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1. History of the models of "�sh wars"

Levhari and Mirman (1980)

The biological growth rule is given by
xt+1 = (xt)

α , x0 = x ,

where xt ≥ 0 � size of the population, 0 < α < 1 � natural birth
rate.

Two players exploit this �sh stock and the utility functions are
logarithmic.

Then the players' net revenue over in�nite time horizon are:

J̄i =
∞∑

t=0

βt
i ln(ui

t) ,



where ui
t ≥ 0 � players' catch at time t, 0 < βi < 1 � the discount

factor for player i.

And the dynamic becomes

xt+1 = (xt − u1
t − u2

t )
α , x0 = x .

Authors derived Cournot-Nash and cooperative equilibria.



Our model with many players

The dynamics of the �shery is described by the equation

xt+1 = (εxt −
n∑

i=1

uit)
α , x0 = x ,

where xt ≥ 0 � size of population at a time t, ε ∈ (0,1) � natural
death rate, α ∈ (0,1) � natural birth rate, uit ≥ 0 � the catch of
player i, i = 1, . . . , n.

The characteristic function for cooperative game is constructed
in two unusual forms, and we derived Shapley value and time-
consistent imputation distribution procedure.



Fisher and Mirman (1992)

The biological growth rule is given by
xt+1 = f((xt − c1t), (yt − c2t)) ,
yt+1 = g((xt − c1t), (yt − c2t)) ,

where xt ≥ 0 � size of the population in the �rst region, yt ≥ 0

� size of the population in the second region, 0 ≤ c1t ≤ xt,
0 ≤ c2t ≤ yt � players' catch at time t.

Players wish to maximize the sum of discounted utility
∞∑

t=1

δt
1 ln(c1t),

∞∑

t=1

δt
2 ln(c2t) ,

where 0 < δi < 1 � the discount factors (i = 1,2).



Our model of bioresource sharing problem

The center (referee) shares a reservoir between the competi-
tors. There are migratory exchanges between the regions of the
reservoir.

The dynamics is of the form
{

xt+1 = (xt − u1t)
α1−β1s(yt − u2t)

β1s ,

yt+1 = (yt − u2t)
α2−β2(1−s)(xt − u1t)

β2(1−s) ,

where xt ≥ 0 � size of the population in the �rst region, yt ≥ 0 �
size of the population in the second region, 0 < αi < 1 � natural
birth rate, 0 < βi < 1 � coe�cients of migration between the
regions (i = 1,2), 0 ≤ u1t ≤ xt, 0 ≤ u2t ≤ yt � countries' catch at
time t, 0 < δi < 1 � the discount factor for country i (i = 1,2).



Here the intensity of migration also depends on the share s.
It seems to be natural because the habitat size decreases as s

decreases and �sh needs to migrate to another region.

We consider the problem of maximizing in�nite sum of dis-
counted utilities for two players:

J1 =
∞∑

t=0

δt
1 ln(u1t) , J2 =

∞∑

t=0

δt
2 ln(u2t) .

We derived Nash, cooperative and incentive equilibria.



2. The model with asymmetric players and the Nash equi-
librium

Two players exploit the �sh stock. The dynamics of the �shery
is

xt+1 = (εxt − u1t − u2t)
α , x0 = x , (1)

where xt ≥ 0 � the size of population at a time t, ε ∈ (0,1) �
natural survival rate, α ∈ (0,1) � natural birth rate, uit ≥ 0 � the
catch of player i, i = 1,2.

The players' net revenues over time interval [0,n] are

Ji =
n∑

t=0

δt
i ln(uit) , (2)

where 0 < δi < 1 � the discount factor for country i, i = 1,2.



(uN
1 , uN

2 ) � Nash equilibrium if

J1(u
N
1 , uN

2 ) ≥ J1(u1, uN
2 ) , J2(u

N
1 , uN

2 ) ≥ J2(u
N
1 , u2) , ∀u1, u2 .

