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Combinatorial geometry: the space chromatic
number

Definition (Nelson, 1950; Hadwiger, 1944).

The chromatic number of R
n is the minimum number �(Rn) of colors needed to

color all the points in R
n, so that any two points at the distance 1 apart receive

different colors.
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(Larman, Rogers, 1972) �(Rn) 6 (3 + o(1))n.
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Combinatorial geometry: Borsuk’s problem

Problem (Borsuk, 1933).

Find the minimum number f(n) of parts of smaller diameter, into which any set
of diameter 1 in R

n can be partitioned.

“Borsuk’s” conjecture.f(n) = n+ 1.

Positive results.

(Eggleston, 1953; Grünbaum, Heppes, 1957) True for n 6 3.

(Hadwiger, 1945) True for smooth bodies.

(Rogers, 1971) True for sets which are invariant under the actions of the
symmetry group of a regular simplex.
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Negative results and general bounds.

Disproved in high dim’s: Kahn–Kalai, 1993 (n > 2015); Nilli (Alon), 1994
(n > 946); Grey, Weissbach, 1997 (n > 903); AMR, 1997 (n > 561);
Weissbach, 2000 (n > 560); Hinrichs, 2000 (n > 324); Pikhurko, 2001
(n > 322); Hinrichs, Richter, 2003 (n > 298); Bondarenko, 2013 (n > 65);
Jenrich, 2013 (n > 64).

Nothing known for n ∈ [4; 63]!

(Schramm, 1988; Borgain, Lindenstrauss, 1991) f(n) 6 (1:224 : : :+ o(1))n.

(Kahn, Kalai, 1993) f(n) > (1:203 : : :+ o(1))
√n.

(AMR, 1999) f(n) > (1:2255 : : :+ o(1))
√n.

Which exponent — n or
√n, or another one — is true??
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Definition.
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A classical question of coding theory

Definition.

Code is any set of (0; 1)-vectors, or, more generally, any set of “words” over a
finite alphabet.

Error-correcting codes.

Assume that we have a code and a (0,1)-vector in it (a code word). This word is
sent via a channel. How many symbols (0’s and 1’s) can be corrupted during the
transmission, so that anyone could uniquely determine which word has really been
sent? Of course, if any two words in our code are at least at the Hamming
distance (the number of different symbols) d apart, then the answer on the
question is [(d− 1)=2]. So the problem is in finding the maximum number of code
words in a code whose pairwise Hamming distances are large enough.

Remark.

For (0,1)-vectors, “large enough” Hamming distance is the same as “small
enough” scalar products. Thus, the problem is in finding the maximum cardinality
of a set of (0,1)-vectors whose pairwise scalar products are small enough.
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Three most important extremal values in coding
theory

Error-correcting codes.

Let g(n; r; s) be the maximum cardinality of a binary code, in which any word has
exactly r ones and any two words have scalar product not exceeding s.
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Three most important extremal values in coding
theory

Error-correcting codes.

Let g(n; r; s) be the maximum cardinality of a binary code, in which any word has
exactly r ones and any two words have scalar product not exceeding s.
Codes with pairwise small Hamming distances.

Let f(n; r; s) be the maximum cardinality of a binary code, in which any word has
exactly r ones and any two words have scalar product at least s.
Codes with forbidden Hamming distances.

Let m(n; r; s) be the maximum cardinality of a binary code, in which any word
has exactly r ones and any two words have scalar product not equal to s.
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Where are the connections between our subjects?

Distance graphs.

Any graph G = (V;E) with V ⊆ R
n andE ⊆ {{x;y} : |x − y| = a}; a > 0;

is called distance graph.
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all the vertices so that any two adjacent vertices have different colors).

Moreover, Erdős and de Bruijn proved in 1951 that �(Rn) is attained on a finite

distance graph.

So what is a natural way to bound from below the chromatic number of a graphG = (V;E)?

Let �(G) be the maximum number of vertices in an independent set, i.e., in a set
whose vertices are pairwise non-adjacent in G. This quantity is called

independence number of G. Clearly, �(G) >
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Where are the connections between our subjects?

