Principal (left) ideal languages, constants and synchronizing automata

Marina Maslennikova¹ and Emanuele Rodaro²

¹Ural Federal University, Ekaterinburg, Russia

²University of Porto, Porto, Portugal

RuFiDiM 2014 Petrozavodsk, Russia, September 15–18, 2014

Institute of Mathematics and Computer Science Ural Federal University, Ekaterinburg, Russia

- A deterministic finite automaton (DFA) is a triple $\mathscr{A} = \langle Q, \Sigma, \delta \rangle$. We do not need any initial and final states.
- We often write $q \cdot w$ for $\delta(q, w)$ and $P \cdot w$ for $\delta(P, w) = \{\delta(q, w) \mid q \in P\}.$
- A DFA A = ⟨Q,Σ,δ⟩ is called synchronizing if there exists a word w ∈ Σ* whose action resets A, that is |Q.w| = 1.
- Any word with this property is said to be *reset* for the DFA *A*.
- $Syn(\mathscr{A})$ is the language of all reset words for \mathscr{A} .
- $||Syn(\mathscr{A})||$ is the length of the shortest reset word for a DFA \mathscr{A} .

御 と く ヨ と く ヨ と

- A deterministic finite automaton (DFA) is a triple $\mathscr{A} = \langle Q, \Sigma, \delta \rangle$. We do not need any initial and final states.
- We often write $q \cdot w$ for $\delta(q, w)$ and $P \cdot w$ for $\delta(P, w) = \{\delta(q, w) \mid q \in P\}.$
- A DFA 𝒴 = ⟨Q, Σ, δ⟩ is called synchronizing if there exists a word w ∈ Σ* whose action resets 𝒴, that is |Q.w| = 1.
- Any word with this property is said to be *reset* for the DFA *A*.
- $Syn(\mathscr{A})$ is the language of all reset words for \mathscr{A} .
- $||Syn(\mathscr{A})||$ is the length of the shortest reset word for a DFA \mathscr{A} .

回 と く ヨ と く ヨ と

- A deterministic finite automaton (DFA) is a triple $\mathscr{A} = \langle Q, \Sigma, \delta \rangle$. We do not need any initial and final states.
- We often write $q \cdot w$ for $\delta(q, w)$ and $P \cdot w$ for $\delta(P, w) = \{\delta(q, w) \mid q \in P\}.$
- A DFA 𝒴 = ⟨Q, Σ, δ⟩ is called synchronizing if there exists a word w ∈ Σ* whose action resets 𝒴, that is |Q.w| = 1.
- Any word with this property is said to be *reset* for the DFA *A*.
- $Syn(\mathscr{A})$ is the language of all reset words for \mathscr{A} .
- $||Syn(\mathscr{A})||$ is the length of the shortest reset word for a DFA \mathscr{A} .

白 と く ヨ と く ヨ と …

- A deterministic finite automaton (DFA) is a triple $\mathscr{A} = \langle Q, \Sigma, \delta \rangle$. We do not need any initial and final states.
- We often write $q \cdot w$ for $\delta(q, w)$ and $P \cdot w$ for $\delta(P, w) = \{\delta(q, w) \mid q \in P\}.$
- A DFA 𝒴 = ⟨Q, Σ, δ⟩ is called synchronizing if there exists a word w ∈ Σ* whose action resets 𝒴, that is |Q.w| = 1.
- Any word with this property is said to be *reset* for the DFA *A*.
- $Syn(\mathscr{A})$ is the language of all reset words for \mathscr{A} .
- ||Syn(𝒜)|| is the length of the shortest reset word for a DFA 𝒜.

