Complexity of checking whether two automata

are synchronized by the same language

Marina Maslennikova

RuFiDiM 2014
Petrozavodsk, Russia, September 15-18, 2014

Institute of Mathematics and Computer Science
Ural Federal University, Ekaterinburg, Russia

Marina Maslennikova

@ A deterministic finite automaton (DFA) is a triple
o =(Q,%,0), where
— (@ is the state set;
— X is the input alphabet;
—-0:Q x X — @ is totally defined transition function.
We do not need any initial and final states.

Marina Maslennikova

@ A deterministic finite automaton (DFA) is a triple
o =(Q,%,0), where
— (@ is the state set;
— X is the input alphabet;
—-0:Q x X — @ is totally defined transition function.
We do not need any initial and final states.

@ X* stands for the set of all words over ¥ including the empty
word.

Marina Maslennikova

@ A deterministic finite automaton (DFA) is a triple
o =(Q,%,0), where
— (@ is the state set;
— X is the input alphabet;
—-0:Q x X — @ is totally defined transition function.
We do not need any initial and final states.

@ X* stands for the set of all words over ¥ including the empty
word.

@ The function § uniquely extends to a function @ x >* — @
still denoted by §.

Marina Maslennikova

@ A deterministic finite automaton (DFA) is a triple
o =(Q,%,0), where
— (@ is the state set;
— X is the input alphabet;
—-0:Q x X — @ is totally defined transition function.
We do not need any initial and final states.

@ X* stands for the set of all words over ¥ including the empty
word.

@ The function § uniquely extends to a function @ x >* — @
still denoted by §.

@ We often write ¢. w for 6(q,w) and P .w for
S(P,w) = {d(¢q,w) | g € P}.

Marina Maslennikova

o ADFA & =(Q,%,0) is called synchronizing if there exists a
word w € X* whose action resets 7, that is |Q . w| = 1.

Marina Maslennikova

o ADFA & =(Q,%,0) is called synchronizing if there exists a
word w € X* whose action resets 7, that is |Q . w| = 1.

@ Any word with this property is said to be reset for the DFA <.
@ Syn(/) is the language of all reset words for 7.

Marina Maslennikova

Example

A reset word is w = baab. Indeed, @ .w = {1}. In fact this is the
shortest reset word for this automaton.

Marina Maslennikova

Ideals and Synchronizing Automata

@ A language I C ¥* is called a two-sided ideal (or simply an
ideal) if I # () and I = X*I%*.

Marina Maslennikova

Ideals and Synchronizing Automata

@ A language I C ¥* is called a two-sided ideal (or simply an
ideal) if I # () and I = X*I%*.
@ For every synchronizing automaton 7 it holds

¥* Syn(«/)¥* = Syn().

Marina Maslennikova

Ideals and Synchronizing Automata

@ A language I C X* is called a two-sided ideal (or simply an
ideal) if I # 0 and T = X*I%*.

@ For every synchronizing automaton .« it holds
¥* Syn(«/)E* = Syn().

@ Every regular ideal language I is a language of reset words for
some synchronizing automaton 7 (e.g. for its minimal
recognizing automaton)

b a,b
OO

Lo/ =1 =¥*"a¥X* = Syn(«)

Marina Maslennikova

Reset Complexity

Ideal I
y \
Q(Z{I - 62172J 51 q07 QQaZ 62 Syn) I
wel s qpuweF wele|Qr.w =1

Marina Maslennikova

Reset Complexity

Ideal I
y \
Q(Z{I - 62172J 51 q07 QQaZ 62 Syn) I
wel s qpuweF wele|Qr.w =1

@ The state complexity sc(I) of a regular language I is the
number of sates in the minimal automaton recognizing I.

Marina Maslennikova

Reset Complexity

Ideal I
y \
Q(Z{I - 62172J 51 q07 QQaZ 62 Syn) I
wel s qpuweF wele|Qr.w =1

@ The state complexity sc(I) of a regular language I is the
number of sates in the minimal automaton recognizing I.