Consider a sequence G(n; r; s) = (V (n; r); E(n; r; s)) of distance graphs withV (n; r) = {x = (x1; : : : ; xn) ∈ {0; 1}n : x1 + : : :+ xn = r};E(n; r; s) = {{x;y} : (x;y) = s};
where (x;y) is the scalar product.
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Clearly (x;y) = s for x;y ∈ V (n; r) iff |x − y| =
√

2(r − s), so G(n; r; s) are
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Consider a sequence G(n; r; s) = (V (n; r); E(n; r; s)) of distance graphs withV (n; r) = {x = (x1; : : : ; xn) ∈ {0; 1}n : x1 + : : :+ xn = r};E(n; r; s) = {{x;y} : (x;y) = s};
where (x;y) is the scalar product.

Clearly (x;y) = s for x;y ∈ V (n; r) iff |x − y| =
√

2(r − s), so G(n; r; s) are
really distance graphs.

Moreover, �(G(n; r; s)) = m(n; r; s):
Eventually, we have:�(Rn) > �(G(n; r; s)) >

|V (n; r)|�(G(n; r; s)) =

(nr)m(n; r; s) :
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Where are the connections between our subjects?

Maximizing over all possible choices of r; s, Frankl and Wilson get in 1981 their
bound �(Rn) > (1:207 : : :+ o(1))n.

Applying a similar approach with (−1; 0; 1)-vectors, AMR gets in 2000 his bound�(Rn) > (1:239 : : :+ o(1))n.

Bit more difficult connections for Borsuk’s problem. Anyway, one has to findm(n; r; s) and �(n; r; s) = �(G(n; r; s)).
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)
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(r − s− 1)!
:

Theorem (Frankl, Wilson, 1981, and Rödl, 1985).

If r < 2s+ 1 and r − s is a prime power, thenm(n; r; s) ∼ ns (2r − 2s− 1)!r!(r − s− 1)!
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If r > 2s+ 1, then m(n; r; s) =

(n− s− 1r − s− 1

)

∼ nr−s−1

(r − s− 1)!
:

Theorem (Frankl, Wilson, 1981, and Rödl, 1985).
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Theorem (Frankl, Füredi, 1985).

If r > 2s+ 1, then m(n; r; s) =

(n− s− 1r − s− 1

)

∼ nr−s−1

(r − s− 1)!
:

Theorem (Frankl, Wilson, 1981, and Rödl, 1985).

If r < 2s+ 1 and r − s is a prime power, thenm(n; r; s) ∼ ns (2r − 2s− 1)!r!(r − s− 1)!
:

Questions.

What’s with the case when r− s is not a prime power in the second theorem?

How to find the exact value in the second theorem?
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The value m(n; r; s)
Theorem (Nagy, 1972).

If n ≡ 0 (mod 4), then m(n; 3; 1) = n. If n ≡ 1 (mod 4), thenm(n; 3; 1) = n− 1. If n ≡ 2; 3 (mod 4), then m(n; 3; 1) = n− 2.
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Even m(n; 5; 2) is already unknown!

Theorem (Frankl, Füredi, 1985, and a simple observation by Bobu,
Kostina, Kupriyanov, 2014+).

One has m(n; r; r − 1) ∼ nr−1r! .
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.
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The value m(n; r; s)
Theorem (Nagy, 1972).

If n ≡ 0 (mod 4), then m(n; 3; 1) = n. If n ≡ 1 (mod 4), thenm(n; 3; 1) = n− 1. If n ≡ 2; 3 (mod 4), then m(n; 3; 1) = n− 2.

Even m(n; 5; 2) is already unknown!

Theorem (Frankl, Füredi, 1985, and a simple observation by Bobu,
Kostina, Kupriyanov, 2014+).

One has m(n; r; r − 1) ∼ nr−1r! .

Theorem (Erdős, Ko, Rado, 1961).

One has m(n; r; 0) =
(n−1r−1

)

.

Note that the graph G(n; r; 0) is the classical Kneser graph.
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The value �(n; r; s)
Theorem (using Frankl, Füredi, 1985, and Turán numbers).

If r > 2s+ 1, then �(n; r; s) � ns+1.

