Combinatorial geometry and coding theory

Andrei Raigorodskii
Lomonosov Moscow State University, Moscow Institute of Physics and Technology, Yandex Division of Theoretical and Applied Research, Moscow, Russia

Russian-Finnish Conference in Discrete Mathematics, 15-19 September, 2014

Combinatorial geometry: the space chromatic number

Definition (Nelson, 1950; Hadwiger, 1944).

The chromatic number of \mathbb{R}^{n} is the minimum number $\chi\left(\mathbb{R}^{n}\right)$ of colors needed to color all the points in \mathbb{R}^{n}, so that any two points at the distance 1 apart receive different colors.

Combinatorial geometry: the space chromatic number

Definition (Nelson, 1950; Hadwiger, 1944).

The chromatic number of \mathbb{R}^{n} is the minimum number $\chi\left(\mathbb{R}^{n}\right)$ of colors needed to color all the points in \mathbb{R}^{n}, so that any two points at the distance 1 apart receive different colors.

- Obviously, $\chi\left(\mathbb{R}^{1}\right)=2$.

Combinatorial geometry: the space chromatic number

Definition (Nelson, 1950; Hadwiger, 1944).

The chromatic number of \mathbb{R}^{n} is the minimum number $\chi\left(\mathbb{R}^{n}\right)$ of colors needed to color all the points in \mathbb{R}^{n}, so that any two points at the distance 1 apart receive different colors.

- Obviously, $\chi\left(\mathbb{R}^{1}\right)=2$.
- Shame: only $4 \leqslant \chi\left(\mathbb{R}^{2}\right) \leqslant 7$!

Combinatorial geometry: the space chromatic number

Definition (Nelson, 1950; Hadwiger, 1944).

The chromatic number of \mathbb{R}^{n} is the minimum number $\chi\left(\mathbb{R}^{n}\right)$ of colors needed to color all the points in \mathbb{R}^{n}, so that any two points at the distance 1 apart receive different colors.

- Obviously, $\chi\left(\mathbb{R}^{1}\right)=2$.
- Shame: only $4 \leqslant \chi\left(\mathbb{R}^{2}\right) \leqslant 7$!
- Many other results in small dim's.

Combinatorial geometry: the space chromatic number

Definition (Nelson, 1950; Hadwiger, 1944).

The chromatic number of \mathbb{R}^{n} is the minimum number $\chi\left(\mathbb{R}^{n}\right)$ of colors needed to color all the points in \mathbb{R}^{n}, so that any two points at the distance 1 apart receive different colors.

- Obviously, $\chi\left(\mathbb{R}^{1}\right)=2$.
- Shame: only $4 \leqslant \chi\left(\mathbb{R}^{2}\right) \leqslant 7$!
- Many other results in small dim's.
- (Larman, Rogers, 1972) $\chi\left(\mathbb{R}^{n}\right) \leqslant(3+o(1))^{n}$.

Combinatorial geometry: the space chromatic number

Definition (Nelson, 1950; Hadwiger, 1944).

The chromatic number of \mathbb{R}^{n} is the minimum number $\chi\left(\mathbb{R}^{n}\right)$ of colors needed to color all the points in \mathbb{R}^{n}, so that any two points at the distance 1 apart receive different colors.

- Obviously, $\chi\left(\mathbb{R}^{1}\right)=2$.
- Shame: only $4 \leqslant \chi\left(\mathbb{R}^{2}\right) \leqslant 7$!
- Many other results in small dim's.
- (Larman, Rogers, 1972) $\chi\left(\mathbb{R}^{n}\right) \leqslant(3+o(1))^{n}$.
- (Frankl, Wilson, 1981) $\chi\left(\mathbb{R}^{n}\right) \geqslant(1.207 \ldots+o(1))^{n}$.

Combinatorial geometry: the space chromatic number

Definition (Nelson, 1950; Hadwiger, 1944).

The chromatic number of \mathbb{R}^{n} is the minimum number $\chi\left(\mathbb{R}^{n}\right)$ of colors needed to color all the points in \mathbb{R}^{n}, so that any two points at the distance 1 apart receive different colors.

- Obviously, $\chi\left(\mathbb{R}^{1}\right)=2$.
- Shame: only $4 \leqslant \chi\left(\mathbb{R}^{2}\right) \leqslant 7$!
- Many other results in small dim's.
- (Larman, Rogers, 1972) $\chi\left(\mathbb{R}^{n}\right) \leqslant(3+o(1))^{n}$.
- (Frankl, Wilson, 1981) $\chi\left(\mathbb{R}^{n}\right) \geqslant(1.207 \ldots+o(1))^{n}$.
- (AMR, 2000) $\chi\left(\mathbb{R}^{n}\right) \geqslant(1.239 \ldots+o(1))^{n}$.

Combinatorial geometry: Borsuk's problem

Problem (Borsuk, 1933).

Find the minimum number $f(n)$ of parts of smaller diameter, into which any set of diameter 1 in \mathbb{R}^{n} can be partitioned.

Combinatorial geometry: Borsuk's problem

Problem (Borsuk, 1933).

Find the minimum number $f(n)$ of parts of smaller diameter, into which any set of diameter 1 in \mathbb{R}^{n} can be partitioned.

"Borsuk's" conjecture.

$f(n)=n+1$.

Combinatorial geometry: Borsuk's problem

Problem (Borsuk, 1933).

Find the minimum number $f(n)$ of parts of smaller diameter, into which any set of diameter 1 in \mathbb{R}^{n} can be partitioned.
"Borsuk's" conjecture.
$f(n)=n+1$.

Positive results.

Combinatorial geometry: Borsuk's problem

Problem (Borsuk, 1933).

Find the minimum number $f(n)$ of parts of smaller diameter, into which any set of diameter 1 in \mathbb{R}^{n} can be partitioned.

"Borsuk's" conjecture.

$f(n)=n+1$.

Positive results.

- (Eggleston, 1953; Grünbaum, Heppes, 1957) True for $n \leqslant 3$.