回 と く ヨ と く ヨ と …

- A deterministic finite automaton (DFA) is a triple $\mathscr{A} = \langle Q, \Sigma, \delta \rangle$. We do not need any initial and final states.
- We often write $q \cdot w$ for $\delta(q, w)$ and $P \cdot w$ for $\delta(P, w) = \{\delta(q, w) \mid q \in P\}.$
- A DFA 𝒴 = ⟨Q, Σ, δ⟩ is called synchronizing if there exists a word w ∈ Σ* whose action resets 𝒴, that is |Q.w| = 1.
- Any word with this property is said to be *reset* for the DFA *A*.
- $Syn(\mathscr{A})$ is the language of all reset words for \mathscr{A} .
- $||\operatorname{Syn}(\mathscr{A})||$ is the length of the shortest reset word for a DFA \mathscr{A} .

白 と く ヨ と く ヨ と …

The Černý conjecture

In 1964 Jan Černý found an infinite series of *n*-state synchronizing automata whose shortest reset word has length $(n-1)^2$.

The Černý conjecture

Any synchronizing automaton with n states has a reset word of length at most $(n-1)^2$.

The Černý conjecture

In 1964 Jan Černý found an infinite series of *n*-state synchronizing automata whose shortest reset word has length $(n-1)^2$.

The Černý conjecture

Any synchronizing automaton with n states has a reset word of length at most $(n-1)^2. \label{eq:nonlinear}$

M. Maslennikova, E. Rodaro

Ideals and the Černý conjecture

- A language $I \subseteq \Sigma^*$ is called a *two-sided* (*right* or *left*, respectively) *ideal* if $I \neq \emptyset$ and $I = \Sigma^* I \Sigma^*$ ($I = I \Sigma^*$ or $I = \Sigma^* I$, respectively).
- The *reset complexity* of a two-sided ideal *I* is the minimal possible number of states in a synchronizing automaton \mathscr{B} such that $\operatorname{Syn}(\mathscr{B}) = I$.

The Černý conjecture (reformulation)

The Černý conjecture holds true iff $rc(I) \ge \sqrt{||I||} + 1$ for every two-sided ideal I.

Ideals and the Černý conjecture

- A language $I \subseteq \Sigma^*$ is called a *two-sided* (*right* or *left*, respectively) *ideal* if $I \neq \emptyset$ and $I = \Sigma^* I \Sigma^*$ ($I = I \Sigma^*$ or $I = \Sigma^* I$, respectively).
- The *reset complexity* of a two-sided ideal *I* is the minimal possible number of states in a synchronizing automaton \mathscr{B} such that $\operatorname{Syn}(\mathscr{B}) = I$.

The Černý conjecture (reformulation)

The Černý conjecture holds true iff $rc(I) \ge \sqrt{||I||} + 1$ for every two-sided ideal I.

(4回) (三) (三)

- A language $I \subseteq \Sigma^*$ is called a *two-sided* (*right* or *left*, respectively) *ideal* if $I \neq \emptyset$ and $I = \Sigma^* I \Sigma^*$ ($I = I \Sigma^*$ or $I = \Sigma^* I$, respectively).
- The *reset complexity* of a two-sided ideal *I* is the minimal possible number of states in a synchronizing automaton \mathscr{B} such that $\operatorname{Syn}(\mathscr{B}) = I$.

The Černý conjecture (reformulation)

The Černý conjecture holds true iff $rc(I) \ge \sqrt{||I||} + 1$ for every two-sided ideal I.

The Černý conjecture and strongly connected automata

Considered classes of automata:

- automata with a sink state;
- strongly connected automata.

The Černý conjecture holds true iff it holds true for strongly connected automata.

Question

Given a two-sided ideal I, does there always exist a strongly connected synchronizing automaton \mathscr{B} with $\operatorname{Syn}(\mathscr{B}) = I$?

The Černý conjecture and strongly connected automata

Considered classes of automata:

- automata with a sink state;
- strongly connected automata.

The Černý conjecture holds true iff it holds true for strongly connected automata.

Question

Given a two-sided ideal I, does there always exist a strongly connected synchronizing automaton \mathscr{B} with $\operatorname{Syn}(\mathscr{B}) = I$?

