About vertices of degree 6 of  $C_3$ -critical minimal 6-connected graph

Alexei Pastor

St. Petersburg Department of V.A.Steklov Institute of Mathematics of the Russian Academy of Sciences, St. Petersburg, Russia

Third Russian Finnish Symposium on Discrete Mathematics 15-18 September 2014, Petrozavodsk, Russia

## Main Definitions

Let G is a finite undirected graph with neither loops nor multiple edges.

## Main Definitions

Let G is a finite undirected graph with neither loops nor multiple edges.

## Some basic notations

- V(G) the set of vertices of the graph G;
- v(G) = |V(G)|;
- E(G) the set of edges of the graph G;
- e(G) = |E(G)|;
- d(v) degree of a vertex v;

• 
$$\delta(G) = \min_{v \in V(G)} d(v).$$

# Main Definitions

Let G is a finite undirected graph with neither loops nor multiple edges.

## Some basic notations

- V(G) the set of vertices of the graph G;
- v(G) = |V(G)|;
- E(G) the set of edges of the graph G;
- e(G) = |E(G)|;
- d(v) degree of a vertex v;
- $\delta(G) = \min_{v \in V(G)} d(v).$

## Definition

 $\kappa(G)$  — the minimal number of vertices: if we remove them from G then we obtain a disconnected or trivial graph (vertex connectivity of G). Graph G is called k-connected iff  $\kappa(G) \ge k$ .

Let  $\kappa(G) = k$ 

• 
$$V_k = \{v \in V(G) \mid d(v) = k\};$$

• 
$$v_k = |V_k|;$$

•  $G_k = G(V_k)$  — induced subgraph on  $V_k$ ;

Let  $\kappa(G) = k$ 

• 
$$V_k = \{v \in V(G) \mid d(v) = k\};$$

- $v_k = |V_k|;$
- $G_k = G(V_k)$  induced subgraph on  $V_k$ ;

• 
$$V_{k+1} = \{v \in V(G) \mid d(v) > k\};$$

- $v_{k+1} = |V_{k+1}|;$
- $G_{k+1} = G(V_{k+1})$  induced subgraph on  $V_{k+1}$ ;

Let  $\kappa(G) = k$ 

• 
$$V_k = \{v \in V(G) \mid d(v) = k\};$$

- $v_k = |V_k|;$
- $G_k = G(V_k)$  induced subgraph on  $V_k$ ;

• 
$$V_{k+1} = \{v \in V(G) \mid d(v) > k\};$$

•  $v_{k+1} = |V_{k+1}|;$ 

• 
$$G_{k+1} = G(V_{k+1})$$
 — induced subgraph on  $V_{k+1}$ ;

- $e_k = e(G_k);$
- $e_{k+1} = e(G_{k+1});$

• 
$$e_{k,k+1} = e(G) - e_k - e_{k+1};$$

Let  $\kappa(G) = k$ 

• 
$$V_k = \{v \in V(G) \mid d(v) = k\};$$

• 
$$v_k = |V_k|;$$

• 
$$G_k = G(V_k)$$
 — induced subgraph on  $V_k$ ;

• 
$$V_{k+1} = \{v \in V(G) \mid d(v) > k\};$$

• 
$$v_{k+1} = |V_{k+1}|;$$

• 
$$G_{k+1} = G(V_{k+1})$$
 — induced subgraph on  $V_{k+1}$ ;

• 
$$e_k = e(G_k);$$

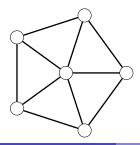
• 
$$e_{k+1} = e(G_{k+1});$$

• 
$$e_{k,k+1} = e(G) - e_k - e_{k+1};$$

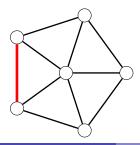
This talk is devoted to 6-connected graphs.

#### Definition

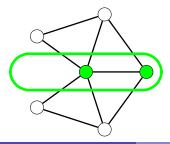
#### Definition



#### Definition



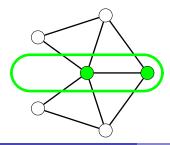
#### Definition



#### Definition

*k*-connected graph *G* is said to be minimal iff  $\forall e \in E(G) \ (\kappa(G-e) = k-1).$ 

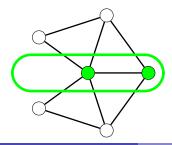
#### Definition

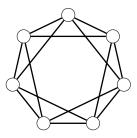


#### Definition

*k*-connected graph *G* is said to be minimal iff  $\forall e \in E(G) \ (\kappa(G-e) = k-1).$ 