@ The reset complexity rc(I) of an ideal language I is the
minimal possible number of states in a synchronizing
automaton % such that Syn(%) = I.

Every such automaton & is called minimal synchronizing
automaton (for brevity, MSA).

Marina Maslennikova

Reset Complexity VS State Complexity

@ For every ideal language rc(1) < sc([).
a,b

b

Marina Maslennikova

Reset Complexity VS State Complexity

@ For every ideal language rc(1) < sc([).
a,b

b
o L[] =1=%*a¥* = Syn(«)
@ &/ is an MSA for I

® o/ is the minimal automaton recognizing I
o re(l) =sc(l) =2

Marina Maslennikova

Reset Complexity VS State Complexity

@ For every ideal language rc(1) < sc([).
a,b

b
o L[] =1=%*a¥* = Syn(«)
@ &/ is an MSA for I

® o/ is the minimal automaton recognizing I
o re(l) =sc(l) =2

Theorem [M.,2012]

For every n > 3 there are ideals I,, s.t. r¢(l,) = n, and
se(Iy) =2" —n.

Marina Maslennikova

Reset Complexity

@ The representation of an ideal language by an MSA can be
exponentially more succinct than using the standard minimal
recognizing automaton.

@ We do not know how to compute rc¢(I), and how to build the
corresponding automaton. One difficulty is that such
automaton is not unique. a

Automaton 2%

Automaton 2%

Marina Maslennikova

Reset Complexity

@ The representation of an ideal language by an MSA can be
exponentially more succinct than using the standard minimal
recognizing automaton.

@ We do not know how to compute rc¢(I), and how to build the
corresponding automaton. One difficulty is that such
automaton is not unique. a

Automaton &7
o [= Syn(e) = Syn(ah) = X*abaX*.
@ o/ and w75 are MSA's for I.

Automaton 2%

Marina Maslennikova

@ An ideal [is presented by a DFA </ with Syn(</) = I. Let
rc(I) < k. It means that there exists some automaton % with
at most k states s.t. Syn(#) = 1.

Marina Maslennikova

@ An ideal [is presented by a DFA </ with Syn(</) = I. Let
rc(I) < k. It means that there exists some automaton % with
at most k states s.t. Syn(#) = 1.

How hard is it to verify the equality Syn(<7) = Syn(%)?

Marina Maslennikova

@ An ideal [is presented by a DFA </ with Syn(</) = I. Let
rc(I) < k. It means that there exists some automaton % with
at most k states s.t. Syn(#) = 1.

How hard is it to verify the equality Syn(<7) = Syn(%)?

How hard is it to verify the inequality rc(I) < k7

Marina Maslennikova

@ An ideal [is presented by a DFA </ with Syn(</) = I. Let
rc(I) < k. It means that there exists some automaton % with
at most k states s.t. Syn(#) = 1.

How hard is it to verify the equality Syn(<7) = Syn(%)?

How hard is it to verify the inequality rc(I) < k7

@ DFA's case: the equality L[«7] = L[%] can be checked easily.

Marina Maslennikova

@ An ideal [is presented by a DFA </ with Syn(</) = I. Let
rc(I) < k. It means that there exists some automaton % with
at most k states s.t. Syn(#) = 1.

How hard is it to verify the equality Syn(<7) = Syn(%)?

How hard is it to verify the inequality rc(I) < k7

@ DFA's case: the equality L[«7] = L[%] can be checked easily.
@ Syn(&7) and Syn(%) are regular languages.

Marina Maslennikova

@ An ideal [is presented by a DFA </ with Syn(</) = I. Let
rc(I) < k. It means that there exists some automaton % with
at most k states s.t. Syn(#) = 1.

How hard is it to verify the equality Syn(<7) = Syn(%)?

How hard is it to verify the inequality rc(I) < k7

@ DFA's case: the equality L[«7] = L[%] can be checked easily.
@ Syn(&7) and Syn(%) are regular languages.

@ Obstacle: the minimal automaton recognizing Syn (<) has up
to 2" — n states, where n is the size of <.