The Černý conjecture and strongly connected automata

Considered classes of automata:

- automata with a sink state;
- strongly connected automata.

The Černý conjecture holds true iff it holds true for strongly connected automata.

Question

Given a two-sided ideal I, does there always exist a strongly connected synchronizing automaton \mathscr{B} with $\operatorname{Syn}(\mathscr{B}) = I$?

Theorem (Reis and Rodaro, 2013)

Let I be a two-sided ideal language over non-unary alphabet. There is a strongly connected DFA \mathscr{B} s.t. $Syn(\mathscr{B}) = I$.

Theorem (Gusev, M., Pribavkina, 2014)

If I is a principal two-sided ideal, i.e. $I = \Sigma^* w \Sigma^*$, then there is an algorithm to construct a strongly connected synchronizing automaton \mathscr{B} with |w| + 1 states such that $\operatorname{Syn}(\mathscr{B}) = I$.

Can we do better?

Theorem 1

Let $I = \Sigma^* w \Sigma^*$ for some $w \in \Sigma^*$. In this case rc(I) = |w| + 1.

<ロ> (四) (四) (日) (日) (日)

Theorem (Reis and Rodaro, 2013)

Let I be a two-sided ideal language over non-unary alphabet. There is a strongly connected DFA \mathscr{B} s.t. $Syn(\mathscr{B}) = I$.

Theorem (Gusev, M., Pribavkina, 2014)

If I is a principal two-sided ideal, i.e. $I = \Sigma^* w \Sigma^*$, then there is an algorithm to construct a strongly connected synchronizing automaton \mathscr{B} with |w| + 1 states such that $\operatorname{Syn}(\mathscr{B}) = I$.

Can we do better?

Theorem 1

Let $I = \Sigma^* w \Sigma^*$ for some $w \in \Sigma^*$. In this case rc(I) = |w| + 1.

<ロ> (四) (四) (日) (日) (日)

Theorem (Reis and Rodaro, 2013)

Let I be a two-sided ideal language over non-unary alphabet. There is a strongly connected DFA \mathscr{B} s.t. $Syn(\mathscr{B}) = I$.

Theorem (Gusev, M., Pribavkina, 2014)

If I is a principal two-sided ideal, i.e. $I = \Sigma^* w \Sigma^*$, then there is an algorithm to construct a strongly connected synchronizing automaton \mathscr{B} with |w| + 1 states such that $\operatorname{Syn}(\mathscr{B}) = I$.

Can we do better?

Theorem 1.

Let $I = \Sigma^* w \Sigma^*$ for some $w \in \Sigma^*$. In this case rc(I) = |w| + 1.

<ロ> (四) (四) (日) (日) (日)

- The (left) quotient w⁻¹L of a language L ⊆ Σ* by a word w ∈ Σ* is the language w⁻¹L = {x|wx ∈ L}.
- A DFA 𝒜 = ⟨Q, Σ, δ, q₀, {q₀}⟩ is called *trim* if each state q ∈ Q is reachable from q₀ and q₀ is reachable from each state q ∈ Q.
- $\mathcal{L}(\Sigma)$ is the class of all trim automata \mathscr{A} with $L[\mathscr{A}] = w^{-1}\Sigma^* w$ for some $w \in \Sigma^*$.
- A DFA $\mathscr{B} = \langle Q_2, \Sigma, \delta_2 \rangle$ is a *homomorphic image* of a DFA $\mathscr{A} = \langle Q_1, \Sigma, \delta_1 \rangle$ if there is a map $\varphi : Q_1 \to Q_2$ preserving the action of letters.
- A *congruence* of a DFA *A* is an equivalence relation on the state set of *A* compatible with the action of the letters.

