About vertices of degree 6 of C_{3}-critical minimal 6 -connected graph

Alexei Pastor

St. Petersburg Department of V.A.Steklov Institute of Mathematics of the Russian Academy of Sciences, St. Petersburg, Russia

Third Russian Finnish Symposium on Discrete Mathematics 15-18 September 2014, Petrozavodsk, Russia

Main Definitions

Let G is a finite undirected graph with neither loops nor multiple edges.

Main Definitions

Let G is a finite undirected graph with neither loops nor multiple edges.
Some basic notations

- $V(G)$ - the set of vertices of the graph G;
- $v(G)=|V(G)|$;
- $E(G)$ - the set of edges of the graph G;
- e $e(G)=|E(G)|$;
- $d(v)$ - degree of a vertex v;
- $\delta(G)=\min _{v \in V(G)} d(v)$.

Main Definitions

Let G is a finite undirected graph with neither loops nor multiple edges.
Some basic notations

- $V(G)$ - the set of vertices of the graph G;
- $v(G)=|V(G)|$;
- $E(G)$ - the set of edges of the graph G;
- $e(G)=|E(G)|$;
- $d(v)$ - degree of a vertex v;
- $\delta(G)=\min _{v \in V(G)} d(v)$.

Definition

$\kappa(G)$ - the minimal number of vertices: if we remove them from G then we obtain a disconnected or trivial graph (vertex connectivity of G). Graph G is called k-connected iff $\kappa(G) \geq k$.

Some more notions for k-connected graph

Let $k(G)=k$

- $V_{k}=\{v \in V(G) \mid d(v)=k\}$;
- $v_{k}=\left|V_{k}\right|$;
- $G_{k}=G\left(V_{k}\right)$ - induced subgraph on V_{k};

Some more notions for k-connected graph

Let $k(G)=k$

- $V_{k}=\{v \in V(G) \mid d(v)=k\} ;$
- $v_{k}=\left|V_{k}\right|$;
- $G_{k}=G\left(V_{k}\right)$ - induced subgraph on V_{k};
- $V_{k+1}=\{v \in V(G) \mid d(v)>k\}$;
- $v_{k+1}=\left|V_{k+1}\right|$;
- $G_{k+1}=G\left(V_{k+1}\right)$ - induced subgraph on V_{k+1};

Some more notions for k-connected graph

Let $k(G)=k$

- $V_{k}=\{v \in V(G) \mid d(v)=k\} ;$
- $v_{k}=\left|V_{k}\right|$;
- $G_{k}=G\left(V_{k}\right)$ - induced subgraph on V_{k};
- $V_{k+1}=\{v \in V(G) \mid d(v)>k\}$;
- $v_{k+1}=\left|V_{k+1}\right|$;
- $G_{k+1}=G\left(V_{k+1}\right)$ - induced subgraph on V_{k+1};
- $e_{k}=e\left(G_{k}\right)$;
- $e_{k+1}=e\left(G_{k+1}\right)$;
- $e_{k, k+1}=e(G)-e_{k}-e_{k+1}$;

Some more notions for k-connected graph

Let $k(G)=k$

- $V_{k}=\{v \in V(G) \mid d(v)=k\} ;$
- $v_{k}=\left|V_{k}\right|$;
- $G_{k}=G\left(V_{k}\right)$ - induced subgraph on V_{k};
- $V_{k+1}=\{v \in V(G) \mid d(v)>k\}$;
- $v_{k+1}=\left|V_{k+1}\right|$;
- $G_{k+1}=G\left(V_{k+1}\right)$ - induced subgraph on V_{k+1};
- $e_{k}=e\left(G_{k}\right)$;
- $e_{k+1}=e\left(G_{k+1}\right)$;
- $e_{k, k+1}=e(G)-e_{k}-e_{k+1}$;

This talk is devoted to 6-connected graphs.

Minimal and contraction critical k-connected graphs

Definition

k-connected graph G is said to be minimal iff
$\forall e \in E(G)(\kappa(G-e)=k-1)$.

Minimal and contraction critical k-connected graphs

Definition

k-connected graph G is said to be minimal iff $\forall e \in E(G)(\kappa(G-e)=k-1)$.