Combinatorial geometry: Borsuk's problem

Problem (Borsuk, 1933).

Find the minimum number $f(n)$ of parts of smaller diameter, into which any set of diameter 1 in \mathbb{R}^{n} can be partitioned.

"Borsuk's" conjecture.

$f(n)=n+1$.

Positive results.

- (Eggleston, 1953; Grünbaum, Heppes, 1957) True for $n \leqslant 3$.
- (Hadwiger, 1945) True for smooth bodies.

Combinatorial geometry: Borsuk's problem

Problem (Borsuk, 1933).

Find the minimum number $f(n)$ of parts of smaller diameter, into which any set of diameter 1 in \mathbb{R}^{n} can be partitioned.

"Borsuk's" conjecture.

 $f(n)=n+1$.
Positive results.

- (Eggleston, 1953; Grünbaum, Heppes, 1957) True for $n \leqslant 3$.
- (Hadwiger, 1945) True for smooth bodies.
- (Rogers, 1971) True for sets which are invariant under the actions of the symmetry group of a regular simplex.

Combinatorial geometry: Borsuk's problem

Negative results and general bounds.

Combinatorial geometry: Borsuk's problem

Negative results and general bounds.

- Disproved in high dim's:

Combinatorial geometry: Borsuk's problem

Negative results and general bounds.

- Disproved in high dim's: Kahn-Kalai, 1993 ($n \geqslant 2015$);

Combinatorial geometry: Borsuk's problem

Negative results and general bounds.

- Disproved in high dim's: Kahn-Kalai, 1993 ($n \geqslant 2015$); Nilli (Alon), 1994 ($n \geqslant 946$);

Combinatorial geometry: Borsuk's problem

Negative results and general bounds.

- Disproved in high dim's: Kahn-Kalai, 1993 ($n \geqslant 2015$); Nilli (Alon), 1994 ($n \geqslant 946$); Grey, Weissbach, $1997(n \geqslant 903)$;

Combinatorial geometry: Borsuk's problem

Negative results and general bounds.

- Disproved in high dim's: Kahn-Kalai, 1993 ($n \geqslant 2015$); Nilli (Alon), 1994 ($n \geqslant 946$); Grey, Weissbach, 1997 ($n \geqslant 903$); AMR, $1997(n \geqslant 561)$;

Combinatorial geometry: Borsuk's problem

Negative results and general bounds.

- Disproved in high dim's: Kahn-Kalai, 1993 ($n \geqslant 2015$); Nilli (Alon), 1994 ($n \geqslant 946$); Grey, Weissbach, 1997 ($n \geqslant 903$); AMR, $1997(n \geqslant 561)$; Weissbach, $2000(n \geqslant 560)$;

Combinatorial geometry: Borsuk's problem

Negative results and general bounds.

- Disproved in high dim's: Kahn-Kalai, 1993 ($n \geqslant 2015$); Nilli (Alon), 1994 ($n \geqslant 946$); Grey, Weissbach, 1997 ($n \geqslant 903$); AMR, $1997(n \geqslant 561)$; Weissbach, $2000(n \geqslant 560)$; Hinrichs, $2000(n \geqslant 324)$;

Combinatorial geometry: Borsuk's problem

Negative results and general bounds.

- Disproved in high dim's: Kahn-Kalai, 1993 ($n \geqslant 2015$); Nilli (Alon), 1994 ($n \geqslant 946$); Grey, Weissbach, $1997(n \geqslant 903)$; AMR, $1997(n \geqslant 561)$; Weissbach, $2000(n \geqslant 560)$; Hinrichs, $2000(n \geqslant 324)$; Pikhurko, 2001 ($n \geqslant 322$);

Combinatorial geometry: Borsuk's problem

Negative results and general bounds.

- Disproved in high dim's: Kahn-Kalai, 1993 ($n \geqslant 2015$); Nilli (Alon), 1994 ($n \geqslant 946$); Grey, Weissbach, $1997(n \geqslant 903)$; AMR, $1997(n \geqslant 561)$; Weissbach, 2000 ($n \geqslant 560$); Hinrichs, $2000(n \geqslant 324)$; Pikhurko, 2001 ($n \geqslant 322$); Hinrichs, Richter, 2003 ($n \geqslant 298$);

Combinatorial geometry: Borsuk's problem

Negative results and general bounds.

- Disproved in high dim's: Kahn-Kalai, 1993 ($n \geqslant 2015$); Nilli (Alon), 1994 ($n \geqslant 946$); Grey, Weissbach, $1997(n \geqslant 903)$; AMR, $1997(n \geqslant 561)$; Weissbach, 2000 ($n \geqslant 560$); Hinrichs, 2000 ($n \geqslant 324$); Pikhurko, 2001 ($n \geqslant 322$); Hinrichs, Richter, $2003(n \geqslant 298)$; Bondarenko, $2013(n \geqslant 65)$;

Combinatorial geometry: Borsuk's problem

Negative results and general bounds.

- Disproved in high dim's: Kahn-Kalai, 1993 ($n \geqslant 2015$); Nilli (Alon), 1994 ($n \geqslant 946$); Grey, Weissbach, $1997(n \geqslant 903)$; AMR, $1997(n \geqslant 561)$; Weissbach, 2000 ($n \geqslant 560$); Hinrichs, 2000 ($n \geqslant 324$); Pikhurko, 2001 ($n \geqslant 322$); Hinrichs, Richter, 2003 ($n \geqslant 298$); Bondarenko, 2013 ($n \geqslant 65$); Jenrich, 2013 ($n \geqslant 64$).

Combinatorial geometry: Borsuk's problem

Negative results and general bounds.