Marina Maslennikova

SYN-EQUALITY
—Input: synchronizing automata &/ and %.
—Question: is Syn(«/) = Syn(%#)?

Marina Maslennikova

SYN-EQUALITY

—Input: synchronizing automata &/ and %.
—Question: is Syn(«/) = Syn(%)?
RESET-COMPLEXITY (<)

—Input: a synchronizing automaton &7, k € N.
—Question: is r¢(I) < k, where I = Syn(/)?

Marina Maslennikova

Belonging to PSPACE

SYN-INCLUSION
—Input: synchronizing automata &/ and %.
—Question: is Syn(e/) C Syn(#)?

Marina Maslennikova

Belonging to PSPACE

SYN-INCLUSION
—Input: synchronizing automata &/ and %.

—Question: is Syn(e/) C Syn(#)?

SYN-INCLUSION is in PSPACE.

Marina Maslennikova

Belonging to PSPACE

SYN-INCLUSION
—Input: synchronizing automata &/ and %.

—Question: is Syn(e/) C Syn(#)?

SYN-INCLUSION is in PSPACE.
SYN-EQUALITY, RESET-COMPLEXITY (<) are in PSPACE.

Marina Maslennikova

PSPACE-completeness: automaton &7

FINITE AUTOMATA INTERSECTION
—Input: given n DFAs M; = (Q;, %, 0;,¢;, F;), fori=1,...,n.
—Question: is (); L[M;] # 07

Marina Maslennikova

PSPACE-completeness: automaton &7

FINITE AUTOMATA INTERSECTION
—Input: given n DFAs M; = (Q;, %, 0;,¢;, F;), fori=1,...,n.
—Question: is (); L[M;] # 07

@ It is assumed that |X| = 2.

Marina Maslennikova

PSPACE-completeness: automaton &7

FINITE AUTOMATA INTERSECTION
—Input: given n DFAs M; = (Q;, %, 0;,¢;, F;), fori=1,...,n.
—Question: is (); L[M;] # 07
@ It is assumed that |X| = 2.
@ We construct the DFA o7 = (Q, A, ¢,) with
Q=Ui, QiU{s,h} and A =X U {x,y,z}.

Marina Maslennikova

PSPACE-completeness: automaton &7

FINITE AUTOMATA INTERSECTION
—Input: given n DFAs M; = (Q;, %, 0;,¢;, F;), fori=1,...,n.
—Question: is (); L[M;] # 07
@ It is assumed that |X| = 2.
@ We construct the DFA o7 = (Q, A, ¢,) with
Q=Ui, QiU{s,h} and A =X U {x,y,z}.
0 [=L1ULy Ly = (ZU{z})*yA* Ly = (U {z})*2AT.

Marina Maslennikova

PSPACE-completeness: automaton &7

FINITE AUTOMATA INTERSECTION
—Input: given n DFAs M; = (Q;, %, 0;,¢;, F;), fori=1,...,n.
—Question: is (); L[M;] # 07

@ It is assumed that |X| = 2.

@ We construct the DFA o7 = (Q, A, ¢,) with
Q=Ui, QiU{s,h} and A =X U {x,y,z}.
@ I=0L1ULsg; L1 = (Z U {a:})*yA*, Lo = (Z U {x})*zA+

i, L[M;] = 0 iff Syn(«/) = 1.

Marina Maslennikova

PSPACE-completeness: automaton %

Syn(#) = 1.

I=1L1ULy; Ly = (ZU{z})*yA*; Ly = (XU {z})*zAT.

Marina Maslennikova

PSPACE-completeness: automaton %

Syn(#) = 1.

I=1L1ULy; Ly = (ZU{z})*yA*; Ly = (XU {z})*zAT.

Niz; L[M;] = 0 iff Syn(«/) = Syn(2A).

Marina Maslennikova

PSPACE-completeness

SYN-EQUALITY is PSPACE-complete.

Marina Maslennikova

PSPACE-completeness

SYN-EQUALITY is PSPACE-complete.