#### Definition

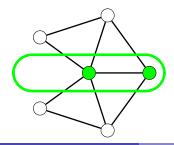


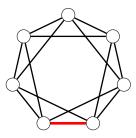


#### Definition

*k*-connected graph *G* is said to be minimal iff  $\forall e \in E(G) \ (\kappa(G-e) = k-1).$ 

#### Definition

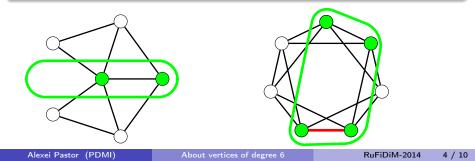




#### Definition

*k*-connected graph *G* is said to be minimal iff  $\forall e \in E(G) \ (\kappa(G-e) = k-1).$ 

#### Definition



## Let G is minimal k-connected graph

- The subgraph  $G_{k+1}$  is a forest (W. Mader, 1972).
- $v_k(G) \ge \frac{(k-1)v(G)+2k}{2k-1}$  and this bound is sharp (W. Mader, 1979).

## Let G is minimal k-connected graph

- The subgraph  $G_{k+1}$  is a forest (W. Mader, 1972).
- $v_k(G) \ge \frac{(k-1)v(G)+2k}{2k-1}$  and this bound is sharp (W. Mader, 1979).

## Let G is minimal and contraction critical k-connected graph

• For  $k \leq 3$  we have  $G \cong K_{k+1}$ .

## Let G is minimal k-connected graph

- The subgraph  $G_{k+1}$  is a forest (W. Mader, 1972).
- $v_k(G) \ge \frac{(k-1)v(G)+2k}{2k-1}$  and this bound is sharp (W. Mader, 1979).

- For  $k \leq 3$  we have  $G \cong K_{k+1}$ .
- For k = 4 we have  $\delta(G) = 4$  (M. Fontet, 1978; N. Martinov, 1982).

## Let G is minimal k-connected graph

- The subgraph  $G_{k+1}$  is a forest (W. Mader, 1972).
- $v_k(G) \ge \frac{(k-1)v(G)+2k}{2k-1}$  and this bound is sharp (W. Mader, 1979).

• For 
$$k \leq 3$$
 we have  $G \cong K_{k+1}$ .

- For k = 4 we have  $\delta(G) = 4$  (M. Fontet, 1978; N. Martinov, 1982).
- For k = 5 we have  $v_5(G) \ge \frac{2}{3}v(G)$  (K. Ando, C. Qin, 2011; S.Obraztsova, A.P., 2012).

## Let G is minimal k-connected graph

- The subgraph  $G_{k+1}$  is a forest (W. Mader, 1972).
- $v_k(G) \ge \frac{(k-1)v(G)+2k}{2k-1}$  and this bound is sharp (W. Mader, 1979).

- For  $k \leq 3$  we have  $G \cong K_{k+1}$ .
- For k = 4 we have  $\delta(G) = 4$  (M. Fontet, 1978; N. Martinov, 1982).
- For k = 5 we have  $v_5(G) \ge \frac{2}{3}v(G)$  (K. Ando, C. Qin, 2011; S.Obraztsova, A.P., 2012).
- There is infinite series of examples with  $v_5(G) < \frac{17}{22}v(G)$  (S.Obraztsova, A.P., 2011).

## Let G is minimal k-connected graph

- The subgraph  $G_{k+1}$  is a forest (W. Mader, 1972).
- $v_k(G) \ge \frac{(k-1)v(G)+2k}{2k-1}$  and this bound is sharp (W. Mader, 1979).

- For  $k \leq 3$  we have  $G \cong K_{k+1}$ .
- For k = 4 we have  $\delta(G) = 4$  (M. Fontet, 1978; N. Martinov, 1982).
- For k = 5 we have  $v_5(G) \ge \frac{2}{3}v(G)$  (K. Ando, C. Qin, 2011; S.Obraztsova, A.P., 2012).
- There is infinite series of examples with  $v_5(G) < \frac{17}{22}v(G)$  (S.Obraztsova, A.P., 2011).
- For 6 ≤ k ≤ 10 we have v<sub>k</sub>(G) ≥ ½v(G) and there are infinite series of non-regular examples of such graphs (S.Obraztsova, A.P., 2010-2011).

Definition (W. Mader, 1988)

*k*-connected graph *G* is said to be  $C_m$ -critical iff for all  $\ell \leq m$  any clique on  $\ell$  vertices is contained in *k*-cutset of *G*.

