On Heawood-type problem for maps with tangencies.

Gleb Nenashev

16.09.2014

Four color theorem

History

Four color theorem

Given any separation of a plane into connected regions, called a map, the regions can be colored using at most four colors so that no two adjacent regions have the same color.

In graph terminology: every planar graph is four-colorable.
This theorem was proved in 1976 by Kenneth Appel and Wolfgang Haken.

Four color theorem

Given any separation of a plane into connected regions, called a map, the regions can be colored using at most four colors so that no two adjacent regions have the same color.

In graph terminology: every planar graph is four-colorable.
This theorem was proved in 1976 by Kenneth Appel and Wolfgang Haken.

Heawood conjecture or Ringel-Youngs theorem

The minimum number of colors necessary to color all graphs drawn on an orientable surface of genus $g>0$ is equal to

$$
\left\lfloor\frac{7+\sqrt{1+48 g}}{2}\right\rfloor .
$$

In 1890 Percy John Heawood conjectured and proved that this number of colors is enough.

In 1954 Gerhard Ringel constructed an infinite series of examples which confirm the accuracy of the estimate up to a constant.

Heawood conjecture or Ringel-Youngs theorem

The minimum number of colors necessary to color all graphs drawn on an orientable surface of genus $g>0$ is equal to

$$
\left\lfloor\frac{7+\sqrt{1+48 g}}{2}\right\rfloor .
$$

In 1890 Percy John Heawood conjectured and proved that this number of colors is enough.

In 1954 Gerhard Ringel constructed an infinite series of examples which confirm the accuracy of the estimate up to a constant.

Heawood conjecture or Ringel-Youngs theorem

The minimum number of colors necessary to color all graphs drawn on an orientable surface of genus $g>0$ is equal to

$$
\left\lfloor\frac{7+\sqrt{1+48 g}}{2}\right\rfloor .
$$

In 1890 Percy John Heawood conjectured and proved that this number of colors is enough.

In 1954 Gerhard Ringel constructed an infinite series of examples which confirm the accuracy of the estimate up to a constant.

In 1968 Gerhard Ringel and Ted Youngs solved the problem.

Heawood conjecture or Ringel-Youngs theorem

The minimum number of colors necessary to color all graphs drawn on an orientable surface of genus $g>0$ is equal to

$$
\left\lfloor\frac{7+\sqrt{1+48 g}}{2}\right\rfloor .
$$

In 1890 Percy John Heawood conjectured and proved that this number of colors is enough.

In 1954 Gerhard Ringel constructed an infinite series of examples which confirm the accuracy of the estimate up to a constant.

In 1968 Gerhard Ringel and Ted Youngs solved the problem.

Ringel problem

Let k be a nonnegative integer. We say that a graph is k-planar, if it can be drawn on the plane such that any edge intersects at most k other edges.

What is the minimum number of colors necessary to color all 1-planar graphs?

Ringel problem

Let k be a nonnegative integer. We say that a graph is k-planar, if it can be drawn on the plane such that any edge intersects at most k other edges.

What is the minimum number of colors necessary to color all 1-planar graphs?

In 1965 Gerhard Ringel proved that this number is equal to 6 or 7

Heawood-type problem for maps with tangencies.
Gleb Nenashev

Ringel problem

Let k be a nonnegative integer. We say that a graph is k-planar, if it can be drawn on the plane such that any edge intersects at most k other edges.

What is the minimum number of colors necessary to color all 1-planar graphs?

In 1965 Gerhard Ringel proved that this number is equal to 6 or 7 .

In 1984 Oleg V. Borodin proved that this number is equal to 6.

Ringel problem

Let k be a nonnegative integer. We say that a graph is k-planar, if it can be drawn on the plane such that any edge intersects at most k other edges.

What is the minimum number of colors necessary to color all 1-planar graphs?

In 1965 Gerhard Ringel proved that this number is equal to 6 or 7 .

In 1984 Oleg V. Borodin proved that this number is equal to 6.

Let k and g be nonnegative integers. Let us denote by $\mathcal{A}_{k, g}$ the class of all graphs without loops and multiple edges which can be drawn on a surface of genus g, such that any edge intersects not more than k other edges.

Let k and g be nonnegative integers. Let us denote by $\mathcal{B}_{k, g}$ the class of all maps on the surface of genus g such that any $k+1$ regions have no common point.

Four color theorem is equivalent to that every map of $\mathcal{B}_{3.0}$ can be colored with four colors.

Heawood-type problem for maps with tangencies.

