Coset closure of a circulant S-ring and schurity problem

Ilya Ponomarenko (based on joint work with S.Evdokimov)

St.Petersburg Department of V.A.Steklov Institute of Mathematics of the Russian Academy of Sciences

RuFiDiM - Third Russian Finnish Symposium on Discrete Mathematics 15-18 September 2014, Petrozavodsk, Russia

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

 $\Gamma \leq \operatorname{Sym}(G).$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

 $\Gamma \leq \operatorname{Sym}(G).$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Let *e* be the identity of *G*, Γ_e the stabilizer of *e* in Γ ,

 $\Gamma \leq \operatorname{Sym}(G).$

Let *e* be the identity of *G*, Γ_e the stabilizer of *e* in Γ , and

$$\mathcal{A} = \mathcal{A}(\Gamma, G) = \operatorname{Span}_{\mathbb{Z}} \{ \underline{X} : X \in \operatorname{Orb}(\Gamma_e, G) \}$$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

where $\underline{X} = \sum_{x \in X} x$.

 $\Gamma \leq \operatorname{Sym}(G).$

Let *e* be the identity of *G*, Γ_e the stabilizer of *e* in Γ , and

$$\mathcal{A} = \mathcal{A}(\Gamma, G) = \text{Span}_{\mathbb{Z}} \{ \underline{X} : X \in \text{Orb}(\Gamma_e, G) \}$$

where $\underline{X} = \sum_{x \in X} x$.

Theorem (Schur, 1933)

The module \mathcal{A} is a subring of the group ring $\mathbb{Z}G$.

 $\Gamma \leq \operatorname{Sym}(G).$

Let *e* be the identity of *G*, Γ_e the stabilizer of *e* in Γ , and

$$\mathcal{A} = \mathcal{A}(\Gamma, G) = \text{Span}_{\mathbb{Z}} \{ \underline{X} : X \in \text{Orb}(\Gamma_e, G) \}$$

where $\underline{X} = \sum_{x \in X} x$.

Theorem (Schur, 1933)

The module \mathcal{A} is a subring of the group ring $\mathbb{Z}G$.

Example: $\Gamma_e \leq \operatorname{Aut}(G)$;

 $\Gamma \leq \operatorname{Sym}(G).$

Let *e* be the identity of *G*, Γ_e the stabilizer of *e* in Γ , and

$$\mathcal{A} = \mathcal{A}(\Gamma, G) = \text{Span}_{\mathbb{Z}} \{ \underline{X} : X \in \text{Orb}(\Gamma_e, G) \}$$

where $\underline{X} = \sum_{x \in X} x$.

Theorem (Schur, 1933)

The module \mathcal{A} is a subring of the group ring $\mathbb{Z}G$.

Example: $\Gamma_e \leq \operatorname{Aut}(G)$; in this case the ring \mathcal{A} is called cyclotomic.

Definition

A ring $\mathcal{A} \subset \mathbb{Z}G$ is an S-ring over the group *G*, if there exists a partition $\mathcal{S} = \mathcal{S}(\mathcal{A})$ of it, such that

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Definition

A ring $\mathcal{A} \subset \mathbb{Z}G$ is an S-ring over the group G, if there exists a partition $\mathcal{S} = \mathcal{S}(\mathcal{A})$ of it, such that

▲□▶▲□▶▲□▶▲□▶ □ のQ@

1 $\{e\} \in \mathcal{S},$

Definition

A ring $\mathcal{A} \subset \mathbb{Z}G$ is an S-ring over the group *G*, if there exists a partition $\mathcal{S} = \mathcal{S}(\mathcal{A})$ of it, such that

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Definition

A ring $\mathcal{A} \subset \mathbb{Z}G$ is an S-ring over the group *G*, if there exists a partition $\mathcal{S} = \mathcal{S}(\mathcal{A})$ of it, such that

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

$$2 X \in \mathcal{S} \Rightarrow X^{-1} \in \mathcal{S},$$

Definition

A ring $\mathcal{A} \subset \mathbb{Z}G$ is an S-ring over the group *G*, if there exists a partition $\mathcal{S} = \mathcal{S}(\mathcal{A})$ of it, such that

1 {
$$e$$
} $\in S$,
2 $X \in S \Rightarrow X^{-1} \in S$,
3 $\mathcal{A} = \operatorname{Span}_{\mathbb{Z}} \{ \underline{X} : X \in S \}$.

Definition

An S-ring \mathcal{A} is called schurian, if $\mathcal{A} = \mathcal{A}(\Gamma, G)$ for some Γ .