Andrei Raigorodskii (MSU, MIPT, YND) RuFiDiM 12 / 17
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Theorem (using Frankl, Füredi, 1985, and Turán numbers).

If r > 2s+ 1, then �(n; r; s) � ns+1.

Theorem (using Frankl, Wilson, 1981, and Brook’s theorem).

If r < 2s+ 1 and r − s is a prime power, then �(n; r; s) � nr−s.
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The value �(n; r; s)
Theorem (using Frankl, Füredi, 1985, and Turán numbers).

If r > 2s+ 1, then �(n; r; s) � ns+1.

Theorem (using Frankl, Wilson, 1981, and Brook’s theorem).

If r < 2s+ 1 and r − s is a prime power, then �(n; r; s) � nr−s.
Theorem (Balogh, Kostochka, Raigorodskii).

If n = 2k, then �(n; 3; 1) = (n−1)(n−2)
6 . Anyway, �(n; 3; 1) ∼ n2

6 .
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The value �(n; r; s)
Theorem (Bobu, Kostina, Kupriyanov, 2014+).

If n = 2k, then n− r + 1 6 �(n; r; r − 1) 6 n:
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The value �(n; r; s)
Theorem (Bobu, Kostina, Kupriyanov, 2014+).

If n = 2k, then n− r + 1 6 �(n; r; r − 1) 6 n:
Theorem (Bobu, Kostina, Kupriyanov, 2014+).

One has n2

6
(1 + o(1)) 6 �(n; 4; 2) 6

n2

2
(1 + o(1)):
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The value �(n; r; s)
Theorem (Bobu, Kostina, Kupriyanov, 2014+).

If n = 2k, then n− r + 1 6 �(n; r; r − 1) 6 n:
Theorem (Bobu, Kostina, Kupriyanov, 2014+).

One has n2

6
(1 + o(1)) 6 �(n; 4; 2) 6

n2

2
(1 + o(1)):

Theorem (Lovász, 1975).

One has �(n; r; 0) = n− 2r + 2.

This result is the classical proof of Kneser’s conjecture.
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Random subgraphs of G(n; r; s)
Let p = p(n) ∈ [0; 1]. Let Gp(n; r; s) be a random element taking values in the
set of all spanning subgraphs G = (V (n; r); E) of the graph G(n; r; s) with
binomial distribution

P(Gp(n; r; s) = G) = p|E|(1 − p)|E(n;r;s)|−|E|;
i.e., any edge of G(n; r; s) belongs to Gp(n; r; s) with probability p independently
of all the other edges.
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Random subgraphs of G(n; r; s)
Let p = p(n) ∈ [0; 1]. Let Gp(n; r; s) be a random element taking values in the
set of all spanning subgraphs G = (V (n; r); E) of the graph G(n; r; s) with
binomial distribution

P(Gp(n; r; s) = G) = p|E|(1 − p)|E(n;r;s)|−|E|;
i.e., any edge of G(n; r; s) belongs to Gp(n; r; s) with probability p independently
of all the other edges.

The main question.

Let mp(n; r; s) = �(Gp(n; r; s)), �p(n; r; s) = �(Gp(n; r; s)). How, with high
probability, do these quantities differ from the original ones?
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Stability of mp(n; r; 0)

Theorem (Bollobás, Narayanan, AMR, 2014+).

Fix an " > 0 and let r = r(n) be a natural number such that 2 6 r = o (n1=3).
Then

P (mp(n; r; 0) = m(n; r; 0)) → 1;
provided p > (1 + ")pc(n; r), wherepc(n; r) =

(r + 1) lnn− r ln r
(n−1r−1

) :
Moreover,

P (mp(n; r; 0) = m(n; r; 0)) → 0;
provided p 6 (1 − ")pc(n; r).

Andrei Raigorodskii (MSU, MIPT, YND) RuFiDiM 15 / 17



Stability of mp(n; r; 0)

Theorem (Bollobás, Narayanan, AMR, 2014+).

