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1. History of the models of "fish wars"
Levhari and Mirman (1980)

The biological growth rule is given by

Tip1 = (24)%, 20 ==,
where x; > 0 — size of the population, O < a < 1 — natural birth
rate.

Two players exploit this fish stock and the utility functions are
logarithmic.

Then the players’ net revenue over infinite time horizon are:

— m *
T =Y Brin(uy),
t=0



where u! > 0 — players’ catch at time ¢, 0 < 3; < 1 — the discount
factor for player 2.

And the dynamic becomes

a:t_|_1—(:1:t—ut—ut)o‘ 0=1=.

Authors derived Cournot-Nash and cooperative equilibria.



Our model with many players

The dynamics of the fishery is described by the equation

n

i1 = (exe — Y wip)®, zo ==,
i=1

where z; > 0 — size of population at a time t, e € (0,1) — natural
death rate, o € (0,1) — natural birth rate, u;; > 0 — the catch of
player z, 1 =1,...,n.

The characteristic function for cooperative game is constructed
in two unusual forms, and we derived Shapley value and time-
consistent imputation distribution procedure.



Fisher and Mirman (1992)

The biological growth rule is given by

Lt4+1 — f((zt —c1t), (yt —c21))
Y41 = g((xr — c14), (e — cor))

where z; > 0 — size of the population in the first region, y > 0
— size of the population in the second region, 0 < c14 < xy¢,
0 < cop <yt — players’ catch at time t.

Players wish to maximize the sum of discounted utility

00 00
> 85 In(e1e), > 55 In(eat) ,

where 0 < §; < 1 — the discount factors (1 = 1,2).



Our model of bioresource sharing problem

The center (referee) shares a reservoir between the competi-
tors. There are migratory exchanges between the regions of the
reservoir.

The dynamics is of the form

Tip1 = (2t — u1) P15 (yp — upy)P18,
{ Y41 = (yt — upy) 2 P2(1=9) (g — yq,)B2(1=5)
where z; > 0 — size of the population in the first region, y; > 0 —
size of the population in the second region, 0 < a; < 1 — natural
birth rate, 0 < B; < 1 — coefficients of migration between the
regions (i = 1,2), 0 <wui; <z, 0 <wuopp <y — countries’ catch at
time ¢, 0 < §; < 1 — the discount factor for country i (: = 1,2).



Here the intensity of migration also depends on the share s.
It seems to be natural because the habitat size decreases as s
decreases and fish needs to migrate to another region.

We consider the problem of maximizing infinite sum of dis-
counted utilities for two players:

oo oo
Ji=Y_ 681In(u1), Jo= > s5In(uy).

We derived Nash, cooperative and incentive equilibria.



2. The model with asymmetric players and the Nash equi-
librium

Two players exploit the fish stock. The dynamics of the fishery
IS

ri41 = (exs —uie —uo))®, o ==, (1)

where x; > 0 — the size of population at a time ¢, € € (0,1) —
natural survival rate, a € (0,1) — natural birth rate, u;; > 0 — the
catch of player 7, 1 = 1, 2.

The players’ net revenues over time interval [0,n] are

=3 atinu), (2)
t=0

where 0 < 9; < 1 — the discount factor for country 7, : = 1, 2.



(uy,ud") — Nash equilibrium if
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The Nash equilibrium of the problem (1), (2) is

gap . ay gayl ». as
Nn — J=0 Nn __ =0
ZalzaQ—l Zalzaz—l
j=0 j=0 j=0 =0
where a; = ao;, 1 = 1,2

The payoffs for n-stage game are

V(50 = 3 (@) In(@) + 3 (6" 9 A7 — (6™ In(2),

(3)



where
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3. Cooperative behavior and the Nash bargaining proce-
dure

Here we obtain the cooperative strategies without determin-
ing the joint discount factor using recursive Nash bargaining
procedure. On each time moment the cooperative strategies
are determined as the Nash bargaining solution taking the non-
cooperative profits as a status-quo point.

We start with the one-step game and assume that if there were
no future period, the countries would get the remaining fish in
the ratio 1 : 1. Let the initial size of the population be z.