- Disproved in high dim's: Kahn-Kalai, 1993 ($n \geqslant 2015$); Nilli (Alon), 1994 ($n \geqslant 946$); Grey, Weissbach, $1997(n \geqslant 903)$; AMR, $1997(n \geqslant 561)$; Weissbach, 2000 ($n \geqslant 560$); Hinrichs, $2000(n \geqslant 324)$; Pikhurko, 2001 ($n \geqslant 322$); Hinrichs, Richter, $2003(n \geqslant 298)$; Bondarenko, $2013(n \geqslant 65)$; Jenrich, 2013 ($n \geqslant 64$).
- Nothing known for $n \in[4,63]$!

Combinatorial geometry: Borsuk's problem

Negative results and general bounds.

- Disproved in high dim's: Kahn-Kalai, 1993 ($n \geqslant 2015$); Nilli (Alon), 1994 ($n \geqslant 946$); Grey, Weissbach, $1997(n \geqslant 903)$; AMR, $1997(n \geqslant 561)$; Weissbach, 2000 ($n \geqslant 560$); Hinrichs, $2000(n \geqslant 324)$; Pikhurko, 2001 ($n \geqslant 322$); Hinrichs, Richter, $2003(n \geqslant 298)$; Bondarenko, $2013(n \geqslant 65)$; Jenrich, 2013 ($n \geqslant 64$).
- Nothing known for $n \in[4,63]$!
- (Schramm, 1988; Borgain, Lindenstrauss, 1991) $f(n) \leqslant(1.224 \ldots+o(1))^{n}$.

Combinatorial geometry: Borsuk's problem

Negative results and general bounds.

- Disproved in high dim's: Kahn-Kalai, 1993 ($n \geqslant 2015$); Nilli (Alon), 1994 ($n \geqslant 946$); Grey, Weissbach, $1997(n \geqslant 903)$; AMR, $1997(n \geqslant 561)$; Weissbach, 2000 ($n \geqslant 560$); Hinrichs, $2000(n \geqslant 324)$; Pikhurko, 2001 ($n \geqslant 322$); Hinrichs, Richter, $2003(n \geqslant 298)$; Bondarenko, $2013(n \geqslant 65)$; Jenrich, 2013 ($n \geqslant 64$).
- Nothing known for $n \in[4,63]$!
- (Schramm, 1988; Borgain, Lindenstrauss, 1991) $f(n) \leqslant(1.224 \ldots+o(1))^{n}$.
- (Kahn, Kalai, 1993) $f(n) \geqslant(1.203 \ldots+o(1))^{\sqrt{n}}$.

Combinatorial geometry: Borsuk's problem

Negative results and general bounds.

- Disproved in high dim's: Kahn-Kalai, 1993 ($n \geqslant 2015$); Nilli (Alon), 1994 ($n \geqslant 946$); Grey, Weissbach, $1997(n \geqslant 903)$; AMR, $1997(n \geqslant 561)$; Weissbach, 2000 ($n \geqslant 560$); Hinrichs, $2000(n \geqslant 324)$; Pikhurko, 2001 ($n \geqslant 322$); Hinrichs, Richter, $2003(n \geqslant 298)$; Bondarenko, $2013(n \geqslant 65)$; Jenrich, 2013 ($n \geqslant 64$).
- Nothing known for $n \in[4,63]$!
- (Schramm, 1988; Borgain, Lindenstrauss, 1991) $f(n) \leqslant(1.224 \ldots+o(1))^{n}$.
- (Kahn, Kalai, 1993) $f(n) \geqslant(1.203 \ldots+o(1))^{\sqrt{n}}$.
- (AMR, 1999) $f(n) \geqslant(1.2255 \ldots+o(1))^{\sqrt{n}}$.

Combinatorial geometry: Borsuk's problem

Negative results and general bounds.

- Disproved in high dim's: Kahn-Kalai, 1993 ($n \geqslant 2015$); Nilli (Alon), 1994 ($n \geqslant 946$); Grey, Weissbach, $1997(n \geqslant 903)$; AMR, $1997(n \geqslant 561)$; Weissbach, 2000 ($n \geqslant 560$); Hinrichs, $2000(n \geqslant 324)$; Pikhurko, 2001 ($n \geqslant 322$); Hinrichs, Richter, $2003(n \geqslant 298)$; Bondarenko, $2013(n \geqslant 65)$; Jenrich, 2013 ($n \geqslant 64$).
- Nothing known for $n \in[4,63]$!
- (Schramm, 1988; Borgain, Lindenstrauss, 1991) $f(n) \leqslant(1.224 \ldots+o(1))^{n}$.
- (Kahn, Kalai, 1993) $f(n) \geqslant(1.203 \ldots+o(1))^{\sqrt{n}}$.
- (AMR, 1999) $f(n) \geqslant(1.2255 \ldots+o(1))^{\sqrt{n}}$.
- Which exponent - n or \sqrt{n}, or another one - is true??

A classical question of coding theory

Definition.

Code is any set of $(0,1)$-vectors, or, more generally, any set of "words" over a finite alphabet.

A classical question of coding theory

Definition.

Code is any set of $(0,1)$-vectors, or, more generally, any set of "words" over a finite alphabet.

Error-correcting codes.

Assume that we have a code and a $(0,1)$-vector in it (a code word). This word is sent via a channel. How many symbols (0 's and 1 's) can be corrupted during the transmission, so that anyone could uniquely determine which word has really been sent?

A classical question of coding theory

Definition.

Code is any set of $(0,1)$-vectors, or, more generally, any set of "words" over a finite alphabet.

Error-correcting codes.

Assume that we have a code and a $(0,1)$-vector in it (a code word). This word is sent via a channel. How many symbols (0 's and 1 's) can be corrupted during the transmission, so that anyone could uniquely determine which word has really been sent? Of course, if any two words in our code are at least at the Hamming distance (the number of different symbols) d apart, then the answer on the question is $[(d-1) / 2]$.

A classical question of coding theory

Definition.

Code is any set of $(0,1)$-vectors, or, more generally, any set of "words" over a finite alphabet.

Error-correcting codes.

