)=\Sigma^{*} a b a \Sigma^{*}$.
- $\mathscr{A}_{1}$ and $\mathscr{A}_{2}$ are MSA's for $I$.


## Main questions

- An ideal $I$ is presented by a DFA $\mathscr{A}$ with $\operatorname{Syn}(\mathscr{A})=I$. Let $r c(I) \leq k$. It means that there exists some automaton $\mathscr{B}$ with at most $k$ states s.t. $\operatorname{Syn}(\mathscr{B})=I$.
$\square$
Question 1
How hard is it to verify the equality $\operatorname{Syn}(\mathscr{A})=\operatorname{Syn}(\mathscr{B})$ ?


## Question 2

How hard is it to verify the inequality $r c(I) \leq k$ ?

- DFA's case: the equality $L[\mathscr{A}]=L[\mathscr{B}]$ can be checked easily.
- $\operatorname{Syn}(\mathscr{A})$ and $\operatorname{Syn}(\mathscr{B})$ are regular languages.
- Obstacle: the minimal automaton recognizing $\operatorname{Syn}(\mathscr{A})$ has up to $2^{n}-n$ states, where $n$ is the size of $\mathscr{A}$


## Main questions

- An ideal $I$ is presented by a DFA $\mathscr{A}$ with $\operatorname{Syn}(\mathscr{A})=I$. Let $r c(I) \leq k$. It means that there exists some automaton $\mathscr{B}$ with at most $k$ states s.t. $\operatorname{Syn}(\mathscr{B})=I$.


## Question 1

How hard is it to verify the equality $\operatorname{Syn}(\mathscr{A})=\operatorname{Syn}(\mathscr{B})$ ?

## Question 2 <br> How hard is it to verify the inequality $r c(I) \leq k$ ?

- DFA's case: the equality $L[\mathscr{A}]=L[\mathscr{B}]$ can be checked easily.
- $\operatorname{Syn}(\mathscr{A})$ and $\operatorname{Syn}(\mathscr{B})$ are regular languages.
- Obstacle: the minimal automaton recognizing $\operatorname{Syn}(\mathscr{A})$ has up to $2^{n}-n$ states, where $n$ is the size of $\mathscr{A}$


## Main questions

- An ideal $I$ is presented by a DFA $\mathscr{A}$ with $\operatorname{Syn}(\mathscr{A})=I$. Let $r c(I) \leq k$. It means that there exists some automaton $\mathscr{B}$ with at most $k$ states s.t. $\operatorname{Syn}(\mathscr{B})=I$.


## Question 1

How hard is it to verify the equality $\operatorname{Syn}(\mathscr{A})=\operatorname{Syn}(\mathscr{B})$ ?

## Question 2

How hard is it to verify the inequality $r c(I) \leq k$ ?


## Main questions

- An ideal $I$ is presented by a DFA $\mathscr{A}$ with $\operatorname{Syn}(\mathscr{A})=I$. Let $r c(I) \leq k$. It means that there exists some automaton $\mathscr{B}$ with at most $k$ states s.t. $\operatorname{Syn}(\mathscr{B})=I$.


## Question 1

How hard is it to verify the equality $\operatorname{Syn}(\mathscr{A})=\operatorname{Syn}(\mathscr{B})$ ?

## Question 2

How hard is it to verify the inequality $r c(I) \leq k$ ?

- DFA's case: the equality $L[\mathscr{A}]=L[\mathscr{B}]$ can be checked easily.
- $\operatorname{Syn}(\mathscr{A})$ and $\operatorname{Syn}(\mathscr{B})$ are regular languages.
- Obstacle: the minimal automaton recognizing $\operatorname{Syn}(\mathscr{A})$ has up to $2^{n}-n$ states, where $n$ is the size of $\mathscr{A}$.


## Main questions

- An ideal $I$ is presented by a DFA $\mathscr{A}$ with $\operatorname{Syn}(\mathscr{A})=I$. Let $r c(I) \leq k$. It means that there exists some automaton $\mathscr{B}$ with at most $k$ states s.t. $\operatorname{Syn}(\mathscr{B})=I$.


## Question 1

How hard is it to verify the equality $\operatorname{Syn}(\mathscr{A})=\operatorname{Syn}(\mathscr{B})$ ?

## Question 2

How hard is it to verify the inequality $r c(I) \leq k$ ?