Noncooperative gains are

HiN = (1 +a1) In(z) + A7 — 61 In(2) (5)
HYY = (14 ap) In(z) + A3 — 5>In(2), (6)



where A} and Al are independent on z and have the forms

(50,2)1"'“10,?1 | _ (8a1)1—|—a2a6212

1
A= A TG o) —DFa 2T " (@A T anA Fa) - DiFe

The cooperative strategies are determined maximizing the Nash
product

H = (In(uy) + a1 In(ex — u1 — un) — 61 In(2) — HTY) .
(In(ug) + as In(ex — uqg — up) — 85 In(2) — HAN) =
= (H{¢— H{N)(HA¢ — H3N) — max,

where H!V are given in (5)—(6).

The cooperative strategies are

uip =7 &, u2 =79 &,



and can be found as the solution of the next equation

(ln(vzc)+a2 In(e—y1¢—72)— Az) (In(716)+al In(e—v1¢—72%)— A)
(7)
with the relation
lc __ — € — 716(1 _I_ a’l)
V5 1+ a

The cooperative gains for one step game have the forms

€= (1+a1) In() + In(41) + aq In(e — 10—726>—61|n<2> (8)
3¢ = (14 a2) In(@) + In(v39) + az In(e — 41 — 439 — 52 In(2). (9)



We pass to two stage game. If the players act non-cooperatively
till the end of the game then the gains are

N=(14a1+af)In(z) + A3 + 5141 - 67In(2),  (10)
N'= (1 +azx+a3)In(z) + A3+ 6245 —3In(2),  (11)

where
A2 = (8(a2 + a2))1+a1+a’1(a1 + a2)a’1+a’1
(14 a1)(1 4 ap) — 1)1Hartai
A2 = (€(a1 + a2))1+a’2+a2(a2 + az)a2+a2 |

(1 + a1)(1 +ap) — 1)tHeta



We determine the cooperative strategies maximizing the Nash
product

H?¢ = (In(uy) + 61 H{C — H2N)Y(n(up) 4 6o HAC — HZY) =

= (H?¢ — H2N)(H5¢ — H§N> — max,

where H,}C are the cooperative gains for one step game and are
given in (8)—(9) and HZN are determined in (10)—(11).



Analogously we get the equation for 7%6 and 7%0

(In(y ) + (ap + a3) In(e — 75 — 43 +
-|-52(|n(’Y%C) + apIn(e — 1€ —43°)) — A3 — 52A2>
(In(*ylc)-l—(&l-l-%)'n(é“— v3¢ —43%) +

+51(|n(’Y%C) + a1 In(e — 1€ — 43%)) — A% - 5114%)
with the relation

2c_ ST 11°(1 + a1 +a7)
2 1—|—a2—|—a2

(12)



The process can be repeated for the n-stage game and we have
the next form of the cooperative profits

n .
H?C(W]]:7”‘77?7fy%7"’773): Z a’%_ln(x)_l_
7=0

S G (n=ie __(n—3)
> o7 [In(vln P+ aiin(e—y =g C)] —671In(2)(13)

and

n .
H3(v1, o3, v3) = Y abin(z) +
=0

(S Y o I = (n—)e __(n—)
> 65 J[m(b’” DY+ abin(e —47" 7 =5 C)] —631In(2).(14)



The cooperative strategies can be found recursively from the
equations

(5 551 4 5 abin(e A0 Ag]  spag) =
J=0 i=1

1 . . n—j . . . .
) + 5 al e {0 D] - 54z )

n—
v’fc(z

]:O 1=1
with the relation
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Modelling

We present the results of numerical modelling for 20-stage game
with the next parameters:

e=0.6, a=03, z0g=0.8,
01 = 0.85, 0o =0.9.

The cooperative and Nash gains are

V{i(z,81) = —14.1039 > V¥ (z,61) = —14.6439,

V3(z, 85) = —20.5108 > V4¥ (z, 65) = —23.2596.
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Fig. 1. The population size: dark — cooperative, light — Nash
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Fig. 2. The catch of player 1: dark — cooperative, light — Nash
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Fig. 3. The catch of player 2: dark — cooperative, light — Nash



Next we compare players’' profits for different discount factors.
In Fig. 4 we show V{**(x,d1) and V3**(x,dp) for 63 = 0.1...0.9
and 0o = 0.1...0.9. One can notice that player with greater dis-
count factor gets more advantage from cooperative agreement.
And both players get equal profits when their discount factors

coincide.
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Fig. 4. The catch of player 2: dark — cooperative, light — Nash



One can notice that our approach gives a player the payoff that is
greater or equal (for some parameters) Nash payoff. In Fig. 5 it
iIs shown the second player’s payoff for different discount factors.
So it proves that under presented approach it is always profitable
to cooperate versus the maximization the weighted sum where
players can get less under cooperation.