Assume that we have a code and a $(0,1)$-vector in it (a code word). This word is sent via a channel. How many symbols (0 's and 1 's) can be corrupted during the transmission, so that anyone could uniquely determine which word has really been sent? Of course, if any two words in our code are at least at the Hamming distance (the number of different symbols) d apart, then the answer on the question is $[(d-1) / 2]$. So the problem is in finding the maximum number of code words in a code whose pairwise Hamming distances are large enough.

A classical question of coding theory

Definition.

Code is any set of $(0,1)$-vectors, or, more generally, any set of "words" over a finite alphabet.

Error-correcting codes.

Assume that we have a code and a $(0,1)$-vector in it (a code word). This word is sent via a channel. How many symbols (0 's and 1 's) can be corrupted during the transmission, so that anyone could uniquely determine which word has really been sent? Of course, if any two words in our code are at least at the Hamming distance (the number of different symbols) d apart, then the answer on the question is $[(d-1) / 2]$. So the problem is in finding the maximum number of code words in a code whose pairwise Hamming distances are large enough.

Remark.

For (0,1)-vectors, "large enough" Hamming distance is the same as "small enough" scalar products. Thus, the problem is in finding the maximum cardinality of a set of $(0,1)$-vectors whose pairwise scalar products are small enough.

Three most important extremal values in coding theory

Error-correcting codes.

Let $g(n, r, s)$ be the maximum cardinality of a binary code, in which any word has exactly r ones and any two words have scalar product not exceeding s.

Three most important extremal values in coding theory

Error-correcting codes.

Let $g(n, r, s)$ be the maximum cardinality of a binary code, in which any word has exactly r ones and any two words have scalar product not exceeding s.

Codes with pairwise small Hamming distances.

Let $f(n, r, s)$ be the maximum cardinality of a binary code, in which any word has exactly r ones and any two words have scalar product at least s.

Three most important extremal values in coding theory

Error-correcting codes.

Let $g(n, r, s)$ be the maximum cardinality of a binary code, in which any word has exactly r ones and any two words have scalar product not exceeding s.

Codes with pairwise small Hamming distances.

Let $f(n, r, s)$ be the maximum cardinality of a binary code, in which any word has exactly r ones and any two words have scalar product at least s.

Codes with forbidden Hamming distances.

Let $m(n, r, s)$ be the maximum cardinality of a binary code, in which any word has exactly r ones and any two words have scalar product not equal to s.

Where are the connections between our subjects?

Distance graphs.

Any graph $G=(V, E)$ with $V \subseteq \mathbb{R}^{n}$ and

$$
E \subseteq\{\{\mathbf{x}, \mathbf{y}\}:|\mathbf{x}-\mathbf{y}|=a\}, \quad a>0
$$

is called distance graph.

Where are the connections between our subjects?

Distance graphs.

Any graph $G=(V, E)$ with $V \subseteq \mathbb{R}^{n}$ and

$$
E \subseteq\{\{\mathbf{x}, \mathbf{y}\}:|\mathbf{x}-\mathbf{y}|=a\}, \quad a>0
$$

is called distance graph.
Of course $\chi\left(\mathbb{R}^{n}\right) \geqslant \chi(G)$ for any distance graph G in \mathbb{R}^{n}, where $\chi(G)$ is the usual chromatic number of the graph (the minimum number of colors needed to color all the vertices so that any two adjacent vertices have different colors).

Where are the connections between our subjects?

Distance graphs.

Any graph $G=(V, E)$ with $V \subseteq \mathbb{R}^{n}$ and

$$
E \subseteq\{\{\mathbf{x}, \mathbf{y}\}:|\mathbf{x}-\mathbf{y}|=a\}, \quad a>0
$$

is called distance graph.
Of course $\chi\left(\mathbb{R}^{n}\right) \geqslant \chi(G)$ for any distance graph G in \mathbb{R}^{n}, where $\chi(G)$ is the usual chromatic number of the graph (the minimum number of colors needed to color all the vertices so that any two adjacent vertices have different colors).

Moreover, Erdős and de Bruijn proved in 1951 that $\chi\left(\mathbb{R}^{n}\right)$ is attained on a finite distance graph.

Where are the connections between our subjects?

Distance graphs.

Any graph $G=(V, E)$ with $V \subseteq \mathbb{R}^{n}$ and

$$
E \subseteq\{\{\mathbf{x}, \mathbf{y}\}:|\mathbf{x}-\mathbf{y}|=a\}, \quad a>0
$$

is called distance graph.
Of course $\chi\left(\mathbb{R}^{n}\right) \geqslant \chi(G)$ for any distance graph G in \mathbb{R}^{n}, where $\chi(G)$ is the usual chromatic number of the graph (the minimum number of colors needed to color all the vertices so that any two adjacent vertices have different colors).

Moreover, Erdős and de Bruijn proved in 1951 that $\chi\left(\mathbb{R}^{n}\right)$ is attained on a finite distance graph.

So what is a natural way to bound from below the chromatic number of a graph $G=(V, E)$?

Where are the connections between our subjects?

Distance graphs.

Any graph $G=(V, E)$ with $V \subseteq \mathbb{R}^{n}$ and

$$
E \subseteq\{\{\mathbf{x}, \mathbf{y}\}:|\mathbf{x}-\mathbf{y}|=a\}, \quad a>0
$$

is called distance graph.
Of course $\chi\left(\mathbb{R}^{n}\right) \geqslant \chi(G)$ for any distance graph G in \mathbb{R}^{n}, where $\chi(G)$ is the usual chromatic number of the graph (the minimum number of colors needed to color all the vertices so that any two adjacent vertices have different colors).

Moreover, Erdős and de Bruijn proved in 1951 that $\chi\left(\mathbb{R}^{n}\right)$ is attained on a finite distance graph.

So what is a natural way to bound from below the chromatic number of a graph $G=(V, E)$?

Let $\alpha(G)$ be the maximum number of vertices in an independent set, i.e., in a set whose vertices are pairwise non-adjacent in G. This quantity is called independence number of G.

Where are the connections between our subjects?

Distance graphs.