- DFA's case: the equality $L[\mathscr{A}]=L[\mathscr{B}]$ can be checked easily.
- $\operatorname{Syn}(\mathscr{A})$ and $\operatorname{Syn}(\mathscr{B})$ are regular languages.
- Obstacle: the minimal automaton recognizing $\operatorname{Syn}(\mathscr{A})$ has up to $2^{n}-n$ states, where $n$ is the size of $\mathscr{A}$


## Main questions

- An ideal $I$ is presented by a DFA $\mathscr{A}$ with $\operatorname{Syn}(\mathscr{A})=I$. Let $r c(I) \leq k$. It means that there exists some automaton $\mathscr{B}$ with at most $k$ states s.t. $\operatorname{Syn}(\mathscr{B})=I$.


## Question 1

How hard is it to verify the equality $\operatorname{Syn}(\mathscr{A})=\operatorname{Syn}(\mathscr{B})$ ?

## Question 2

How hard is it to verify the inequality $r c(I) \leq k$ ?

- DFA's case: the equality $L[\mathscr{A}]=L[\mathscr{B}]$ can be checked easily.
- $\operatorname{Syn}(\mathscr{A})$ and $\operatorname{Syn}(\mathscr{B})$ are regular languages.
- Obstacle: the minimal automaton recognizing $\operatorname{Syn}(\mathscr{A})$ has up to $2^{n}-n$ states, where $n$ is the size of $\mathscr{A}$.


## Problems

## SYN-EQUALITY

-Input: synchronizing automata $\mathscr{A}$ and $\mathscr{B}$.
-Question: is $\operatorname{Syn}(\mathscr{A})=\operatorname{Syn}(\mathscr{B})$ ?
-Input: a synchronizing automaton $\mathscr{A}, k \in \mathbb{N}$.

- Question: is $r c(I) \leq k$, where $I=\operatorname{Syn}(\mathscr{A})$ ?


## Problems

## SYN-EQUALITY

-Input: synchronizing automata $\mathscr{A}$ and $\mathscr{B}$.
-Question: is $\operatorname{Syn}(\mathscr{A})=\operatorname{Syn}(\mathscr{B})$ ?
RESET-COMPLEXITY ( $\leq$ )
-Input: a synchronizing automaton $\mathscr{A}, k \in \mathbb{N}$.
-Question: is $r c(I) \leq k$, where $I=\operatorname{Syn}(\mathscr{A})$ ?

## Belonging to PSPACE

## SYN-INCLUSION <br> -Input: synchronizing automata $\mathscr{A}$ and $\mathscr{B}$. <br> -Question: is $\operatorname{Syn}(\mathscr{A}) \subseteq \operatorname{Syn}(\mathscr{B})$ ?

## Theorem 1. <br> SYN-INCLUSION is in PSPACE.

Corollary
SYN-EQUALITY, RESET-COMPLEXITY ( $\leq$ ) are in PSPACE.

## Belonging to PSPACE

## SYN-INCLUSION

-Input: synchronizing automata $\mathscr{A}$ and $\mathscr{B}$.

- Question: is $\operatorname{Syn}(\mathscr{A}) \subseteq \operatorname{Syn}(\mathscr{B})$ ?


## Theorem 1.

SYN-INCLUSION is in PSPACE.

## Corollary 1 <br> SYN-EQUALITY, RESET-COMPLEXITY $(\leq)$ are in PSPACE

## Belonging to PSPACE

## SYN-INCLUSION

-Input: synchronizing automata $\mathscr{A}$ and $\mathscr{B}$.

- Question: is $\operatorname{Syn}(\mathscr{A}) \subseteq \operatorname{Syn}(\mathscr{B})$ ?


## Theorem 1.

SYN-INCLUSION is in PSPACE.

Corollary 1.
SYN-EQUALITY, RESET-COMPLEXITY $(\leq)$ are in PSPACE.

## PSPACE-completeness: automaton $\mathscr{A}$

FINITE AUTOMATA INTERSECTION
-Input: given $n$ DFAs $M_{i}=\left\langle Q_{i}, \Sigma, \delta_{i}, q_{i}, F_{i}\right\rangle$, for $i=1, \ldots, n$.
-Question: is $\bigcap_{i} L\left[M_{i}\right] \neq \emptyset$ ?

- It is assumed that $|\Sigma|=2$.
- We construct the DFA $\mathscr{A}=\langle Q, \Delta, \varphi$,$\rangle with$


Lemma 1.