Minimal and contraction critical k-connected graphs

Definition

k-connected graph G is said to be minimal iff $\forall e \in E(G)(\kappa(G-e)=k-1)$.

Minimal and contraction critical k-connected graphs

Definition

k-connected graph G is said to be minimal iff $\forall e \in E(G)(\kappa(G-e)=k-1)$.

Minimal and contraction critical k-connected graphs

Definition

k-connected graph G is said to be minimal iff
$\forall e \in E(G)(\kappa(G-e)=k-1)$.

Definition

k-connected graph G is said to be contraction critical iff
$\forall e \in E(G)(\kappa(G \cdot e)=k-1)$.

Minimal and contraction critical k-connected graphs

Definition

k-connected graph G is said to be minimal iff
$\forall e \in E(G)(\kappa(G-e)=k-1)$.

Definition

k-connected graph G is said to be contraction critical iff $\forall e \in E(G)(\kappa(G \cdot e)=k-1)$.

Minimal and contraction critical k-connected graphs

Definition

k-connected graph G is said to be minimal iff
$\forall e \in E(G)(\kappa(G-e)=k-1)$.

Definition

k-connected graph G is said to be contraction critical iff $\forall e \in E(G)(\kappa(G \cdot e)=k-1)$.

Minimal and contraction critical k-connected graphs

Definition

k-connected graph G is said to be minimal iff
$\forall e \in E(G)(\kappa(G-e)=k-1)$.

Definition

k-connected graph G is said to be contraction critical iff $\forall e \in E(G)(\kappa(G \cdot e)=k-1)$.

Some results on the vertices of degree k in minimal and

 contraction critical k-connected graphsLet G is minimal k-connected graph

- The subgraph G_{k+1} is a forest (W. Mader, 1972).
- $v_{k}(G) \geq \frac{(k-1) v(G)+2 k}{2 k-1}$ and this bound is sharp (W. Mader, 1979).

Some results on the vertices of degree k in minimal and contraction critical k-connected graphs

Let G is minimal k-connected graph

- The subgraph G_{k+1} is a forest (W. Mader, 1972).
- $v_{k}(G) \geq \frac{(k-1) v(G)+2 k}{2 k-1}$ and this bound is sharp (W. Mader, 1979).

Let G is minimal and contraction critical k-connected graph

- For $k \leq 3$ we have $G \cong K_{k+1}$.

Some results on the vertices of degree k in minimal and contraction critical k-connected graphs

Let G is minimal k-connected graph

- The subgraph G_{k+1} is a forest (W. Mader, 1972).
- $v_{k}(G) \geq \frac{(k-1) v(G)+2 k}{2 k-1}$ and this bound is sharp (W. Mader, 1979).

Let G is minimal and contraction critical k-connected graph

- For $k \leq 3$ we have $G \cong K_{k+1}$.
- For $k=4$ we have $\delta(G)=4$ (M. Fontet, 1978; N. Martinov, 1982).

Some results on the vertices of degree k in minimal and contraction critical k-connected graphs

Let G is minimal k-connected graph

- The subgraph G_{k+1} is a forest (W. Mader, 1972).
- $v_{k}(G) \geq \frac{(k-1) v(G)+2 k}{2 k-1}$ and this bound is sharp (W. Mader, 1979).

Let G is minimal and contraction critical k-connected graph

- For $k \leq 3$ we have $G \cong K_{k+1}$.
- For $k=4$ we have $\delta(G)=4$ (M. Fontet, 1978; N. Martinov, 1982).
- For $k=5$ we have $v_{5}(G) \geq \frac{2}{3} v(G)$ (K. Ando, C. Qin, 2011; S.Obraztsova, A.P., 2012).

Some results on the vertices of degree k in minimal and contraction critical k-connected graphs

Let G is minimal k-connected graph

- The subgraph G_{k+1} is a forest (W. Mader, 1972).
- $v_{k}(G) \geq \frac{(k-1) v(G)+2 k}{2 k-1}$ and this bound is sharp (W. Mader, 1979).