- The (left) quotient w⁻¹L of a language L ⊆ Σ* by a word w ∈ Σ* is the language w⁻¹L = {x|wx ∈ L}.
- A DFA $\mathscr{A} = \langle Q, \Sigma, \delta, q_0, \{q_0\} \rangle$ is called *trim* if each state $q \in Q$ is reachable from q_0 and q_0 is reachable from each state $q \in Q$.
- $\mathcal{L}(\Sigma)$ is the class of all trim automata \mathscr{A} with $L[\mathscr{A}] = w^{-1}\Sigma^* w$ for some $w \in \Sigma^*$.
- A DFA $\mathscr{B} = \langle Q_2, \Sigma, \delta_2 \rangle$ is a *homomorphic image* of a DFA $\mathscr{A} = \langle Q_1, \Sigma, \delta_1 \rangle$ if there is a map $\varphi : Q_1 \to Q_2$ preserving the action of letters.
- A *congruence* of a DFA *A* is an equivalence relation on the state set of *A* compatible with the action of the letters.

回 と く ヨ と く ヨ と

- The (left) quotient w⁻¹L of a language L ⊆ Σ* by a word w ∈ Σ* is the language w⁻¹L = {x|wx ∈ L}.
- A DFA $\mathscr{A} = \langle Q, \Sigma, \delta, q_0, \{q_0\} \rangle$ is called *trim* if each state $q \in Q$ is reachable from q_0 and q_0 is reachable from each state $q \in Q$.
- $\mathcal{L}(\Sigma)$ is the class of all trim automata \mathscr{A} with $L[\mathscr{A}] = w^{-1}\Sigma^* w$ for some $w \in \Sigma^*$.
- A DFA ℬ = ⟨Q₂, Σ, δ₂⟩ is a *homomorphic image* of a DFA ℬ = ⟨Q₁, Σ, δ₁⟩ if there is a map φ : Q₁ → Q₂ preserving the action of letters.
- A *congruence* of a DFA *A* is an equivalence relation on the state set of *A* compatible with the action of the letters.

白 と く ヨ と く ヨ と …

- The (left) quotient w⁻¹L of a language L ⊆ Σ* by a word w ∈ Σ* is the language w⁻¹L = {x|wx ∈ L}.
- A DFA $\mathscr{A} = \langle Q, \Sigma, \delta, q_0, \{q_0\} \rangle$ is called *trim* if each state $q \in Q$ is reachable from q_0 and q_0 is reachable from each state $q \in Q$.
- $\mathcal{L}(\Sigma)$ is the class of all trim automata \mathscr{A} with $L[\mathscr{A}] = w^{-1}\Sigma^* w$ for some $w \in \Sigma^*$.
- A DFA $\mathscr{B} = \langle Q_2, \Sigma, \delta_2 \rangle$ is a *homomorphic image* of a DFA $\mathscr{A} = \langle Q_1, \Sigma, \delta_1 \rangle$ if there is a map $\varphi : Q_1 \to Q_2$ preserving the action of letters.
- A *congruence* of a DFA *A* is an equivalence relation on the state set of *A* compatible with the action of the letters.

御 と く ヨ と く ヨ と …

- The (left) quotient w⁻¹L of a language L ⊆ Σ* by a word w ∈ Σ* is the language w⁻¹L = {x|wx ∈ L}.
- A DFA $\mathscr{A} = \langle Q, \Sigma, \delta, q_0, \{q_0\} \rangle$ is called *trim* if each state $q \in Q$ is reachable from q_0 and q_0 is reachable from each state $q \in Q$.
- $\mathcal{L}(\Sigma)$ is the class of all trim automata \mathscr{A} with $L[\mathscr{A}] = w^{-1}\Sigma^* w$ for some $w \in \Sigma^*$.
- A DFA $\mathscr{B} = \langle Q_2, \Sigma, \delta_2 \rangle$ is a *homomorphic image* of a DFA $\mathscr{A} = \langle Q_1, \Sigma, \delta_1 \rangle$ if there is a map $\varphi : Q_1 \to Q_2$ preserving the action of letters.
- A *congruence* of a DFA *A* is an equivalence relation on the state set of *A* compatible with the action of the letters.