## PSPACE-completeness: automaton $\mathscr{A}$

FINITE AUTOMATA INTERSECTION
-Input: given $n$ DFAs $M_{i}=\left\langle Q_{i}, \Sigma, \delta_{i}, q_{i}, F_{i}\right\rangle$, for $i=1, \ldots, n$.
-Question: is $\bigcap_{i} L\left[M_{i}\right] \neq \emptyset$ ?

- It is assumed that $|\Sigma|=2$.
- We construct the DFA $\mathscr{A}=\langle Q, \Delta, \varphi$,$\rangle with$



## Lemma 1.

## PSPACE-completeness: automaton $\mathscr{A}$

FINITE AUTOMATA INTERSECTION
-Input: given $n$ DFAs $M_{i}=\left\langle Q_{i}, \Sigma, \delta_{i}, q_{i}, F_{i}\right\rangle$, for $i=1, \ldots, n$.
-Question: is $\bigcap_{i} L\left[M_{i}\right] \neq \emptyset$ ?

- It is assumed that $|\Sigma|=2$.
- We construct the DFA $\mathscr{A}=\langle Q, \Delta, \varphi$,$\rangle with$

$$
Q=\bigcup_{i=1}^{n} Q_{i} \cup\{s, h\} \text { and } \Delta=\Sigma \cup\{x, y, z\} .
$$



## PSPACE-completeness: automaton $\mathscr{A}$

FINITE AUTOMATA INTERSECTION
-Input: given $n$ DFAs $M_{i}=\left\langle Q_{i}, \Sigma, \delta_{i}, q_{i}, F_{i}\right\rangle$, for $i=1, \ldots, n$.
-Question: is $\bigcap_{i} L\left[M_{i}\right] \neq \emptyset$ ?

- It is assumed that $|\Sigma|=2$.
- We construct the DFA $\mathscr{A}=\langle Q, \Delta, \varphi$,$\rangle with$

$$
Q=\bigcup_{i=1}^{n} Q_{i} \cup\{s, h\} \text { and } \Delta=\Sigma \cup\{x, y, z\} .
$$

- $I=L_{1} \cup L_{2} ; L_{1}=(\Sigma \cup\{x\})^{*} y \Delta^{*} ; L_{2}=(\Sigma \cup\{x\})^{*} z \Delta^{+}$.


## PSPACE-completeness: automaton $\mathscr{A}$

## FINITE AUTOMATA INTERSECTION

-Input: given $n$ DFAs $M_{i}=\left\langle Q_{i}, \Sigma, \delta_{i}, q_{i}, F_{i}\right\rangle$, for $i=1, \ldots, n$.
-Question: is $\bigcap_{i} L\left[M_{i}\right] \neq \emptyset$ ?

- It is assumed that $|\Sigma|=2$.
- We construct the DFA $\mathscr{A}=\langle Q, \Delta, \varphi$,$\rangle with$

$$
Q=\bigcup_{i=1}^{n} Q_{i} \cup\{s, h\} \text { and } \Delta=\Sigma \cup\{x, y, z\} .
$$

- $I=L_{1} \cup L_{2} ; L_{1}=(\Sigma \cup\{x\})^{*} y \Delta^{*} ; L_{2}=(\Sigma \cup\{x\})^{*} z \Delta^{+}$.


## Lemma 1.

$\bigcap_{i=1}^{n} L\left[M_{i}\right]=\emptyset$ iff $\operatorname{Syn}(\mathscr{A})=I$.

## PSPACE-completeness: automaton $\mathscr{B}$

## Lemma 2.

$$
\operatorname{Syn}(\mathscr{B})=I .
$$



$$
I=L_{1} \cup L_{2} ; L_{1}=(\Sigma \cup\{x\})^{*} y \Delta^{*} ; L_{2}=(\Sigma \cup\{x\})^{*} z \Delta^{+} .
$$

## Lemma 3.

$\bigcap_{i=1}^{n} L\left[M_{i}\right]=\emptyset$ iff $\operatorname{Syn}(\mathscr{A})=\operatorname{Syn}(\mathscr{B})$.

## PSPACE-completeness: automaton $\mathscr{B}$

## Lemma 2.

$\operatorname{Syn}(\mathscr{B})=I$.