## Definition (W. Mader, 1988)

*k*-connected graph *G* is said to be  $C_m$ -critical iff for all  $\ell \leq m$  any clique on  $\ell$  vertices is contained in *k*-cutset of *G*.

• For m = 1 this is critical k-connected graph — a graph that lost its k-connectivity when any of vertices is removed.

## Definition (W. Mader, 1988)

*k*-connected graph *G* is said to be  $C_m$ -critical iff for all  $\ell \leq m$  any clique on  $\ell$  vertices is contained in *k*-cutset of *G*.

- For m = 1 this is critical k-connected graph a graph that lost its k-connectivity when any of vertices is removed.
- For m = 2 this is contraction critical k-connected graph.

## Definition (W. Mader, 1988)

*k*-connected graph *G* is said to be  $C_m$ -critical iff for all  $\ell \leq m$  any clique on  $\ell$  vertices is contained in *k*-cutset of *G*.

- For m = 1 this is critical k-connected graph a graph that lost its k-connectivity when any of vertices is removed.
- For m = 2 this is contraction critical k-connected graph.
- What's about C<sub>3</sub>-critical graphs?

## Definition (W. Mader, 1988)

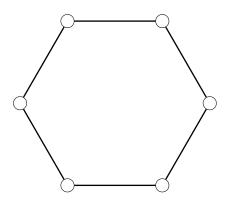
*k*-connected graph *G* is said to be  $C_m$ -critical iff for all  $\ell \leq m$  any clique on  $\ell$  vertices is contained in *k*-cutset of *G*.

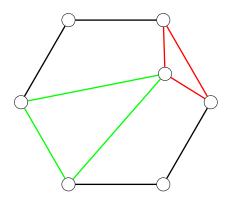
- For m = 1 this is critical k-connected graph a graph that lost its k-connectivity when any of vertices is removed.
- For m = 2 this is contraction critical k-connected graph.
- What's about C3-critical graphs?

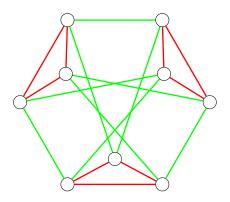
## Theorem (W. Mader, 1988)

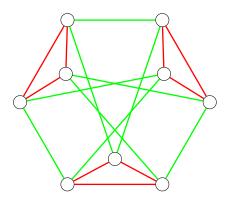
Any  $C_3$ -critical graph is 6-connected.

So that the main point of our interest in this talk is vertices of degree 6 of a  $C_3$ -critical 6-connected graph.



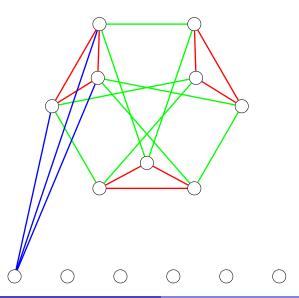


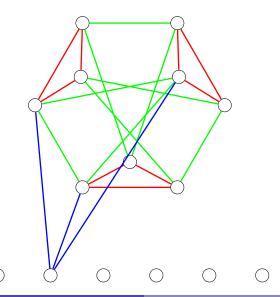


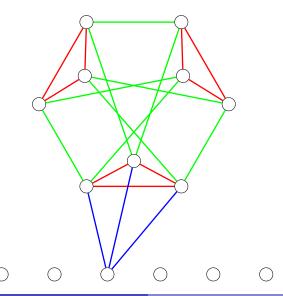




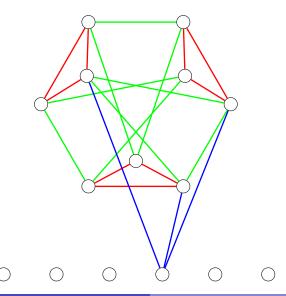
Alexei Pastor (PDMI)

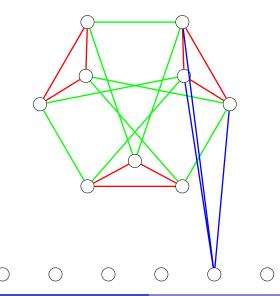






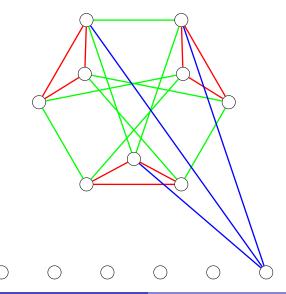
Alexei Pastor (PDMI)



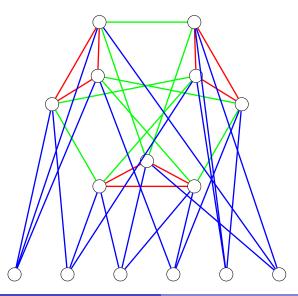


Alexei Pastor (PDMI)

## An example of non-regular $C_3$ -critical 6-connected graph



# An example of non-regular $C_3$ -critical 6-connected graph



Theorem

For any C<sub>3</sub>-critical minimal 6-connected graph G we have  $v_6(G) > \frac{5}{9}v(G)$ .