Gleb Nenashev

Let k and g be nonnegative integers. Let us denote by $\mathcal{A}_{k, g}$ the class of all graphs without loops and multiple edges which can be drawn on a surface of genus g, such that any edge intersects not more than k other edges.

Let k and g be nonnegative integers. Let us denote by $\mathcal{B}_{k, g}$ the class of all maps on the surface of genus g such that any $k+1$ regions have no common point.

Four color theorem is equivalent to that every map of $\mathcal{B}_{3,0}$ can be colored with four colors.

Heawood-type problem for maps with tangencies.

Gleb Nenashev

Let k and g be nonnegative integers. Let us denote by $\mathcal{A}_{k, g}$ the class of all graphs without loops and multiple edges which can be drawn on a surface of genus g, such that any edge intersects not more than k other edges.

Let k and g be nonnegative integers. Let us denote by $\mathcal{B}_{k, g}$ the class of all maps on the surface of genus g such that any $k+1$ regions have no common point.

Four color theorem is equivalent to that every map of $\mathcal{B}_{3,0}$ can be colored with four colors. problem for maps with tangencies.
$\chi(G)$ - is the smallest number of colors needed to color the vertices of a graph G such that no two adjacent vertices hame the same color.
$\chi(B)$ - is the smallest number of colors needed to color the regions of map B such that no two regions having a common point share the same color.

Let \mathcal{C} - a class of graphs (maps), we denote by $\chi(\mathcal{C})$ - the minimum number of colors that can be colored every graph (map) in the class \mathcal{C}.

The following inequality holds for $g>0$

$$
\chi\left(\mathcal{B}_{k, g}\right) \leqslant \frac{2 k+1+\sqrt{4 k^{2}-12 k+16 g k+1}}{2} .
$$

The following inequality holds for $g>0$

$$
\chi\left(\mathcal{B}_{k, g}\right) \leqslant \frac{2 k+1+\sqrt{4 k^{2}-12 k+16 g k+1}}{2} .
$$

Conjecture: The difference between the left and right parts are not greater than some constant c_{k}.

Heawood-type problem for maps with tangencies.

Gleb Nenashev

History
Defenitions
Results

The following inequality holds for $g>0$

$$
\chi\left(\mathcal{B}_{k, g}\right) \leqslant \frac{2 k+1+\sqrt{4 k^{2}-12 k+16 g k+1}}{2} .
$$

Conjecture: The difference between the left and right parts are not greater than some constant c_{k}.

For $g \geqslant 0$

$$
\chi\left(\mathcal{B}_{k, g}\right) \leqslant \chi\left(\mathcal{A}_{\left\lceil\frac{k-2}{2}\right\rceil\left\lfloor\frac{k-2}{2}\right\rfloor, g}\right) .
$$

Conjecture: We have the equality.

Heawood-type problem for maps with tangencies.

Gleb Nenashev

History
Defenitions
Results

The following inequality holds for $g>0$

$$
\chi\left(\mathcal{B}_{k, g}\right) \leqslant \frac{2 k+1+\sqrt{4 k^{2}-12 k+16 g k+1}}{2} .
$$

Conjecture: The difference between the left and right parts are not greater than some constant c_{k}.

For $g \geqslant 0$

$$
\chi\left(\mathcal{B}_{k, g}\right) \leqslant \chi\left(\mathcal{A}_{\left\lceil\frac{k-2}{2}\right\rceil\left\lfloor\frac{k-2}{2}\right\rfloor, g}\right) .
$$

Conjecture: We have the equality.

Gleb Nenashev

For $g>0$

$$
\begin{aligned}
& \chi\left(\mathcal{B}_{4, g}\right)=\chi\left(\mathcal{A}_{1, g}\right) \leqslant \frac{9+\sqrt{17+64 g}}{2}, \\
& \chi\left(\mathcal{B}_{5, g}\right) \leqslant \chi\left(\mathcal{A}_{2, g}\right) \leqslant \frac{11+\sqrt{41+80 g}}{2} .
\end{aligned}
$$

- $\mathcal{F}(n)=\frac{n^{2}-9 n+16}{16}$, for n odd.
- $\mathcal{F}(n)=\frac{3 n^{2}-26 n+48}{48}$, for n even.

Theorem

$\chi\left(\mathcal{A}_{1, g}\right)$ is not greater than the maximum n such that $g \geqslant \mathcal{F}(n)$, for $g>0$.

Heawood-type problem for maps with tangencies.