$I=L_{1} \cup L_{2} ; L_{1}=(\Sigma \cup\{x\})^{*} y \Delta^{*} ; L_{2}=(\Sigma \cup\{x\})^{*} z \Delta^{+}$.
Lemma 3.
$\bigcap_{i=1}^{n} L\left[M_{i}\right]=\emptyset$ iff $\operatorname{Syn}(\mathscr{A})=\operatorname{Syn}(\mathscr{B})$.

## PSPACE-completeness

Theorem 2.
SYN-EQUALITY is PSPACE-complete.

- Polynomial reduction from the negation of FINITE AUTOMATA INTERSECTION to SYN-EQUALITY.
- $\mathscr{B}$ is an MSA for $I$.
- $\mathscr{B}$ is a particular 3-state synchronizing automaton with a sink state.


## PSPACE-completeness

Theorem 2.
SYN-EQUALITY is PSPACE-complete.

- Polynomial reduction from the negation of FINITE AUTOMATA INTERSECTION to SYN-EQUALITY.
- $\mathscr{B}$ is an MSA for $I$.
- $\mathscr{B}$ is a particular 3 -state synchronizing automaton with a sink state.


## PSPACE-completeness

## Theorem 2.

SYN-EQUALITY is PSPACE-complete.

- Polynomial reduction from the negation of FINITE AUTOMATA INTERSECTION to SYN-EQUALITY.
- $\mathscr{B}$ is an MSA for $I$.
- $\mathscr{B}$ is a particular 3 -state synchronizing automaton with a sink state.


## Checking the inequality $r c(I) \leq k$

- Let $\mathscr{A}=\langle Q, \Sigma, \delta\rangle$ and $I=\operatorname{Syn}(\mathscr{A})$.
- The inequality $r c(I) \leq 2$ can be checked in polynomial of the size of $\mathscr{A}$ time.
- RESET-COMPLEXITY ( $\leq$ ) is in PSPACE
- We have constructed for each instance of FINITE AUTOMATA INTERSECTION the corresponding automaton $\mathscr{A}$. Let $I=\operatorname{Syn}(\mathscr{A})$.
- If $\bigcap_{i=1}^{n} L\left[M_{i}\right]=\emptyset$, then $I=J$, where $J$ is the language of reset words of a 3-state automaton $\mathscr{B}$. In this case $r c(I) \leq 3$.
- If $\bigcap_{i=1}^{n} L\left[M_{i}\right] \neq \emptyset$, then $I$ does not serve as the language of reset words for some automaton $\mathscr{B}$ with at most three states. In this case $r c(I)>3$.

[^0]
## Checking the inequality $r c(I) \leq k$

- Let $\mathscr{A}=\langle Q, \Sigma, \delta\rangle$ and $I=\operatorname{Syn}(\mathscr{A})$.
- The inequality $r c(I) \leq 2$ can be checked in polynomial of the size of $\mathscr{A}$ time.
- RESET-COMPLEXITY $(\leq)$ is in PSPACE.
- We have constructed for each instance of FINITE AUTOMATA INTERSECTION the corresponding automaton $\mathscr{A}$. Let $I=\operatorname{Syn}(\mathscr{A})$.
- If $\bigcap_{i=1}^{n} L\left[M_{i}\right]=\emptyset$, then $I=J$, where $J$ is the language of reset words of a 3-state automaton $\mathscr{B}$. In this case $r c(I) \leq 3$. - If $\bigcap_{i-1}^{n} L\left[M_{i}\right] \neq \emptyset$, then $I$ does not serve as the language of reset words for some automaton $\mathscr{B}$ with at most three states. In this case $r c(I)>3$.
$\square$
Theorem 3
RESET-COMPLEXITY $(\leq)$ is PSPACE-complete


## Checking the inequality $r c(I) \leq k$

- Let $\mathscr{A}=\langle Q, \Sigma, \delta\rangle$ and $I=\operatorname{Syn}(\mathscr{A})$.
- The inequality $r c(I) \leq 2$ can be checked in polynomial of the size of $\mathscr{A}$ time.
- RESET-COMPLEXITY $(\leq)$ is in PSPACE.
- We have constructed for each instance of FINITE AUTOMATA INTERSECTION the corresponding automaton $\mathscr{A}$. Let $I=\operatorname{Syn}(\mathscr{A})$.
- If $\bigcap_{i=1}^{n} L\left[M_{i}\right]=\emptyset$, then $I=J$, where $J$ is the language of reset words of a 3-state automaton $\mathscr{B}$. In this case $r c(I) \leq 3$ - If $\bigcap_{i-1}^{n} L\left[M_{i}\right] \neq \emptyset$, then $I$ does not serve as the language of reset words for some automaton $\mathscr{B}$ with at most three states. In this case $r c(I)>3$.
$\square$