Fig. 5. The catch of player 2: dark — cooperative, light — Nash



4. Model with fixed harvesting times

et us consider the case where the first player harvests the stock
for n1 time moments, and the second — for no. Let n1 < no.
So, we have a situation where on time interval [0,n1] players
cooperate, and we need to determine their strategies. After niq
and until no the second player acts individually. So, the players’
profits have the forms

cht In(ug,), J2—Z52|n(u2t)+ Z 65In(ug,), (15)

t=n1+1
where u,L-, 1 = 1,2 — cooperative strategies, u2 — the second
player’'s strategy when harvesting the stock alone.



We construct cooperative strategies and the joint payoff maxi-
mizing the Nash product for the whole game:

(Vf(z,61)[0,n1] — V1" (=,61)[0,n1]) -
(V5 (z,62)[0,n1]+V5(«"1, 62) [n1,no] —
— V3 (2,82)[0,n1] = VEN (@N™165) [n1,no]) =

= (> 84 in(u§y) — Vi (2, 61)[0,n1]) -
t_O

(Z 5 In(u%,) + Z 5 In(us;) —

t=n1+1
—VQNCB,52>[0,n11—V2aN<xN“1,52>[n1,n2]>ﬁmax, (16)

where ViN(:c,éi)[O,nl] are the non-cooperative gains determined
in (3) (where n =mnq), V&(x,5)[n1,na] — the second player’s
gain when acting individually after n1 periods of cooperation,



VN (zN™ §5)[n1,np] — the second player's gain when acting in-
dividually after n1 periods of noncooperation.



Let us consider the time interval [nq,n5], here the second player
acts individually.

After n = no — ny steps we get ~»,, = —=5— and the payoff
J

V3(x", 82) [n1, nol = H3 (751, ---,75) = > aslnz+ > 65 ' B/,
j=0 j=1
(17)

where

J J J

: £

Bl =) al2|n(j )+ D aZQIH(E ab), n=no—nj.
[=0 3 ag [=1 p=1

p=0



Now we can determine ViV (zV"1,65)[n1,no] as the second player’s
payoff starting from the noncooperative point V"1 (see (4) when

n=mni):

Va(z,82)[n1,m0] = Y abIn(a™™) + > 657787
j=0 =1



So, we determine all the gains in problem (16) except for the
cooperative gains. To find the later we determine cooperative
payoffs for an ni-step game starting from nq. Be reminded that
after n1 we assume that the first player gets a portion of the
remaining stock — k and the second player starts exploiting the
portion (1 — k) of the remaining stock.

We start with the one-step game. As usual we seek the players
strategies in the linear form u§; = yiz and u§; = y3z.

Then the first player’'s profit is

Hi1 (7117215 2) =
= In(7§12) + 01 In(k(ex — 712 — ¥512)) =
= (1+4a1)In(z) +In(vi1) +arIn(e — 11 —21) + 91 In(k)



and the second player's profit is

H51(v11,751: ) = In(v512) + 02V ("1, 02) [n1, no] =

= In(3512) + 82 3 a}In((1 = k)(ez — 7§12 = 1512)) + 3 65T IBT =

n+1 n+1
=In(y51) + Y asinz+ Y ajin(e —~f1 —51) +

+ 3> 0T IR 46, Y alIn(1—k).
j=1 =0

n



We can now consider problem (16) for the two-step game. The
objective function of the first player for the two-step game is

His(Vi1,712, 712, 722: T) =

= In(v{o2) + 81 H{°(7§1,751; (7 — 7oz — 7552)*) =

= In(vioz) +61(1 + a1) In(ex — 1oz — ¥502)" +

+01(In(v11) +a1In(e =911 —7%1) +61In(k)) =

= (14 a3 +a?) In(z) + In(4§2) + a1 (1 +a1) In(e — ¥§2 — ¥52) +
+611n(7§1) + d1a1In(e — 71 —251) + 67 In(k)



and that of the second player

H55(Y11,721: 712, V52 T) =
= In(¥55%) + 62 H3(151,751; (€7 — 7§om — ¥5,2)) =
n+1
= In(v52z) + 02In(751) + 02 Y abIn(ex —~irz —75,2)* +
=0
n+1 1o
+52 Z CL‘% |n(€ —’711 —’721) —I— Z 57’1, ]BJ —|— 52 Z CL‘% |n(1 — k‘) =
=1 J=1 =0
n+2 n+2
=1In(7v52) + Y abIn(z) + > abin(e —4fo —¥55) + d2In(751) +
n+1 4o
+d2 Y azlIn(e —1§1 —751) + Z 05 B+ 53 Z aé In(1—k).
=1 j=1 7=0