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで

Definition

A ring $\mathcal{A} \subset \mathbb{Z}G$ is an S-ring over the group *G*, if there exists a partition $\mathcal{S} = \mathcal{S}(\mathcal{A})$ of it, such that

1 {
$$e$$
} $\in S$,
2 $X \in S \Rightarrow X^{-1} \in S$,
3 $\mathcal{A} = \operatorname{Span}_{\mathbb{Z}} \{ \underline{X} : X \in S \}$.

Definition

An S-ring \mathcal{A} is called schurian, if $\mathcal{A} = \mathcal{A}(\Gamma, G)$ for some Γ .

Wielandt (1966): "Schur had conjectured for a long time that every S-ring is determined by a suitable permutation group".

Definition

A ring $\mathcal{A} \subset \mathbb{Z}G$ is an S-ring over the group *G*, if there exists a partition $\mathcal{S} = \mathcal{S}(\mathcal{A})$ of it, such that

1 {
$$e$$
} $\in S$,
2 $X \in S \Rightarrow X^{-1} \in S$,
3 $\mathcal{A} = \operatorname{Span}_{\mathbb{Z}} \{ \underline{X} : X \in S \}$.

Definition

An S-ring \mathcal{A} is called schurian, if $\mathcal{A} = \mathcal{A}(\Gamma, G)$ for some Γ .

Wielandt (1966): "Schur had conjectured for a long time that every S-ring is determined by a suitable permutation group".

Problem: find a criterion for an S-ring to be schurian.

The schurity problem has sense even for circulant S-rings, i.e. when the underlying group G is cyclic:

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

The schurity problem has sense even for circulant S-rings, i.e. when the underlying group G is cyclic:

Theorem (Evdokimov-Kovács-P, 2013)

Every S-ring over C_n is schurian if and only if *n* is of the form:

 p^k , pq^k , $2pq^k$, pqr, 2pqr

・ロト ・ 同 ・ ・ ヨ ・ ・ ヨ ・ うへつ

where p, q, r are distinct primes, and $k \ge 0$ is an integer.

The schurity problem has sense even for circulant S-rings, i.e. when the underlying group G is cyclic:

Theorem (Evdokimov-Kovács-P, 2013)

Every S-ring over C_n is schurian if and only if *n* is of the form:

$$p^k$$
, pq^k , $2pq^k$, pqr , $2pqr$

where p, q, r are distinct primes, and $k \ge 0$ is an integer.

An assumption:

The S-ring \mathcal{A} has no sections S of composite order such that $\dim(\mathcal{A}_S) = 2$.

Circulant coset S-rings

Definition

An S-ring A is called coset, if each $X \in S$ is of the form X = xH for some group $H \leq G$ such that $\underline{H} \in A$.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Definition

An S-ring A is called coset, if each $X \in S$ is of the form X = xH for some group $H \leq G$ such that $\underline{H} \in A$.

The set of circulant coset S-rings is closed under restrictions, intersections, tensor and wreath products, and consists of schurian rings.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Definition

An S-ring A is called coset, if each $X \in S$ is of the form X = xH for some group $H \leq G$ such that $\underline{H} \in A$.

The set of circulant coset S-rings is closed under restrictions, intersections, tensor and wreath products, and consists of schurian rings.

Definition

The coset closure A_0 of a circulant S-ring A is the intersection of all coset S-rings over G that contain A.

・ロト ・ 同 ・ ・ ヨ ・ ・ ヨ ・ うへつ

Finding the Schurian closure

Definition

The schurian closure Sch(A) of an S-ring A is the intersection of all schurian S-rings over G that contain A.

・ロト ・ 同 ・ ・ ヨ ・ ・ ヨ ・ うへつ

Finding the Schurian closure

Definition

The schurian closure Sch(A) of an S-ring A is the intersection of all schurian S-rings over G that contain A.

Theorem

Let \mathcal{A} be a circulant S-ring and Φ_0 is the group of all algebraic isomorphisms of \mathcal{A}_0 that are identical on \mathcal{A} . Then

$$\operatorname{Sch}(\mathcal{A}) = (\mathcal{A}_0)^{\Phi_0}.$$

・ロト ・ 同 ・ ・ ヨ ・ ・ ヨ ・ うへつ

In particular, \mathcal{A} is schurian if and only if $\mathcal{A} = (\mathcal{A}_0)^{\Phi_0}$.

Notation

-
$$\operatorname{Aut}_{cay}(\mathcal{A}) = \operatorname{Aut}(\mathcal{A}) \cap \operatorname{Aut}(G)$$
,

▲□▶▲圖▶▲≣▶▲≣▶ ▲■ のへ⊙

Notation

- $\operatorname{Aut}_{cay}(\mathcal{A}) = \operatorname{Aut}(\mathcal{A}) \cap \operatorname{Aut}(G)$,
- \mathfrak{S}_0 is the set of all \mathcal{A}_0 -sections *S* for which $(\mathcal{A}_0)_S = \mathbb{Z}S$.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Notation

-
$$\operatorname{Aut}_{cay}(\mathcal{A}) = \operatorname{Aut}(\mathcal{A}) \cap \operatorname{Aut}(\mathcal{G}),$$

- \mathfrak{S}_0 is the set of all \mathcal{A}_0 -sections S for which $(\mathcal{A}_0)_S = \mathbb{Z}S$.