@ Polynomial reduction from the negation of FINITE
AUTOMATA INTERSECTION to SYN-EQUALITY.

@ % is an MSA for I.

Marina Maslennikova

PSPACE-completeness

SYN-EQUALITY is PSPACE-complete.

@ Polynomial reduction from the negation of FINITE
AUTOMATA INTERSECTION to SYN-EQUALITY.

@ A is an MSA for I.
@ A is a particular 3-state synchronizing automaton with a sink
state.

Marina Maslennikova

Checking the inequality rc(l) < k

o Let & = (Q,%,0) and I = Syn(</).
@ The inequality r¢(I) < 2 can be checked in polynomial of the
size of &7 time.

Marina Maslennikova

Checking the inequality rc(l) < k

o Let & = (Q,%,0) and I = Syn(</).

@ The inequality r¢(I) < 2 can be checked in polynomial of the
size of &7 time.

@ RESET-COMPLEXITY (<) is in PSPACE.

Marina Maslennikova

Checking the inequality rc(l) < k

o Let & = (Q,%,0) and I = Syn(</).

@ The inequality r¢(I) < 2 can be checked in polynomial of the
size of &7 time.

@ RESET-COMPLEXITY (<) is in PSPACE.

@ We have constructed for each instance of FINITE
AUTOMATA INTERSECTION the corresponding automaton
/. Let I = Syn(<).

Marina Maslennikova

Checking the inequality rc(l) < k

o Let & = (Q,%,0) and I = Syn(</).

@ The inequality r¢(I) < 2 can be checked in polynomial of the
size of &/ time.

@ RESET-COMPLEXITY (<) is in PSPACE.

@ We have constructed for each instance of FINITE

AUTOMATA INTERSECTION the corresponding automaton
/. Let I = Syn(<).

o If N, L[M;] =0, then I = J, where J is the language of
reset words of a 3-state automaton . In this case rc(I) < 3.

Marina Maslennikova

Checking the inequality rc(l) < k

o Let & = (Q,%,0) and I = Syn(</).

@ The inequality r¢(I) < 2 can be checked in polynomial of the
size of &7 time.

@ RESET-COMPLEXITY (<) is in PSPACE.

@ We have constructed for each instance of FINITE
AUTOMATA INTERSECTION the corresponding automaton
/. Let I = Syn(<).

o If N, L[M;] =0, then I = J, where J is the language of
reset words of a 3-state automaton . In this case rc(I) < 3.

o If (N, L[M;] # 0, then I does not serve as the language of
reset words for some automaton % with at most three states.
In this case rc(I) > 3.

Marina Maslennikova

Checking the inequality rc(I) < k

o Let & = (Q,%,0) and I = Syn(</).

@ The inequality r¢(I) < 2 can be checked in polynomial of the
size of &7 time.

@ RESET-COMPLEXITY (<) is in PSPACE.

@ We have constructed for each instance of FINITE
AUTOMATA INTERSECTION the corresponding automaton
of. Let I = Syn(«/).

o If N, L[M;] =0, then I = J, where J is the language of
reset words of a 3-state automaton . In this case rc(I) < 3.

o If (N, L[M;] # 0, then I does not serve as the language of
reset words for some automaton % with at most three states.
In this case rc(I) > 3.

RESET-COMPLEXITY (<) is PSPACE-complete.

Marina Maslennikova

@ Computational complexity of RESET-COMPLEXITY (<) for
a non-unary alphabet of size less than five.

Marina Maslennikova

@ Computational complexity of RESET-COMPLEXITY (<) for
a non-unary alphabet of size less than five.

@ Studying the reset complexity w.r.t. boolean operations:
intersection, union, concatenation.

Marina Maslennikova

@ Computational complexity of RESET-COMPLEXITY (<) for
a non-unary alphabet of size less than five.

@ Studying the reset complexity w.r.t. boolean operations:
intersection, union, concatenation.

@ Representation of ideal languages by non-deterministic finite
automata.

Marina Maslennikova