To determine cooperative strategies for this two-step game we
solve the following problem

(HS5(¥$1,751, 752, 752; ) — V{¥ (2, 81)[n1 — 1,n1]) -
(H55(711,751,712:752: ) —
— [V (x,60)[n1 — 1,n1] + VIV (&N 65)[nq, no]]) =

= (H5, -~ Vi) (HS5, - V3') —  max ., (18)
V117215712722

where V¥ is the expression in square brackets.

From the first-order conditions we obtain the strategies

c _5—’)/%1(14—&1) c _8_7§2(1+a’1+a’%)
V21 = n4+1 . y V22 = n—+42

(19)



and the next relation

n+2 .
eV11 2 az
1=1

gay Z a2+711( Z a2(1+a1+a%)—(a1+a%) Z ag))

j=0 =0

c_  __
Y12 —

(20)
So, we express all the parameters using only the first player’s
strategy on the last step ~«7;, and to determine it we need to
solve one of the first-order conditions. Unfortunately it can't

be solved analytically, and we give some results of numerical
modelling.



The process can be repeated for the ni-stage game, and we get
the next form of the profits

}{fnl(Vfla---77§n177§1,-.-,7§n1;x) =
ni _ nq .
=2 apin(@)+ 3 17 In(i)+
=0 j=1
R J )
+ > 6717 aiIn(e—ng;—45) +67 In(k)
j=1 i=1
and
l{§n1(7i1>--~77§n177§1,---,Wgnl;aﬁ =
nni ni . ni n+j
ni— N1 —
= > agin(@)+ Y o1 T In(a5) + > 8t Y abin(e — 4§ —55) +
j=0 j=1 j=1 i—=1

+ 3 65T BI 4§01 S abin(l — k).
=1 §=0



The cooperative strategies are related as follows

n—+t j
EV11 2 ap
c __ j=t—1
Y1t — n—I—t _ j ¢ j 1 . n+t j
5“1 2. a2‘|‘711( Zt:laz 2. al (a +a3) Zoaz)
7=0 ~1 ~ j=0 j=

c __ J=
Yot — nt+t
> ab
j=0

711 €an be determined from one of the first-order conditions, for
example, the last one

1T e =1L+ a))(HY - Vi) — a5 (1 +ax)ri (HE — V2) = 0.



Modelling

820.6, (X:O.?), n2=20, ni 1
51 =085, 6,=09, 20=08, k=3.

We get v7; = 0.2723. For the first player we compare the co-
operative and the noncooperative gains on time interval [0, nq]:

V{(z,81)[0,n1] = —10.3870 > V{"¥ (&, 61)[0,n1] = —11.9010.

For the second player we compare the cooperative gain on time
interval [0,nq1] plus acting individually on time interval [nq1,n»]
after cooperation, and the noncooperative gain on time interval
[0,n1] plus individual gain on time interval [nq,no] after nonco-
operation:



V5 (x,62)[0,n1] + V53 (2“1, 02)[n1,n0] = —19.6375 >
> V3V (2,62)[0,n1] + VAN (2N™ | 65)[ng, no] = —23.2596 .

One can notice that cooperative profits are larger that nonco-
operative ones for both players.
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Fig. 6. The population size: dark — cooperative, light — Nash
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Fig. 7. The catch of player 1: dark — cooperative, light — Nash
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Fig. 8. The catch of player 2: dark — cooperative+individual, light —
Nash—+individual



Next we compare players’ profits for different planning horizons.

We show V{(x,61)[0,n1] and V5(x,d2)[0,n1]+V3(x"1, 62)[nq, no]
for no =2...10 and ny = 1...no — 1. One can notice that as

n1 becomes closer to no the difference between players’ profits

becomes less.



Fig. 9. Players’ profits



Also we show that our approach gives a player the payoff that is
greater or equal (for some parameters) Nash payoff. So, it again
proves that under presented approach it is always profitable to
cooperate.
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Fig. 10. The second player’s profit: Nash and cooperative



5. The model with random harvesting times

The first player harvests the stock for n1 time moments, and the

second — for no. np is @ random variable with a range {1,...,n}
and corresponding probabilities {01,...,0,r}. no is a random vari-
able with the same range and probabilities {wq,...,wn}.