#### Theorem

For any C<sub>3</sub>-critical minimal 6-connected graph G we have  $v_6(G) > \frac{5}{9}v(G)$ .

Some ideas of proof. In fact we prove the following lemma.

Lemma

 $e_6(G) \ge v_6(G).$ 

#### Theorem

For any C<sub>3</sub>-critical minimal 6-connected graph G we have  $v_6(G) > \frac{5}{9}v(G)$ .

Some ideas of proof. In fact we prove the following lemma.

#### Lemma

 $e_6(G) \geq v_6(G).$ 

It is enough to prove that any connected component of  $G_6$  contains a cycle. It's obvious for the components in which all vertices have degree at least 2. So that it's enough to consider a component A of  $G_6$  that contains a vertex a with  $d_6(a) = 1$ .

#### Theorem

For any C<sub>3</sub>-critical minimal 6-connected graph G we have  $v_6(G) > \frac{5}{9}v(G)$ .

Some ideas of proof. In fact we prove the following lemma.

#### Lemma

 $e_6(G) \geq v_6(G).$ 

It is enough to prove that any connected component of  $G_6$  contains a cycle. It's obvious for the components in which all vertices have degree at least 2. So that it's enough to consider a component A of  $G_6$  that contains a vertex a with  $d_6(a) = 1$ .

### Lemma (S.Obraztsova, 2010)

Let G is a contraction critical k-connected graph and  $a \in V_6$ . Then there exists cutset T in G, such that |T| = k,  $a \in T$ , there is vertex  $b \in T$  adjacent with a and T separates a component H with at most  $\frac{k-1}{2}$  vertices.

#### Lemma

In our case there exists cutset T in G, such that |T| = k,  $a \in T$ , there is vertex  $b \in T$  adjacent with a and T separates a component H with v(H) = 2.

#### Lemma

In our case there exists cutset T in G, such that |T| = k,  $a \in T$ , there is vertex  $b \in T$  adjacent with a and T separates a component H with v(H) = 2.

#### Lemma

Let T is k-cutset in G, separates a component H with  $V(H) = \{u, v\}$ , and  $x \in T$ . Then there exists k-cutset R in G, such that  $\{u, v, x\} \subset R$ .

#### Lemma

In our case there exists cutset T in G, such that |T| = k,  $a \in T$ , there is vertex  $b \in T$  adjacent with a and T separates a component H with v(H) = 2.

#### Lemma

Let T is k-cutset in G, separates a component H with  $V(H) = \{u, v\}$ , and  $x \in T$ . Then there exists k-cutset R in G, such that  $\{u, v, x\} \subset R$ .

#### Lemma

Let G is a  $C_3$ -critical minimal 6-connected graph,  $a \in V_6$ ,  $d_6(a) = 1$  and A is a component of  $G_6$ , such that  $a \in V(A)$ . Then the component A contains a cycle.

### How this lemma helps to prove the theorem?

We have 2 sets:  $V_6$  and  $V_7$  and  $e_{6,7}$  edges between them. Than by lemma, we have

$$e_{6,7} = 6v_6 - 2e_6 \le 4v_6.$$

### How this lemma helps to prove the theorem?

We have 2 sets:  $V_6$  and  $V_7$  and  $e_{6,7}$  edges between them. Than by lemma, we have

$$e_{6,7} = 6v_6 - 2e_6 \le 4v_6.$$

On the other hand, because the graph  $G_7$  is a forest, we have

$$e_{6,7} \geq 7v_7 - 2e_7 \geq 5v_7 + 2.$$

### How this lemma helps to prove the theorem?

We have 2 sets:  $V_6$  and  $V_7$  and  $e_{6,7}$  edges between them. Than by lemma, we have

$$e_{6,7} = 6v_6 - 2e_6 \le 4v_6.$$

On the other hand, because the graph  $G_7$  is a forest, we have

$$e_{6,7} \geq 7v_7 - 2e_7 \geq 5v_7 + 2.$$

So that

$$4v_6(G) \ge 5v_7(G) + 2 = 5v(G) - 5v_6(G) + 2$$

and finally

$$v_6(G) \geq \frac{5}{9}v(G) + \frac{2}{9} > \frac{5}{9}v(G).$$