Any graph $G=(V, E)$ with $V \subseteq \mathbb{R}^{n}$ and

$$
E \subseteq\{\{\mathbf{x}, \mathbf{y}\}:|\mathbf{x}-\mathbf{y}|=a\}, \quad a>0
$$

is called distance graph.
Of course $\chi\left(\mathbb{R}^{n}\right) \geqslant \chi(G)$ for any distance graph G in \mathbb{R}^{n}, where $\chi(G)$ is the usual chromatic number of the graph (the minimum number of colors needed to color all the vertices so that any two adjacent vertices have different colors).

Moreover, Erdős and de Bruijn proved in 1951 that $\chi\left(\mathbb{R}^{n}\right)$ is attained on a finite distance graph.

So what is a natural way to bound from below the chromatic number of a graph $G=(V, E)$?

Let $\alpha(G)$ be the maximum number of vertices in an independent set, i.e., in a set whose vertices are pairwise non-adjacent in G. This quantity is called independence number of G. Clearly, $\chi(G) \geqslant \frac{|V|}{\alpha(G)}$.

Where are the connections between our subjects?

Consider a sequence $G(n, r, s)=(V(n, r), E(n, r, s))$ of distance graphs with

$$
\begin{gathered}
V(n, r)=\left\{\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right) \in\{0,1\}^{n}: x_{1}+\ldots+x_{n}=r\right\}, \\
E(n, r, s)=\{\{\mathbf{x}, \mathbf{y}\}:(\mathbf{x}, \mathbf{y})=s\},
\end{gathered}
$$

where (\mathbf{x}, \mathbf{y}) is the scalar product.

Where are the connections between our subjects?

Consider a sequence $G(n, r, s)=(V(n, r), E(n, r, s))$ of distance graphs with

$$
\begin{gathered}
V(n, r)=\left\{\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right) \in\{0,1\}^{n}: x_{1}+\ldots+x_{n}=r\right\}, \\
E(n, r, s)=\{\{\mathbf{x}, \mathbf{y}\}:(\mathbf{x}, \mathbf{y})=s\},
\end{gathered}
$$

where (\mathbf{x}, \mathbf{y}) is the scalar product.
Clearly $(\mathbf{x}, \mathbf{y})=s$ for $\mathbf{x}, \mathbf{y} \in V(n, r)$ iff $|\mathbf{x}-\mathbf{y}|=\sqrt{2(r-s)}$, so $G(n, r, s)$ are really distance graphs.

Where are the connections between our subjects?

Consider a sequence $G(n, r, s)=(V(n, r), E(n, r, s))$ of distance graphs with

$$
\begin{gathered}
V(n, r)=\left\{\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right) \in\{0,1\}^{n}: x_{1}+\ldots+x_{n}=r\right\}, \\
E(n, r, s)=\{\{\mathbf{x}, \mathbf{y}\}:(\mathbf{x}, \mathbf{y})=s\},
\end{gathered}
$$

where (\mathbf{x}, \mathbf{y}) is the scalar product.
Clearly $(\mathbf{x}, \mathbf{y})=s$ for $\mathbf{x}, \mathbf{y} \in V(n, r)$ iff $|\mathbf{x}-\mathbf{y}|=\sqrt{2(r-s)}$, so $G(n, r, s)$ are really distance graphs.

Moreover,

$$
\alpha(G(n, r, s))=m(n, r, s) .
$$

Where are the connections between our subjects?

Consider a sequence $G(n, r, s)=(V(n, r), E(n, r, s))$ of distance graphs with

$$
\begin{gathered}
V(n, r)=\left\{\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right) \in\{0,1\}^{n}: x_{1}+\ldots+x_{n}=r\right\}, \\
E(n, r, s)=\{\{\mathbf{x}, \mathbf{y}\}:(\mathbf{x}, \mathbf{y})=s\}
\end{gathered}
$$

where (\mathbf{x}, \mathbf{y}) is the scalar product.
Clearly $(\mathbf{x}, \mathbf{y})=s$ for $\mathbf{x}, \mathbf{y} \in V(n, r)$ iff $|\mathbf{x}-\mathbf{y}|=\sqrt{2(r-s)}$, so $G(n, r, s)$ are really distance graphs.
Moreover,

$$
\alpha(G(n, r, s))=m(n, r, s) .
$$

Eventually, we have:

$$
\chi\left(\mathbb{R}^{n}\right) \geqslant \chi(G(n, r, s)) \geqslant \frac{|V(n, r)|}{\alpha(G(n, r, s))}=\frac{\binom{n}{r}}{m(n, r, s)}
$$

Where are the connections between our subjects?

Where are the connections between our subjects?

Maximizing over all possible choices of r, s, Frankl and Wilson get in 1981 their bound $\chi\left(\mathbb{R}^{n}\right) \geqslant(1.207 \ldots+o(1))^{n}$.

Where are the connections between our subjects?

Maximizing over all possible choices of r, s, Frankl and Wilson get in 1981 their bound $\chi\left(\mathbb{R}^{n}\right) \geqslant(1.207 \ldots+o(1))^{n}$.

Applying a similar approach with $(-1,0,1)$-vectors, AMR gets in 2000 his bound $\chi\left(\mathbb{R}^{n}\right) \geqslant(1.239 \ldots+o(1))^{n}$.

Where are the connections between our subjects?

Maximizing over all possible choices of r, s, Frankl and Wilson get in 1981 their bound $\chi\left(\mathbb{R}^{n}\right) \geqslant(1.207 \ldots+o(1))^{n}$.

Applying a similar approach with $(-1,0,1)$-vectors, AMR gets in 2000 his bound $\chi\left(\mathbb{R}^{n}\right) \geqslant(1.239 \ldots+o(1))^{n}$.

Bit more difficult connections for Borsuk's problem. Anyway, one has to find $m(n, r, s)$ and $\chi(n, r, s)=\chi(G(n, r, s))$.

The value $m(n, r, s)$

For simplicity, we concentrate only on the case of constant r, s.