Let G is minimal and contraction critical k-connected graph

- For $k \leq 3$ we have $G \cong K_{k+1}$.
- For $k=4$ we have $\delta(G)=4$ (M. Fontet, 1978; N. Martinov, 1982).
- For $k=5$ we have $v_{5}(G) \geq \frac{2}{3} v(G)$ (K. Ando, C. Qin, 2011; S.Obraztsova, A.P., 2012).
- There is infinite series of examples with $v_{5}(G)<\frac{17}{22} v(G)$ (S.Obraztsova, A.P., 2011).

Some results on the vertices of degree k in minimal and contraction critical k-connected graphs

Let G is minimal k-connected graph

- The subgraph G_{k+1} is a forest (W. Mader, 1972).
- $v_{k}(G) \geq \frac{(k-1) v(G)+2 k}{2 k-1}$ and this bound is sharp (W. Mader, 1979).

Let G is minimal and contraction critical k-connected graph

- For $k \leq 3$ we have $G \cong K_{k+1}$.
- For $k=4$ we have $\delta(G)=4$ (M. Fontet, 1978; N. Martinov, 1982).
- For $k=5$ we have $v_{5}(G) \geq \frac{2}{3} v(G)$ (K. Ando, C. Qin, 2011; S.Obraztsova, A.P., 2012).
- There is infinite series of examples with $v_{5}(G)<\frac{17}{22} v(G)$ (S.Obraztsova, A.P., 2011).
- For $6 \leq k \leq 10$ we have $v_{k}(G) \geq \frac{1}{2} v(G)$ and there are infinite series of non-regular examples of such graphs (S.Obraztsova, A.P., 2010-2011).

Mader's definition of C_{m}-critical k-connected graphs

Definition (W. Mader, 1988)
k-connected graph G is said to be C_{m}-critical iff for all $\ell \leq m$ any clique on ℓ vertices is contained in k-cutset of G.

Mader's definition of C_{m}-critical k-connected graphs

Definition (W. Mader, 1988)
k-connected graph G is said to be C_{m}-critical iff for all $\ell \leq m$ any clique on ℓ vertices is contained in k-cutset of G.

- For $m=1$ this is critical k-connected graph - a graph that lost its k-connectivity when any of vertices is removed.

Mader's definition of C_{m}-critical k-connected graphs

Definition (W. Mader, 1988)
k-connected graph G is said to be C_{m}-critical iff for all $\ell \leq m$ any clique on ℓ vertices is contained in k-cutset of G.

- For $m=1$ this is critical k-connected graph - a graph that lost its k-connectivity when any of vertices is removed.
- For $m=2$ this is contraction critical k-connected graph.

Mader's definition of C_{m}-critical k-connected graphs

Definition (W. Mader, 1988)
k-connected graph G is said to be C_{m}-critical iff for all $\ell \leq m$ any clique on ℓ vertices is contained in k-cutset of G.

- For $m=1$ this is critical k-connected graph - a graph that lost its k-connectivity when any of vertices is removed.
- For $m=2$ this is contraction critical k-connected graph.
- What's about C_{3}-critical graphs?

Mader's definition of C_{m}-critical k-connected graphs

Definition (W. Mader, 1988)
k-connected graph G is said to be C_{m}-critical iff for all $\ell \leq m$ any clique on ℓ vertices is contained in k-cutset of G.

- For $m=1$ this is critical k-connected graph - a graph that lost its k-connectivity when any of vertices is removed.
- For $m=2$ this is contraction critical k-connected graph.
- What's about C_{3}-critical graphs?

Theorem (W. Mader, 1988)
Any C_{3}-critical graph is 6-connected.
So that the main point of our interest in this talk is vertices of degree 6 of a C_{3}-critical 6-connected graph.

An example of non-regular C_{3}-critical 6-connected graph

An example of non-regular C_{3}-critical 6-connected graph

An example of non-regular C_{3}-critical 6-connected graph

An example of non-regular C_{3}-critical 6-connected graph

An example of non-regular C_{3}-critical 6-connected graph

An example of non-regular C_{3}-critical 6-connected graph

An example of non-regular C_{3}-critical 6-connected graph

An example of non-regular C_{3}-critical 6-connected graph

The main theorem

Theorem
For any C_{3}-critical minimal 6 -connected graph G we have $v_{6}(G)>\frac{5}{9} v(G)$.