・ 回 と ・ ヨ と ・ ヨ と

Lemma 1.

Let \mathscr{A} be a trim DFA such that $L[\mathscr{A}] = w^{-1}\Sigma^* w$ for some $w \in \Sigma^*$. Hence \mathscr{A} is a strongly connected synchronizing automaton with $w \in \text{Syn}(\mathscr{A})$.

Theorem 2

Let $\mathscr{B} = \langle Q, \Sigma, \delta \rangle$ be a strongly connected synchronizing automaton. For each reset word $w \in \operatorname{Syn}(\mathscr{B})$ of minimal length there is a DFA $\mathscr{A} \in \mathcal{L}(\Sigma)$ with $L[\mathscr{A}] = w^{-1}\Sigma^*w$ and

$$\Sigma^* w \Sigma^* \subseteq \operatorname{Syn}(\mathscr{A}) \subseteq \operatorname{Syn}(\mathscr{B})$$

<ロ> (四) (四) (日) (日) (日)

such that \mathscr{B} is a homomorphic image of \mathscr{A} .

Lemma 1.

Let \mathscr{A} be a trim DFA such that $L[\mathscr{A}] = w^{-1}\Sigma^* w$ for some $w \in \Sigma^*$. Hence \mathscr{A} is a strongly connected synchronizing automaton with $w \in \text{Syn}(\mathscr{A})$.

Theorem 2.

Let $\mathscr{B} = \langle Q, \Sigma, \delta \rangle$ be a strongly connected synchronizing automaton. For each reset word $w \in \operatorname{Syn}(\mathscr{B})$ of minimal length there is a DFA $\mathscr{A} \in \mathcal{L}(\Sigma)$ with $L[\mathscr{A}] = w^{-1}\Sigma^*w$ and

$$\Sigma^* w \Sigma^* \subseteq \operatorname{Syn}(\mathscr{A}) \subseteq \operatorname{Syn}(\mathscr{B})$$

イロン イヨン イヨン -

such that \mathscr{B} is a homomorphic image of \mathscr{A} .

- Strongly connected synchronizing automata are all and only homomorphic images of trim automata recognizing languages of the kind $w^{-1}\Sigma^*w$.
- Cong_k is the (maybe empty) set of all congruences of an automaton of index k.

Theorem 3

Cerny's conjecture holds if and only if for any $\mathscr{B} \in \mathcal{L}(\Sigma)$ and $\rho \in \operatorname{Cong}_k(\mathscr{B})$ for all $k < \sqrt{\|\operatorname{Syn}(\mathscr{B})\|} + 1$ we have

 $|\operatorname{Syn}(\mathscr{B}/\rho)\| < ||\operatorname{Syn}(\mathscr{B})||$

個 と く ヨ と く ヨ と

- Strongly connected synchronizing automata are all and only homomorphic images of trim automata recognizing languages of the kind $w^{-1}\Sigma^*w$.
- Cong_k is the (maybe empty) set of all congruences of an automaton of index k.

Theorem 3

Cerny's conjecture holds if and only if for any $\mathscr{B} \in \mathcal{L}(\Sigma)$ and $\rho \in \operatorname{Cong}_k(\mathscr{B})$ for all $k < \sqrt{\|\operatorname{Syn}(\mathscr{B})\|} + 1$ we have

 $|\operatorname{Syn}(\mathscr{B}/\rho)\| < ||\operatorname{Syn}(\mathscr{B})||$

- 4 回 2 - 4 □ 2 - 4 □

- Strongly connected synchronizing automata are all and only homomorphic images of trim automata recognizing languages of the kind $w^{-1}\Sigma^*w$.
- Cong_k is the (maybe empty) set of all congruences of an automaton of index k.

Theorem 3.