The value $m(n, r, s)$

For simplicity, we concentrate only on the case of constant r, s.

Theorem (Frankl, Füredi, 1985).

If $r \geqslant 2 s+1$, then

$$
m(n, r, s)=\binom{n-s-1}{r-s-1} \sim \frac{n^{r-s-1}}{(r-s-1)!} .
$$

The value $m(n, r, s)$

For simplicity, we concentrate only on the case of constant r, s.

Theorem (Frankl, Füredi, 1985).

If $r \geqslant 2 s+1$, then

$$
m(n, r, s)=\binom{n-s-1}{r-s-1} \sim \frac{n^{r-s-1}}{(r-s-1)!} .
$$

Theorem (Frankl, Wilson, 1981, and Rödl, 1985).

If $r<2 s+1$ and $r-s$ is a prime power, then

$$
m(n, r, s) \sim n^{s} \frac{(2 r-2 s-1)!}{r!(r-s-1)!}
$$

The value $m(n, r, s)$

For simplicity, we concentrate only on the case of constant r, s.

Theorem (Frankl, Füredi, 1985).

If $r \geqslant 2 s+1$, then

$$
m(n, r, s)=\binom{n-s-1}{r-s-1} \sim \frac{n^{r-s-1}}{(r-s-1)!} .
$$

Theorem (Frankl, Wilson, 1981, and Rödl, 1985).

If $r<2 s+1$ and $r-s$ is a prime power, then

$$
m(n, r, s) \sim n^{s} \frac{(2 r-2 s-1)!}{r!(r-s-1)!}
$$

Questions.

- What's with the case when $r-s$ is not a prime power in the second theorem?

The value $m(n, r, s)$

For simplicity, we concentrate only on the case of constant r, s.

Theorem (Frankl, Füredi, 1985).

If $r \geqslant 2 s+1$, then

$$
m(n, r, s)=\binom{n-s-1}{r-s-1} \sim \frac{n^{r-s-1}}{(r-s-1)!} .
$$

Theorem (Frankl, Wilson, 1981, and Rödl, 1985).

If $r<2 s+1$ and $r-s$ is a prime power, then

$$
m(n, r, s) \sim n^{s} \frac{(2 r-2 s-1)!}{r!(r-s-1)!}
$$

Questions.

- What's with the case when $r-s$ is not a prime power in the second theorem?
- How to find the exact value in the second theorem?

The value $m(n, r, s)$

Theorem (Nagy, 1972).

If $n \equiv 0(\bmod 4)$, then $m(n, 3,1)=n$. If $n \equiv 1(\bmod 4)$, then $m(n, 3,1)=n-1$. If $n \equiv 2,3(\bmod 4)$, then $m(n, 3,1)=n-2$.

The value $m(n, r, s)$

Theorem (Nagy, 1972).

If $n \equiv 0(\bmod 4)$, then $m(n, 3,1)=n$. If $n \equiv 1(\bmod 4)$, then $m(n, 3,1)=n-1$. If $n \equiv 2,3(\bmod 4)$, then $m(n, 3,1)=n-2$.

Even $m(n, 5,2)$ is already unknown!

The value $m(n, r, s)$

Theorem (Nagy, 1972).

If $n \equiv 0(\bmod 4)$, then $m(n, 3,1)=n$. If $n \equiv 1(\bmod 4)$, then $m(n, 3,1)=n-1$. If $n \equiv 2,3(\bmod 4)$, then $m(n, 3,1)=n-2$.

Even $m(n, 5,2)$ is already unknown!
Theorem (Frankl, Füredi, 1985, and a simple observation by Bobu, Kostina, Kupriyanov, 2014+).
One has $m(n, r, r-1) \sim \frac{n^{r-1}}{r!}$.

The value $m(n, r, s)$

Theorem (Nagy, 1972).

If $n \equiv 0(\bmod 4)$, then $m(n, 3,1)=n$. If $n \equiv 1(\bmod 4)$, then $m(n, 3,1)=n-1$. If $n \equiv 2,3(\bmod 4)$, then $m(n, 3,1)=n-2$.

Even $m(n, 5,2)$ is already unknown!
Theorem (Frankl, Füredi, 1985, and a simple observation by Bobu, Kostina, Kupriyanov, 2014+).
One has $m(n, r, r-1) \sim \frac{n^{r-1}}{r!}$.
Theorem (Erdös, Ko, Rado, 1961).
One has $m(n, r, 0)=\binom{n-1}{r-1}$.

The value $m(n, r, s)$

Theorem (Nagy, 1972).

If $n \equiv 0(\bmod 4)$, then $m(n, 3,1)=n$. If $n \equiv 1(\bmod 4)$, then $m(n, 3,1)=n-1$. If $n \equiv 2,3(\bmod 4)$, then $m(n, 3,1)=n-2$.

Even $m(n, 5,2)$ is already unknown!
Theorem (Frankl, Füredi, 1985, and a simple observation by Bobu, Kostina, Kupriyanov, 2014+).
One has $m(n, r, r-1) \sim \frac{n^{r-1}}{r!}$.

Theorem (Erdös, Ko, Rado, 1961).

One has $m(n, r, 0)=\binom{n-1}{r-1}$.
Note that the graph $G(n, r, 0)$ is the classical Kneser graph.

The value $\chi(n, r, s)$

Theorem (using Frankl, Füredi, 1985, and Turán numbers).
 If $r \geqslant 2 s+1$, then $\chi(n, r, s) \asymp n^{s+1}$.

The value $\chi(n, r, s)$

$$
\begin{aligned}
& \text { Theorem (using Frankl, Füredi, 1985, and Turán numbers). } \\
& \text { If } r \geqslant 2 s+1 \text {, then } \chi(n, r, s) \asymp n^{s+1} \text {. }
\end{aligned}
$$

Theorem (using Frankl, Wilson, 1981, and Brook's theorem).
If $r<2 s+1$ and $r-s$ is a prime power, then $\chi(n, r, s) \asymp n^{r-s}$.