Gleb Nenashev

History
Defentions
Results
Case $\mathcal{A}_{1, g}$

- $\mathcal{F}(n)=\frac{n^{2}-9 n+16}{16}$, for n odd.
- $\mathcal{F}(n)=\frac{3 n^{2}-26 n+48}{48}$, for n even.

Theorem

$\chi\left(\mathcal{A}_{1, g}\right)$ is not greater than the maximum n such that $g \geqslant \mathcal{F}(n)$, for $g>0$.

Conjecture: We have the equality.

Theorem

Complete graphs K_{9}, K_{25}, K_{41} and K_{57} can be drawn on the corespondent surfaces such that they give equality in the first theorem.

Heawood-type problem for maps with tangencies.

Gleb Nenashev

History
Defenitions
Results
Case $\mathcal{A}_{1, g}$

- $\mathcal{F}(n)=\frac{n^{2}-9 n+16}{16}$, for n odd.
- $\mathcal{F}(n)=\frac{3 n^{2}-26 n+48}{48}$, for n even.

Theorem

$\chi\left(\mathcal{A}_{1, g}\right)$ is not greater than the maximum n such that $g \geqslant \mathcal{F}(n)$, for $g>0$.

Conjecture: We have the equality.

Theorem
$\chi\left(\mathcal{A}_{1, g}\right)=\frac{9+\sqrt{17+64 g}}{2}-O(\log (g))$, for $g>0$.

Complete graphs K_{9}, K_{25}, K_{41} and K_{57} can be drawn on the corespondent surfaces such that they give equality in the first theorem.

- $\mathcal{F}(n)=\frac{n^{2}-9 n+16}{16}$, for n odd.
- $\mathcal{F}(n)=\frac{3 n^{2}-26 n+48}{48}$, for n even.

Theorem

$\chi\left(\mathcal{A}_{1, g}\right)$ is not greater than the maximum n such that $g \geqslant \mathcal{F}(n)$, for $g>0$.

Heawood-type problem for maps with tangencies.

Gleb Nenashev

Conjecture: We have the equality.

Theorem
$\chi\left(\mathcal{A}_{1, g}\right)=\frac{9+\sqrt{17+64 g}}{2}-O(\log (g))$, for $g>0$.
Complete graphs K_{9}, K_{25}, K_{41} and K_{57} can be drawn on the corespondent surfaces such that they give equality in the first theorem.

Gleb Nenashev

History

Defenitions

Results
Case $\mathcal{A}_{\mathbf{1}, \mathrm{g}}$

$K_{25}, 25=9+16 t$

1. Cubic graph on $4 t+2$ vertices.
2. Bypass: it by turning in each black vertex clockwise, and in white conterclockwise. We obtain a cycle when we go along each edge twice (in both direction).
3. Dashed edges form a perfect matching.
4. We defined the orientation and numbers on the edges such that the sum of incoming numbers and outcoming are equal modulo $9+16 t$.
5. All \pm number on the edges, and the difference between the numbers in the bypass before and after each dashed edge are different modulo $9+16 t$.

Bypass: in black vertcies clockwise, in white counterclockwise $0:(7) 2(-11)-6(-9) 422620(-7)-4-13$
-2 -20 (11) 13 (9) -22
a: $(a+7) a+2(a-11) a-6(a-9) a+4 a+22 \ldots$

The ribbon structure of our graph:
a: $(a+7) a+2(a-11) a-6(a-9) a+4 a+22 \ldots$ $a+7: \ldots a+7+6 a+7+20$ (a) \ldots

Heawood-type problem for maps with tangencies.

Gleb Nenashev

History

Defenition

Results
Case $\mathcal{A}_{1, g}$

All faces are triangles and each of them has exactly one dashed edge.

The ribbon structure of our graph:
a: $(a+7) a+2(a-11) a-6(a-9) a+4 a+22 \ldots$ $a+7: \ldots a+7+6 a+7+20$ (a) \ldots

Heawood-type problem for maps with tangencies.

Gleb Nenashev

All faces are triangles and each of them has exactly one dashed edge.

Heawood-type problem for maps with tangencies.

Gleb Nenashev

Case $\mathcal{A}_{1, g}$

We draw in two adjacent triangles (by dyshed edge) the diagonal edge across the comon dashed edge.
We get a complete graph if our auxiliary cubic graph satisfied those 5 conditions wrotten above.

Heawood-type problem for maps with tangencies.

Gleb Nenashev

History
Defenitions
Results
Case $\mathcal{A}_{\mathbf{1}, \mathrm{g}}$