## Checking the inequality $r c(I) \leq k$

- Let $\mathscr{A}=\langle Q, \Sigma, \delta\rangle$ and $I=\operatorname{Syn}(\mathscr{A})$.
- The inequality $r c(I) \leq 2$ can be checked in polynomial of the size of $\mathscr{A}$ time.
- RESET-COMPLEXITY $(\leq)$ is in PSPACE.
- We have constructed for each instance of FINITE AUTOMATA INTERSECTION the corresponding automaton $\mathscr{A}$. Let $I=\operatorname{Syn}(\mathscr{A})$.
- If $\bigcap_{i=1}^{n} L\left[M_{i}\right]=\emptyset$, then $I=J$, where $J$ is the language of reset words of a 3-state automaton $\mathscr{B}$. In this case $\operatorname{rc}(I) \leq 3$.
reset words for some automaton $\mathscr{B}$ with at most three states. In this case $r c(I)>3$.



## Checking the inequality $r c(I) \leq k$

- Let $\mathscr{A}=\langle Q, \Sigma, \delta\rangle$ and $I=\operatorname{Syn}(\mathscr{A})$.
- The inequality $r c(I) \leq 2$ can be checked in polynomial of the size of $\mathscr{A}$ time.
- RESET-COMPLEXITY $(\leq)$ is in PSPACE.
- We have constructed for each instance of FINITE AUTOMATA INTERSECTION the corresponding automaton $\mathscr{A}$. Let $I=\operatorname{Syn}(\mathscr{A})$.
- If $\bigcap_{i=1}^{n} L\left[M_{i}\right]=\emptyset$, then $I=J$, where $J$ is the language of reset words of a 3-state automaton $\mathscr{B}$. In this case $\operatorname{rc}(I) \leq 3$.
- If $\bigcap_{i=1}^{n} L\left[M_{i}\right] \neq \emptyset$, then $I$ does not serve as the language of reset words for some automaton $\mathscr{B}$ with at most three states. In this case $r c(I)>3$.


## Checking the inequality $r c(I) \leq k$

- Let $\mathscr{A}=\langle Q, \Sigma, \delta\rangle$ and $I=\operatorname{Syn}(\mathscr{A})$.
- The inequality $r c(I) \leq 2$ can be checked in polynomial of the size of $\mathscr{A}$ time.
- RESET-COMPLEXITY $(\leq)$ is in PSPACE.
- We have constructed for each instance of FINITE AUTOMATA INTERSECTION the corresponding automaton $\mathscr{A}$. Let $I=\operatorname{Syn}(\mathscr{A})$.
- If $\bigcap_{i=1}^{n} L\left[M_{i}\right]=\emptyset$, then $I=J$, where $J$ is the language of reset words of a 3 -state automaton $\mathscr{B}$. In this case $r c(I) \leq 3$.
- If $\bigcap_{i=1}^{n} L\left[M_{i}\right] \neq \emptyset$, then $I$ does not serve as the language of reset words for some automaton $\mathscr{B}$ with at most three states. In this case $r c(I)>3$.


## Theorem 3.

RESET-COMPLEXITY $(\leq)$ is PSPACE-complete.

- Computational complexity of RESET-COMPLEXITY ( $\leq$ ) for a non-unary alphabet of size less than five.
- Studying the reset complexity w.r.t. boolean operations: intersection, union, concatenation.
- Representation of ideal languages by non-deterministic finite automata.


## Future work

- Computational complexity of RESET-COMPLEXITY ( $\leq$ ) for a non-unary alphabet of size less than five.
- Studying the reset complexity w.r.t. boolean operations: intersection, union, concatenation.
- Representation of ideal languages by non-deterministic finite automata


## Future work

- Computational complexity of RESET-COMPLEXITY ( $\leq$ ) for a non-unary alphabet of size less than five.
- Studying the reset complexity w.r.t. boolean operations: intersection, union, concatenation.
- Representation of ideal languages by non-deterministic finite automata.


[^0]:    Theorem
    RFSFT-COMPLEXITY $(\leq)$ is PSPACE-complete