Cerny's conjecture holds if and only if for any $\mathscr{B} \in \mathcal{L}(\Sigma)$ and $\rho \in \operatorname{Cong}_k(\mathscr{B})$ for all $k < \sqrt{\|\operatorname{Syn}(\mathscr{B})\|} + 1$ we have

 $\|\operatorname{Syn}(\mathscr{B}/\rho)\|<\|\operatorname{Syn}(\mathscr{B})\|$

- * @ * * 注 * * 注 * … 注

The construction is similar to the construction of the minimal DFA recognizing the language $L = \Sigma^* w \Sigma^*$.

The states are enumerated by prefixes of w: $p_0 = \varepsilon$, $p_1 = a$, $p_2 = ab$. The initial (and also final) state is w.

 $p_i \cdot a = p_j$ iff p_j is the maximal suffix of $p_i a$ that appears in w as a prefix.

Regular languages and synchronizing automata

- The minimal automaton A_w recognizing w⁻¹Σ*w is synchronizing and L[A_w] ∩ Syn(A_w) ≠ Ø, since w ∈ L[A_w] ∩ Syn(A_w).
- Question: how to describe regular languages whose minimal recognizing automaton is synchronizing?
- A partial finite automaton (PFA) is a triple \$\alpha\$ = \$\langle Q, Σ, δ\$\rangle\$, where the action of the transition function may be undefined on some states.
- A partial finite automaton A = ⟨Q, Σ, δ⟩ is said to be synchronizing if there is a word w ∈ Σ* such that |Q.w| ≤ 1.

□ > 《 E > 《 E >

Regular languages and synchronizing automata

- The minimal automaton A_w recognizing w⁻¹Σ*w is synchronizing and L[A_w] ∩ Syn(A_w) ≠ Ø, since w ∈ L[A_w] ∩ Syn(A_w).
- Question: how to describe regular languages whose minimal recognizing automaton is synchronizing?
- A partial finite automaton (PFA) is a triple \$\alpha\$ = \$\langle Q, Σ, δ\$\rangle\$, where the action of the transition function may be undefined on some states.
- A partial finite automaton A = ⟨Q, Σ, δ⟩ is said to be synchronizing if there is a word w ∈ Σ* such that |Q.w| ≤ 1.

- 4 回 2 - 4 三 2 - 4 三 2 - 4

Regular languages and synchronizing automata

- The minimal automaton A_w recognizing w⁻¹Σ*w is synchronizing and L[A_w] ∩ Syn(A_w) ≠ Ø, since w ∈ L[A_w] ∩ Syn(A_w).
- Question: how to describe regular languages whose minimal recognizing automaton is synchronizing?
- A partial finite automaton (PFA) is a triple *A* = (Q, Σ, δ), where the action of the transition function may be undefined on some states.
- A partial finite automaton A = ⟨Q, Σ, δ⟩ is said to be synchronizing if there is a word w ∈ Σ* such that |Q.w| ≤ 1.

< 口 > < 回 > < 回 > < 回 > < 回 > <

- The minimal automaton A_w recognizing w⁻¹Σ*w is synchronizing and L[A_w] ∩ Syn(A_w) ≠ Ø, since w ∈ L[A_w] ∩ Syn(A_w).
- Question: how to describe regular languages whose minimal recognizing automaton is synchronizing?
- A partial finite automaton (PFA) is a triple *A* = (Q, Σ, δ), where the action of the transition function may be undefined on some states.
- A partial finite automaton A = ⟨Q, Σ, δ⟩ is said to be synchronizing if there is a word w ∈ Σ* such that |Q.w| ≤ 1.

イロン イ部ン イヨン イヨン 三日

Let L ⊆ Σ* be a regular language. A word w ∈ Σ* is a constant for L if the implication

 $u_1wu_2 \in L, u_3wu_4 \in L \Rightarrow u_1wu_4 \in L$

holds for all $u_1, u_2, u_3, u_4 \in \Sigma^*$.