Definition

The group $Mult(A) \leq \prod_{S \in \mathfrak{S}_0} Aut_{cay}(A_S)$ consists of all

$$\boldsymbol{\Sigma} = \{\boldsymbol{\sigma}_{\boldsymbol{\mathcal{S}}}\}_{\boldsymbol{\mathcal{S}} \in \mathfrak{S}_0},$$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

for which any two automorphisms σ_S and σ_T are compatible

Notation

-
$$\operatorname{Aut}_{cay}(\mathcal{A}) = \operatorname{Aut}(\mathcal{A}) \cap \operatorname{Aut}(\mathcal{G}),$$

- \mathfrak{S}_0 is the set of all \mathcal{A}_0 -sections S for which $(\mathcal{A}_0)_S = \mathbb{Z}S$.

Definition

The group $Mult(A) \leq \prod_{S \in \mathfrak{S}_0} Aut_{cay}(A_S)$ consists of all

$$\boldsymbol{\Sigma} = \{\boldsymbol{\sigma}_{\boldsymbol{\mathcal{S}}}\}_{\boldsymbol{\mathcal{S}} \in \mathfrak{S}_0},$$

for which any two automorphisms σ_S and σ_T are compatible (in particular, they are equal on common subsections of *S* and *T*).

Criterion

Theorem

A circulant S-ring \mathcal{A} is schurian if and only if the following two conditions are satisfied for all $S \in \mathfrak{S}_0$:

(1) the S-ring A_S is cyclotomic,

(2) the homomorphism $Mult(\mathcal{A}) \rightarrow Aut_{cay}(\mathcal{A}_{\mathcal{S}})$ is surjective.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Reduction to linear modular system: construction

- Let $S_0 \in \mathfrak{S}_0$ and $b \in \mathbb{Z}$ be such that
 - *b* is coprime to $n_{S_0} = |S_0|$,
 - the mapping $s \mapsto s^b$, $s \in S_0$, belongs to $\operatorname{Aut}_{cay}(\mathcal{A}_{S_0})$.

(ロ) (同) (三) (三) (三) (○) (○)

Reduction to linear modular system: construction

- Let $S_0 \in \mathfrak{S}_0$ and $b \in \mathbb{Z}$ be such that
 - *b* is coprime to $n_{\mathcal{S}_0} = |\mathcal{S}_0|$,
 - the mapping $s\mapsto s^b,\,s\in S_0,$ belongs to ${\sf Aut}_{cay}({\mathcal A}_{S_0}).$

Form a system of linear equations in variables $x_S \in \mathbb{Z}$, $S \in \mathfrak{S}_0$:

$$\begin{cases} x_{\mathcal{S}} \equiv x_{\mathcal{T}} \pmod{n_{\mathcal{T}}}, \\ x_{\mathcal{S}_0} \equiv b \pmod{n_{\mathcal{S}_0}} \end{cases}$$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

where $S \in \mathfrak{S}_0$ and $T \preceq S$.

Reduction to linear modular system: construction

- Let $S_0 \in \mathfrak{S}_0$ and $b \in \mathbb{Z}$ be such that
 - *b* is coprime to $n_{\mathcal{S}_0} = |\mathcal{S}_0|$,
 - the mapping $s \mapsto s^b$, $s \in S_0$, belongs to $\operatorname{Aut}_{cay}(\mathcal{A}_{S_0})$.

Form a system of linear equations in variables $x_S \in \mathbb{Z}$, $S \in \mathfrak{S}_0$:

$$\begin{cases} x_{S} \equiv x_{T} \pmod{n_{T}}, \\ x_{S_{0}} \equiv b \pmod{n_{S_{0}}} \end{cases}$$

where $S \in \mathfrak{S}_0$ and $T \preceq S$.

We are interested only in the solutions of this system that satisfy the additional condition

$$(x_S, n_S) = 1$$
 for all $S \in \mathfrak{S}_0$.

・ロト ・ 同 ・ ・ ヨ ・ ・ ヨ ・ うへつ

Reduction to linear modular system: result

Let A be a circulant S-ring such that for any section $S \in \mathfrak{S}_0$, the S-ring A_S is cyclotomic.

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

Let A be a circulant S-ring such that for any section $S \in \mathfrak{S}_0$, the S-ring A_S is cyclotomic.

Theorem

A is schurian if and only if the above system has a solution for all possible S_0 and b.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●