The value $\chi(n, r, s)$

Theorem (using Frankl, Füredi, 1985, and Turán numbers).

If $r \geqslant 2 s+1$, then $\chi(n, r, s) \asymp n^{s+1}$.

Theorem (using Frankl, Wilson, 1981, and Brook's theorem).

If $r<2 s+1$ and $r-s$ is a prime power, then $\chi(n, r, s) \asymp n^{r-s}$.

Theorem (Balogh, Kostochka, Raigorodskii).

If $n=2^{k}$, then $\chi(n, 3,1)=\frac{(n-1)(n-2)}{6}$. Anyway, $\chi(n, 3,1) \sim \frac{n^{2}}{6}$.

The value $\chi(n, r, s)$

Theorem (Bobu, Kostina, Kupriyanov, 2014+).
If $n=2^{k}$, then

$$
n-r+1 \leqslant \chi(n, r, r-1) \leqslant n .
$$

The value $\chi(n, r, s)$

Theorem (Bobu, Kostina, Kupriyanov, 2014+).

If $n=2^{k}$, then

$$
n-r+1 \leqslant \chi(n, r, r-1) \leqslant n .
$$

Theorem (Bobu, Kostina, Kupriyanov, 2014+).
One has

$$
\frac{n^{2}}{6}(1+o(1)) \leqslant \chi(n, 4,2) \leqslant \frac{n^{2}}{2}(1+o(1)) .
$$

The value $\chi(n, r, s)$

Theorem (Bobu, Kostina, Kupriyanov, 2014+).

If $n=2^{k}$, then

$$
n-r+1 \leqslant \chi(n, r, r-1) \leqslant n .
$$

Theorem (Bobu, Kostina, Kupriyanov, 2014+).
One has

$$
\frac{n^{2}}{6}(1+o(1)) \leqslant \chi(n, 4,2) \leqslant \frac{n^{2}}{2}(1+o(1)) .
$$

Theorem (Lovász, 1975).
One has $\chi(n, r, 0)=n-2 r+2$.
This result is the classical proof of Kneser's conjecture.

Random subgraphs of $G(n, r, s)$

Let $p=p(n) \in[0,1]$. Let $G_{p}(n, r, s)$ be a random element taking values in the set of all spanning subgraphs $G=(V(n, r), E)$ of the graph $G(n, r, s)$ with binomial distribution

$$
\mathbb{P}\left(G_{p}(n, r, s)=G\right)=p^{|E|}(1-p)^{|E(n, r, s)|-|E|}
$$

i.e., any edge of $G(n, r, s)$ belongs to $G_{p}(n, r, s)$ with probability p independently of all the other edges.

Random subgraphs of $G(n, r, s)$

Let $p=p(n) \in[0,1]$. Let $G_{p}(n, r, s)$ be a random element taking values in the set of all spanning subgraphs $G=(V(n, r), E)$ of the graph $G(n, r, s)$ with binomial distribution

$$
\mathbb{P}\left(G_{p}(n, r, s)=G\right)=p^{|E|}(1-p)^{|E(n, r, s)|-|E|},
$$

i.e., any edge of $G(n, r, s)$ belongs to $G_{p}(n, r, s)$ with probability p independently of all the other edges.

The main question.

Let $m_{p}(n, r, s)=\alpha\left(G_{p}(n, r, s)\right), \chi_{p}(n, r, s)=\chi\left(G_{p}(n, r, s)\right)$. How, with high probability, do these quantities differ from the original ones?

Stability of $m_{p}(n, r, 0)$

Theorem (Bollobás, Narayanan, AMR, 2014+).

Fix an $\varepsilon>0$ and let $r=r(n)$ be a natural number such that $2 \leqslant r=o\left(n^{1 / 3}\right)$. Then

$$
\mathbb{P}\left(m_{p}(n, r, 0)=m(n, r, 0)\right) \rightarrow 1
$$

provided $p \geqslant(1+\varepsilon) p_{c}(n, r)$, where

$$
p_{c}(n, r)=\frac{(r+1) \ln n-r \ln r}{\binom{n-1}{r-1}} .
$$

Moreover,

$$
\mathbb{P}\left(m_{p}(n, r, 0)=m(n, r, 0)\right) \rightarrow 0,
$$

provided $p \leqslant(1-\varepsilon) p_{c}(n, r)$.

Stability of $m_{p}(n, r, 0)$

Theorem (Bollobás, Narayanan, AMR, 2014+).

Fix an $\varepsilon>0$ and let $r=r(n)$ be a natural number such that $2 \leqslant r=o\left(n^{1 / 3}\right)$. Then

$$
\mathbb{P}\left(m_{p}(n, r, 0)=m(n, r, 0)\right) \rightarrow 1
$$

provided $p \geqslant(1+\varepsilon) p_{c}(n, r)$, where

$$
p_{c}(n, r)=\frac{(r+1) \ln n-r \ln r}{\binom{n-1}{r-1}}
$$

Moreover,

$$
\mathbb{P}\left(m_{p}(n, r, 0)=m(n, r, 0)\right) \rightarrow 0
$$

provided $p \leqslant(1-\varepsilon) p_{c}(n, r)$.
An absolutely incredible stability! What's with other values r, s ?

Other quantities $m_{p}(n, r, s)$

Theorem (Bogoliubski, Gusev, Pyaderkin, AMR, 2014+).
If $r \leqslant 2 s+1$, then, w.h.p.,

$$
m_{1 / 2}(n, r, s) \asymp m(n, r, s) \ln n .
$$

Other quantities $m_{p}(n, r, s)$

Theorem (Bogoliubski, Gusev, Pyaderkin, AMR, 2014+).
If $r \leqslant 2 s+1$, then, w.h.p.,

$$
m_{1 / 2}(n, r, s) \asymp m(n, r, s) \ln n .
$$

Theorem (Pyaderkin, 2014++).