• C(L) is the set of all constants of a regular language L.

• $Z(L) = \{w | \Sigma^* w \Sigma^* \cap L = \emptyset\}, \ Z(L) \subseteq C(L).$

Let A = ⟨Q,Σ,δ⟩ be the minimal automaton recognizing a regular language L. In this case w ∈ C(L) iff |Q.w| ≤ 1.

Let L ⊆ Σ* be a regular language. A word w ∈ Σ* is a constant for L if the implication

$$u_1wu_2 \in L, u_3wu_4 \in L \Rightarrow u_1wu_4 \in L$$

holds for all $u_1, u_2, u_3, u_4 \in \Sigma^*$.

- C(L) is the set of all constants of a regular language L.
- $Z(L) = \{w | \Sigma^* w \Sigma^* \cap L = \emptyset\}, \ Z(L) \subseteq C(L).$
- Let A = ⟨Q, Σ, δ⟩ be the minimal automaton recognizing a regular language L. In this case w ∈ C(L) iff |Q.w| ≤ 1.

Let L ⊆ Σ* be a regular language. A word w ∈ Σ* is a constant for L if the implication

$$u_1wu_2 \in L, u_3wu_4 \in L \Rightarrow u_1wu_4 \in L$$

holds for all $u_1, u_2, u_3, u_4 \in \Sigma^*$.

- C(L) is the set of all constants of a regular language L.
- $Z(L) = \{w | \Sigma^* w \Sigma^* \cap L = \emptyset\}, \ Z(L) \subseteq C(L).$
- Let A = ⟨Q, Σ, δ⟩ be the minimal automaton recognizing a regular language L. In this case w ∈ C(L) iff |Q.w| ≤ 1.

Theorem 4.

The minimal automaton \mathscr{A} recognizing a language L is synchronizing and $L \cap \operatorname{Syn}(\mathscr{A}) \neq \emptyset$ if and only if the following properties hold: (i) $C(L) \neq \emptyset$; (ii) \overline{L} does not contain right ideals.

The conditions (i) and (ii) can be checked in polynomial of the size of $\mathscr A$ time.

|田子 (日子)(日子)

Theorem 4.

The minimal automaton \mathscr{A} recognizing a language L is synchronizing and $L \cap \operatorname{Syn}(\mathscr{A}) \neq \emptyset$ if and only if the following properties hold: (i) $C(L) \neq \emptyset$; (ii) \overline{L} does not contain right ideals.

The conditions (i) and (ii) can be checked in polynomial of the size of $\mathscr A$ time.

- For every two-sided ideal language I over non-unary alphabet there is some synchronizing DFA \mathscr{B} such that $\operatorname{Syn}(\mathscr{B}) = I$.
- Strongly connected synchronizing automata are all and only homomorphic images of trim automata recognizing languages of the kind $w^{-1}\Sigma^*w$.
- The criterion for the minimal automaton recognizing a regular language L to be synchronized by some word from L can be stated in terms of constants of L.

- For every two-sided ideal language I over non-unary alphabet there is some synchronizing DFA \mathscr{B} such that $\operatorname{Syn}(\mathscr{B}) = I$.
- Strongly connected synchronizing automata are all and only homomorphic images of trim automata recognizing languages of the kind $w^{-1}\Sigma^*w$.
- The criterion for the minimal automaton recognizing a regular language L to be synchronized by some word from L can be stated in terms of constants of L.

- For every two-sided ideal language I over non-unary alphabet there is some synchronizing DFA \mathscr{B} such that $\operatorname{Syn}(\mathscr{B}) = I$.
- Strongly connected synchronizing automata are all and only homomorphic images of trim automata recognizing languages of the kind $w^{-1}\Sigma^*w$.
- The criterion for the minimal automaton recognizing a regular language L to be synchronized by some word from L can be stated in terms of constants of L.