The main theorem

Theorem
For any C_{3}-critical minimal 6 -connected graph G we have $v_{6}(G)>\frac{5}{9} v(G)$.
Some ideas of proof. In fact we prove the following lemma.
Lemma
$e_{6}(G) \geq v_{6}(G)$.

The main theorem

Theorem

For any C_{3}-critical minimal 6 -connected graph G we have $v_{6}(G)>\frac{5}{9} v(G)$.
Some ideas of proof. In fact we prove the following lemma.
Lemma
$e_{6}(G) \geq v_{6}(G)$.
It is enough to prove that any connected component of G_{6} contains a cycle. It's obvious for the components in which all vertices have degree at least 2 . So that it's enough to consider a component A of G_{6} that contains a vertex a with $d_{6}(a)=1$.

The main theorem

Theorem

For any C_{3}-critical minimal 6 -connected graph G we have $v_{6}(G)>\frac{5}{9} v(G)$.
Some ideas of proof. In fact we prove the following lemma.
Lemma
$e_{6}(G) \geq v_{6}(G)$.
It is enough to prove that any connected component of G_{6} contains a cycle. It's obvious for the components in which all vertices have degree at least 2 . So that it's enough to consider a component A of G_{6} that contains a vertex a with $d_{6}(a)=1$.

Lemma (S.Obraztsova, 2010)
Let G is a contraction critical k-connected graph and $a \in V_{6}$. Then there exists cutset T in G, such that $|T|=k, a \in T$, there is vertex $b \in T$ adjacent with a and T separates a component H with at most $\frac{k-1}{2}$ vertices.

The main theorem

Lemma

In our case there exists cutset T in G, such that $|T|=k, a \in T$, there is vertex $b \in T$ adjacent with a and T separates a component H with $v(H)=2$.

The main theorem

Lemma

In our case there exists cutset T in G, such that $|T|=k, a \in T$, there is vertex $b \in T$ adjacent with a and T separates a component H with $v(H)=2$.

Lemma
Let T is k-cutset in G, separates a component H with $V(H)=\{u, v\}$, and $x \in T$. Then there exists k-cutset R in G, such that $\{u, v, x\} \subset R$.

The main theorem

Lemma

In our case there exists cutset T in G, such that $|T|=k, a \in T$, there is vertex $b \in T$ adjacent with a and T separates a component H with $v(H)=2$.

Lemma

Let T is k-cutset in G, separates a component H with $V(H)=\{u, v\}$, and $x \in T$. Then there exists k-cutset R in G, such that $\{u, v, x\} \subset R$.

Lemma

Let G is a C_{3}-critical minimal 6-connected graph, $a \in V_{6}, d_{6}(a)=1$ and A is a component of G_{6}, such that $a \in V(A)$. Then the component A contains a cycle.

The main theorem

How this lemma helps to prove the theorem?
We have 2 sets: V_{6} and V_{7} and $e_{6,7}$ edges between them. Than by lemma, we have

$$
e_{6,7}=6 v_{6}-2 e_{6} \leq 4 v_{6}
$$

The main theorem

How this lemma helps to prove the theorem?
We have 2 sets: V_{6} and V_{7} and $e_{6,7}$ edges between them. Than by lemma, we have

$$
e_{6,7}=6 v_{6}-2 e_{6} \leq 4 v_{6} .
$$

On the other hand, because the graph G_{7} is a forest, we have

$$
e_{6,7} \geq 7 v_{7}-2 e_{7} \geq 5 v_{7}+2
$$

The main theorem

How this lemma helps to prove the theorem?
We have 2 sets: V_{6} and V_{7} and $e_{6,7}$ edges between them. Than by lemma, we have

$$
e_{6,7}=6 v_{6}-2 e_{6} \leq 4 v_{6} .
$$

On the other hand, because the graph G_{7} is a forest, we have

$$
e_{6,7} \geq 7 v_{7}-2 e_{7} \geq 5 v_{7}+2
$$

So that

$$
4 v_{6}(G) \geq 5 v_{7}(G)+2=5 v(G)-5 v_{6}(G)+2,
$$

and finally

$$
v_{6}(G) \geq \frac{5}{9} v(G)+\frac{2}{9}>\frac{5}{9} v(G) .
$$