If $r>2 s+1$, then, w.h.p.,

$$
m_{1 / 2}(n, r, s) \sim m(n, r, s)
$$

Other quantities $m_{p}(n, r, s)$

Theorem (Bogoliubski, Gusev, Pyaderkin, AMR, 2014+).

If $r \leqslant 2 s+1$, then, w.h.p.,

$$
m_{1 / 2}(n, r, s) \asymp m(n, r, s) \ln n
$$

Theorem (Pyaderkin, 2014++).

If $r>2 s+1$, then, w.h.p.,

$$
m_{1 / 2}(n, r, s) \sim m(n, r, s)
$$

For example, if $r \geqslant 2$ and $s=0$, then this theorem is a weakened version of the Bollobás-Narayanan-AMR theorem. Together with the first theorem of this slide, it sais that we have a kind of "phase transition" when coming from $r \leqslant 2 s+1$ to $r>2 s+1$.

Other quantities $m_{p}(n, r, s)$

Theorem (Bogoliubski, Gusev, Pyaderkin, AMR, 2014+).

If $r \leqslant 2 s+1$, then, w.h.p.,

$$
m_{1 / 2}(n, r, s) \asymp m(n, r, s) \ln n
$$

Theorem (Pyaderkin, 2014++).

If $r>2 s+1$, then, w.h.p.,

$$
m_{1 / 2}(n, r, s) \sim m(n, r, s)
$$

For example, if $r \geqslant 2$ and $s=0$, then this theorem is a weakened version of the Bollobás-Narayanan-AMR theorem. Together with the first theorem of this slide, it sais that we have a kind of "phase transition" when coming from $r \leqslant 2 s+1$ to $r>2 s+1$.

Both theorems are true for a much larger range of values p.

Quantities $\chi_{p}(n, r, s)$

Theorem (Kupavskiy, 2014+).
If p is constant and $2 \leqslant r \ll \frac{n}{2}$, then. w.h.p., $\chi_{p}(n, r, 0) \sim \chi(n, r, 0)$.

Quantities $\chi_{p}(n, r, s)$

Theorem (Kupavskiy, 2014+).

If p is constant and $2 \leqslant r \ll \frac{n}{2}$, then. w.h.p., $\chi_{p}(n, r, 0) \sim \chi(n, r, 0)$.
Here the stability is not so impressive as in the case of $m_{p}(n, r, 0)$, since one can also prove that, w.h.p, $\chi_{1 / 2}(n, r, 0)<\chi(n, r, 0)$.

Quantities $\chi_{p}(n, r, s)$

Theorem (Kupavskiy, 2014+).

If p is constant and $2 \leqslant r \ll \frac{n}{2}$, then. w.h.p., $\chi_{p}(n, r, 0) \sim \chi(n, r, 0)$.
Here the stability is not so impressive as in the case of $m_{p}(n, r, 0)$, since one can also prove that, w.h.p, $\chi_{1 / 2}(n, r, 0)<\chi(n, r, 0)$.

Question.

What is the asymptotics of the value $\chi(n, r, 0)-\chi_{p}(n, r, 0)$?

Quantities $\chi_{p}(n, r, s)$

Theorem (Kupavskiy, 2014+).

If p is constant and $2 \leqslant r \ll \frac{n}{2}$, then. w.h.p., $\chi_{p}(n, r, 0) \sim \chi(n, r, 0)$.
Here the stability is not so impressive as in the case of $m_{p}(n, r, 0)$, since one can also prove that, w.h.p, $\chi_{1 / 2}(n, r, 0)<\chi(n, r, 0)$.

Question.

What is the asymptotics of the value $\chi(n, r, 0)-\chi_{p}(n, r, 0)$?

Theorem (Bogoliubski, Gusev, Pyaderkin, AMR, 2014+).

If $r \leqslant 2 s+1$, then, w.h.p., $\chi_{1 / 2}(n, r, s) \asymp \frac{\chi(n, r, s)}{\ln n}$.

Quantities $\chi_{p}(n, r, s)$

Theorem (Kupavskiy, 2014+).

If p is constant and $2 \leqslant r \ll \frac{n}{2}$, then. w.h.p., $\chi_{p}(n, r, 0) \sim \chi(n, r, 0)$.
Here the stability is not so impressive as in the case of $m_{p}(n, r, 0)$, since one can also prove that, w.h.p, $\chi_{1 / 2}(n, r, 0)<\chi(n, r, 0)$.

Question.

What is the asymptotics of the value $\chi(n, r, 0)-\chi_{p}(n, r, 0)$?

Theorem (Bogoliubski, Gusev, Pyaderkin, AMR, 2014+).

If $r \leqslant 2 s+1$, then, w.h.p., $\chi_{1 / 2}(n, r, s) \asymp \frac{\chi(n, r, s)}{\ln n}$.

Almost proved.

If $r>2 s+1$, then, w.h.p., $\chi_{1 / 2}(n, r, s) \asymp \chi(n, r, s)$.

Quantities $\chi_{p}(n, r, s)$

Theorem (Kupavskiy, 2014+).

If p is constant and $2 \leqslant r \ll \frac{n}{2}$, then. w.h.p., $\chi_{p}(n, r, 0) \sim \chi(n, r, 0)$.
Here the stability is not so impressive as in the case of $m_{p}(n, r, 0)$, since one can also prove that, w.h.p, $\chi_{1 / 2}(n, r, 0)<\chi(n, r, 0)$.

Question.

What is the asymptotics of the value $\chi(n, r, 0)-\chi_{p}(n, r, 0)$?

Theorem (Bogoliubski, Gusev, Pyaderkin, AMR, 2014+).

If $r \leqslant 2 s+1$, then, w.h.p., $\chi_{1 / 2}(n, r, s) \asymp \frac{\chi(n, r, s)}{\ln n}$.

Almost proved.

If $r>2 s+1$, then, w.h.p., $\chi_{1 / 2}(n, r, s) \asymp \chi(n, r, s)$.
The same is true for many other values of p.

