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Four color theorem

Given any separation of a plane into connected regions,

called a map, the regions can be colored using at most four

colors so that no two adjacent regions have the same color.

In graph terminology: every planar graph is four-colorable.

This theorem was proved in 1976 by Kenneth Appel and

Wolfgang Haken.



On
Heawood-type

problem for maps
with tangencies.

Gleb Nenashev

History

Defenitions

Results

Case A1,g

Four color theorem

Given any separation of a plane into connected regions,

called a map, the regions can be colored using at most four

colors so that no two adjacent regions have the same color.

In graph terminology: every planar graph is four-colorable.

This theorem was proved in 1976 by Kenneth Appel and

Wolfgang Haken.



On
Heawood-type

problem for maps
with tangencies.

Gleb Nenashev

History

Defenitions

Results

Case A1,g

Four color theorem

Given any separation of a plane into connected regions,

called a map, the regions can be colored using at most four

colors so that no two adjacent regions have the same color.

In graph terminology: every planar graph is four-colorable.

This theorem was proved in 1976 by Kenneth Appel and

Wolfgang Haken.



On
Heawood-type

problem for maps
with tangencies.

Gleb Nenashev

History

Defenitions

Results

Case A1,g

Heawood conjecture or Ringel�Youngs theorem

The minimum number of colors necessary to color all graphs

drawn on an orientable surface of genus g > 0 is equal to⌊
7+
√
1+ 48g

2

⌋
.

In 1890 Percy John Heawood conjectured and proved that

this number of colors is enough.

In 1954 Gerhard Ringel constructed an in�nite series of

examples which con�rm the accuracy of the estimate up to a

constant.

In 1968 Gerhard Ringel and Ted Youngs solved the problem.
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Ringel problem

Let k be a nonnegative integer. We say that a graph is

k-planar, if it can be drawn on the plane such that any edge

intersects at most k other edges.

What is the minimum number of colors necessary to color all

1-planar graphs?

In 1965 Gerhard Ringel proved that this number is equal to 6

or 7.

In 1984 Oleg V. Borodin proved that this number is equal to

6.
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Let k and g be nonnegative integers. Let us denote by Ak,g

the class of all graphs without loops and multiple edges

which can be drawn on a surface of genus g , such that any

edge intersects not more than k other edges.

Let k and g be nonnegative integers. Let us denote by Bk,g
the class of all maps on the surface of genus g such that any

k + 1 regions have no common point.

Four color theorem is equivalent to that every map of B3,0
can be colored with four colors.
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χ(G ) � is the smallest number of colors needed to color the

vertices of a graph G such that no two adjacent vertices

hame the same color.

χ(B) � is the smallest number of colors needed to color the

regions of map B such that no two regions having a common

point share the same color.

Let C - a class of graphs (maps), we denote by χ(C) - the
minimum number of colors that can be colored every graph

(map) in the class C.
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The following inequality holds for g > 0

χ(Bk,g ) 6
2k + 1+

√
4k2 − 12k + 16gk + 1

2
.

Conjecture: The di�erence between the left and right parts

are not greater than some constant ck .

For g > 0

χ(Bk,g ) 6 χ(Ad k−22 eb k−22 c,g ).

Conjecture: We have the equality.
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For g > 0

χ(B4,g ) = χ(A1,g ) 6
9+
√
17+ 64g

2
,

χ(B5,g ) 6 χ(A2,g ) 6
11+

√
41+ 80g

2
.
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I F(n) = n2−9n+16

16
, for n odd.

I F(n) = 3n2−26n+48

48
, for n even.

Theorem

χ(A1,g ) is not greater than the maximum n such that

g > F(n), for g > 0.

Conjecture: We have the equality.

Theorem

χ(A1,g ) =
9+
√
17+64g
2

− O(log(g)), for g > 0.

Complete graphs K9,K25,K41 and K57 can be drawn on the

corespondent surfaces such that they give equality in the �rst

theorem.
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K25, 25 = 9+ 16t

1. Cubic graph on 4t + 2 vertices.

2. Bypass: it by turning in each black vertex clockwise, and

in white conterclockwise. We obtain a cycle when we go

along each edge twice (in both direction).

3. Dashed edges form a perfect matching.

4. We de�ned the orientation and numbers on the edges

such that the sum of incoming numbers and outcoming

are equal modulo 9+ 16t.
5. All ± number on the edges, and the di�erence between

the numbers in the bypass before and after each dashed

edge are di�erent modulo 9+ 16t.
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Bypass: in black vertcies clockwise, in white counterclockwise

0 : (7) 2 (−11) − 6 (−9) 4 22 6 20 (−7) − 4 − 13

-2 -20 (11) 13 (9) -22

a : (a+ 7) a+ 2 (a− 11) a− 6 (a− 9) a+ 4 a+ 22 . . .
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The ribbon structure of our graph:

a : (a+ 7) a+ 2 (a− 11) a− 6 (a− 9) a+ 4 a+ 22 . . .
a+ 7 : . . . a+ 7+ 6 a+ 7+ 20 (a) . . .

All faces are triangles and each of them has exactly one

dashed edge.
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We draw in two adjacent triangles (by dyshed edge) the

diagonal edge across the comon dashed edge.

We get a complete graph if our auxiliary cubic graph satis�ed

those 5 conditions wrotten above.
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Thank you for your attention
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