First, we construct the players’ payoffs as mathematical expec-
tations:



Hy = { Z 51 |n(U1t)I{n1<n2} T

t=1

—I—(%Q: 55 In(uyy) + Z gt ln(uclbt)>l{”1>”2}} B

_ i inl Z wn2251|n(ult)+

= t=
ni=1 n2=mni
ni—1

+ > wn2<z 85 In(uyy) + Z 5tm(u1t)>]

t=no—+1
no=1 t=1



no
H2 = E{ Z (Sg |n(’u,2t)l{n2§nl} -+
t=1

nq no
‘|‘<Z 55 In(uo) + Z 55 |n<u%t))l{n2>n1}} —
t=1 t=n1+1

=y %[ Z O, 252|n(uzt)+

no=1 nij=n2
no—1

+ 2 enl(Z 651n(uz2e) + Z 52'“(“2t)>]

n1=1 t=n1+1
where ugt IS a player i's strategy when the opponent quits the
dgame, 1 =1, 2.



T he Nash equilibrium

First we determine the Nash equilibrium as we use it as a status-
quo point for the Nash bargaining solution. The value functions
for the whole game take the forms

n ni
W= max {3 o] 3 e Y st +

u11> “1 no=njy t=1
n1—1
+ 3 an(Z S+ > o))}
no=1 t=n —|—1

VN La) = max {3 wno| Y o, 3" sbin(udl) +
Up1se-»Uop “no=1 n1=ny t=1
no—1
_I_ Z in(z 52|n(’LL2t)+ Z 52|n(u2t)>]}

n1=1 t=ni1+1



To construct the Bellman equation we define the value functions
VN (r,z) when the stage 7 has arrived:

n

V&V (r,z) = max {Z Ony [ > Cin(ud)) +

N N
UprosUyy SMI=T Z 0; -m2=n1 Z wy t=7

=1 =1

Einud)) + Vi, m)] } (21)

n1—1

n>=—T7 Z Wy t=T1
=1

VQN(T,:I:) = max Z Z L In(ué\g) -+

uN N L —
27Uy TM2=T Yy N1=n2 Y O t=7

=T =1

b in(ud) + V3 (r,m2) | b (22)

n n

no—1

_|_

nyj=—r Z wy t=r1
=71



where

n1—1 w ni
n
Vii(r,nq) = Z . 2 Z 5§|n(ucltt),
no=t1 %" w] t=no+1
=T
no—1 in no ,
V3i(r,np) = Z . Z 55 In(u3,)
n1=T Y O;t=ni+1
=T
are the profits when player ¢ exploits the stock alone, and they
can be estimated easily, as we will show later.

Now we find the relation between VN(r,z) and VN(r + 1,z).
From (21) we get

n niq
ViV(r,z) = 8T In(uY )+ PIT IV (41, 2)+C1r Y 60y Y 84 In(udy),
n1=71+1 =71
(23)



n

no
Vo' (1,2) = 85 In(ud )+ PIT IV (141, 2)+Cor Y wny . 85 In(ug,),
n2=7'—|—1 t=r

(24)
where
n n
l—z—l—l L l—z—l—l Ql w 1 6 1
P77'-+1: _7’;1, _77-1 ,C1r = nT n , Cor = nT n .
> w29 >o wp 2o 0 >, 01 2w
=71 =71 =17 =71 =7 =7

From the previous case with fixed harvesting times (see (17)),
where we maximized the second player’'s profit when acting in-
dividually on time interval [n1,n5]) we can get

8(1 — az-)
Xr
1 —ag

a __
Uz —

Y



n; n,—T n;—T1
Sootin(ud) = Y allinz4+ Y 6T 'p?, (25)
t=1 7=0 =1

where

J
g
= zagm<
1=0 ;

As usual for ""fish war’ models we seek the value functions in the
form VV(r,z) = ATInz 4+ BY and the Nash strategies in linear
form uN = 7,57\{33, 1 =1,2.