Fix an " > 0 and let r = r(n) be a natural number such that 2 6 r = o (n1=3).
Then

P (mp(n; r; 0) = m(n; r; 0)) → 1;
provided p > (1 + ")pc(n; r), wherepc(n; r) =

(r + 1) lnn− r ln r
(n−1r−1

) :
Moreover,

P (mp(n; r; 0) = m(n; r; 0)) → 0;
provided p 6 (1 − ")pc(n; r).
An absolutely incredible stability! What’s with other values r; s?
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Other quantities mp(n; r; s)
Theorem (Bogoliubski, Gusev, Pyaderkin, AMR, 2014+).

If r 6 2s+ 1, then, w.h.p.,m1=2(n; r; s) � m(n; r; s) lnn:
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If r 6 2s+ 1, then, w.h.p.,m1=2(n; r; s) � m(n; r; s) lnn:
Theorem (Pyaderkin, 2014++).

If r > 2s+ 1, then, w.h.p., m1=2(n; r; s) ∼ m(n; r; s):
For example, if r > 2 and s = 0, then this theorem is a weakened version of the
Bollobás–Narayanan–AMR theorem. Together with the first theorem of this slide,
it sais that we have a kind of “phase transition” when coming from r 6 2s+ 1 tor > 2s+ 1.
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Theorem (Bogoliubski, Gusev, Pyaderkin, AMR, 2014+).

If r 6 2s+ 1, then, w.h.p.,m1=2(n; r; s) � m(n; r; s) lnn:
Theorem (Pyaderkin, 2014++).

If r > 2s+ 1, then, w.h.p., m1=2(n; r; s) ∼ m(n; r; s):
For example, if r > 2 and s = 0, then this theorem is a weakened version of the
Bollobás–Narayanan–AMR theorem. Together with the first theorem of this slide,
it sais that we have a kind of “phase transition” when coming from r 6 2s+ 1 tor > 2s+ 1.

Both theorems are true for a much larger range of values p.
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Quantities �p(n; r; s)
Theorem (Kupavskiy, 2014+).

If p is constant and 2 6 r � n
2 , then. w.h.p., �p(n; r; 0) ∼ �(n; r; 0).

Andrei Raigorodskii (MSU, MIPT, YND) RuFiDiM 17 / 17



Quantities �p(n; r; s)
Theorem (Kupavskiy, 2014+).

If p is constant and 2 6 r � n
2 , then. w.h.p., �p(n; r; 0) ∼ �(n; r; 0).

Here the stability is not so impressive as in the case of mp(n; r; 0), since one can
also prove that, w.h.p, �1=2(n; r; 0) < �(n; r; 0).
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What is the asymptotics of the value �(n; r; 0) − �p(n; r; 0)?

Theorem (Bogoliubski, Gusev, Pyaderkin, AMR, 2014+).

If r 6 2s+ 1, then, w.h.p., �1=2(n; r; s) � �(n;r;s)
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Here the stability is not so impressive as in the case of mp(n; r; 0), since one can
also prove that, w.h.p, �1=2(n; r; 0) < �(n; r; 0).

Question.

What is the asymptotics of the value �(n; r; 0) − �p(n; r; 0)?

Theorem (Bogoliubski, Gusev, Pyaderkin, AMR, 2014+).

If r 6 2s+ 1, then, w.h.p., �1=2(n; r; s) � �(n;r;s)
lnn .

Almost proved.

If r > 2s+ 1, then, w.h.p., �1=2(n; r; s) � �(n; r; s).
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Theorem (Kupavskiy, 2014+).

If p is constant and 2 6 r � n
2 , then. w.h.p., �p(n; r; 0) ∼ �(n; r; 0).

Here the stability is not so impressive as in the case of mp(n; r; 0), since one can
also prove that, w.h.p, �1=2(n; r; 0) < �(n; r; 0).

Question.

What is the asymptotics of the value �(n; r; 0) − �p(n; r; 0)?

Theorem (Bogoliubski, Gusev, Pyaderkin, AMR, 2014+).

If r 6 2s+ 1, then, w.h.p., �1=2(n; r; s) � �(n;r;s)
lnn .

Almost proved.

If r > 2s+ 1, then, w.h.p., �1=2(n; r; s) � �(n; r; s).
The same is true for many other values of p.
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