From the first-order conditions we get the Nash strategies
g01 A% N g05A7

N
Ve = Vo = .
YT STAL 4 6AT + aATASPI T P T ST AT 4 5TAT + aATATPIT]



Coefficients AT and B] are derived from (21) and (22)

n n1—7 . n no—T

ST+ Cr S Oy z o] 54+ Cor Y wny S ab
r n1=1+1 J= r no=71-+1 7=0
Ay = F1 , Ag = +1 ’
1 —aP! 1 —aP;
(26)

n1—7
(5Tln(717)—|—ozA7PT+1ln(s AN AN+ C1s S O, ¥ &)
n1=7+1 =1

no—T

5Tln(727)—|—aATPT+1In(5 iy — VQT)+CQT z Wny > 06527 JD7
Br— no=r+1 j=1
T=

1 prtl

So, we determined the Nash strategies and the Nash payoffs
VN(T r) =AlInx+ BT, i =1,2.



The cooperative behavior

We construct cooperative strategies and the payoff maximizing
the Nash product for the whole game, so we need to solve the
following problem

(VE(1, z) —v1N<1 as))(v;u z) — V4 (1,2)) =

= ( Z enll Z Wni Z 55 In(ugy) +

’n,l_ no=—n1 t—1
n1—1
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where VN (1,2) = AN Inz+ BN, i = 1,2 are the non-cooperative
gains determined in (26).



When step 7 has arrived we determine the cooperative value
functions V¢(r,x) as
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Similarly to the Nash payoffs we get the relation between the
cooperative payoffs at time moments = and =+ 1:

n ni
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We start when step n has arrived. Since on the next step n+1 the
payoffs of both players are equal to zero, the optimal strategies
are Nash equilibrium strategies and

VEi(n,x) = 6 In(ug,) = V;;N(fn,,a:) =4, In('y%az) = A;lInz+B;,1=1,2,
(30)
where

A; =57, Bizéfln(yﬁ)=5fln(%), i=1,2.



Now we suppose that step n — 1 has arrived. We have problem
(27) in the form

(Vi(n—1,2) = V¥ (n—1,2))(VE(n—1,2) — V3 (n— 1,2)) — max,
(31)
where
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As usual we seek the strategies in the linear form u; 1 =~5 .
From first-order conditions we get
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Now we pass to the situation when step n — 2 has arrived. We
have problem (27) in the form

(Vi(n—2,z) — VlN(n —2,2))(Vs(n—2,x) — VQN(n —2,x)) — max,
(33)



where

VE(n —2,2) = 872 In(uf,,_o) +
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We seek the strategies in the linear form uf - =~; _-x. From
the first-order conditions we get
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Let’'s denote
Gl =6""1+ P jaA;, G =61+ P jaAq,
Gy = 672 + s 1P a2y P 21 Ly
G3 =602 + sl 1P” 3+ a?AP" P .

Then (32) and (34) take the forms
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The value functions take the forms
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Continuing the process for k steps we get the payoffs in the form
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where
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The cooperative strategies are related as follows
n—k n—=k n—k 1
07 "0y "€ =0y "Gk
n—k~2
o7 "Gy

Vgn—k — ’ (36)
5n 1 GQ_I_,yln 1(G1G2 GlGQ)
And ~{,,_1 can be determined from one of the first-order condi-
tions.




Modelling

We use Monte-Carlo method for n = 10.

For the same parameters and the next probabilities
0, =0.1, w; = 0.0057:+ 0.0725
we get the expected cooperative and Nash payoffs

VE(l,z) = —6.2151 > V{¥(1,2) = —10.1958,

VE(1l,z) = —7.3256 > VAV(1,x2) = —12.8829.
2 2

Fig. 6 presents the results of the modelling with 50 simulations
for the Nash equilibrium, Fig. 7 — for the cooperative equilib-
rium. Points are the results of simulations and circles denote the

expected payoffs determined in (26) and (35).



-101
~12
~14 1

~16

[e] e} (<] (<] (<]
(<] o
(<]
° o
o o
o
O © o
o o
(<]
o
(<] (<] °
(<]
(<]
(<]

o o o o

14

Fig. 11. Nash equilibrium
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Fig. 12.

Cooperative equilibrium




We considered a discrete time bioresource management problem
with two players which differ not only in discount factors, but
in harvesting times. How to determine the cooperative gains in
both cases has not been studied yet.

In the first model, participation planning horizons are known.
Here one player leaves the game at a fixed time moment and
receives a portion of the remaining stock as compensation. The
second player continues exploitation until the end of the game
individually. To construct the cooperative strategies we used the
Nash bargaining scheme for the whole planning horizon.

In the second model, the harvesting times are random variables
and the distribution functions for the players’ planning horizons
differ. First, we constructed the Nash equilibrium and used it
as a status-quo point. Second, we determined the cooperative
strategies using the Nash bargaining procedure.
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