The Nash equilibrium of the problem (1), (2) is

uNn
1 =

εa2
n−1∑
j=0

a
j
1

n∑
j=0

a
j
1

n∑
j=0

a
j
2 − 1

, uNn
2 =

εa1
n−1∑
j=0

a
j
2

n∑
j=0

a
j
1

n∑
j=0

a
j
2 − 1

,

where ai = αδi , i = 1,2.

The payo�s for n-stage game are

V N
i (x, δi) =

n∑

j=0

(ai)
j ln(x) +

n∑

j=1

(δi)
n−jA

j
i − (δi)

n ln(2) , (3)



where

A
j
1 = ln

[
(

ε
j∑

k=1
ak
2

j−1∑
k=0

ak
1

j−1∑
k=0

ak
2 − 1

)

j∑
k=0

ak
1
(

j∑

k=1

ak
1)

j∑
k=1

ak
1
]
,

A
j
2 = ln

[
(

ε
j∑

k=1
ak
1

j−1∑
k=0

ak
1

j−1∑
k=0

ak
2 − 1

)

j∑
k=0

ak
2
(

j∑

k=1

ak
2)

j∑
k=1

ak
2
]
.

The size of the stock after n periods has the form

xNn = xαn

0 (εa1a2)

n∑
j=1

αj n∏

l=1

(
l−1∑
j=0

a
j
1

l−1∑
j=0

a
j
2

l∑
j=0

a
j
1

l∑
j=0

a
j
2 − 1

)αn−l+1

. (4)



3. Cooperative behavior and the Nash bargaining proce-
dure

Here we obtain the cooperative strategies without determin-
ing the joint discount factor using recursive Nash bargaining
procedure. On each time moment the cooperative strategies
are determined as the Nash bargaining solution taking the non-
cooperative pro�ts as a status-quo point.

We start with the one-step game and assume that if there were
no future period, the countries would get the remaining �sh in
the ratio 1 : 1. Let the initial size of the population be x.

Noncooperative gains are
H1N

1 = (1 + a1) ln(x) + A1
1 − δ1 ln(2) , (5)

H1N
2 = (1 + a2) ln(x) + A1

2 − δ2 ln(2) , (6)



where A1
1 and A1

2 are independent on x and have the forms

A1
1 = ln

(εa2)
1+a1a

a1
1

((1 + a1)(1 + a2)− 1)1+a1
, A1

2 = ln
(εa1)

1+a2a
a2
2

((1 + a1)(1 + a2)− 1)1+a2
.

The cooperative strategies are determined maximizing the Nash
product

H1c = (ln(u1) + a1 ln(εx− u1 − u2)− δ1 ln(2)−H1N
1 ) ·

·(ln(u2) + a2 ln(εx− u1 − u2)− δ2 ln(2)−H1N
2 ) =

= (H1c
1 −H1N

1 )(H1c
2 −H1N

2 ) → max ,

where H1N
i are given in (5)�(6).

The cooperative strategies are

u1 = γ1c
1 x , u2 = γ1c

2 x ,



and can be found as the solution of the next equation

γ1c
2

(
ln(γ1c

2 )+a2 ln(ε−γ1c
1 −γ1c

2 )−A1
2

)
=γ1c

1

(
ln(γ1c

1 )+a1 ln(ε−γ1c
1 −γ1c

2 )−A1
1

)

(7)
with the relation

γ1c
2 =

ε− γ1c
1 (1 + a1)

1 + a2
.

The cooperative gains for one step game have the forms

H1c
1 = (1 + a1) ln(x) + ln(γ1c

1 ) + a1 ln(ε− γ1c
1 − γ1c

2 )− δ1 ln(2), (8)
H1c

2 = (1 + a2) ln(x) + ln(γ1c
2 ) + a2 ln(ε− γ1c

1 − γ1c
2 )− δ2 ln(2). (9)



We pass to two stage game. If the players act non-cooperatively
till the end of the game then the gains are

H2N
1 = (1 + a1 + a2

1) ln(x) + A2
1 + δ1A1

1 − δ21 ln(2) , (10)
H2N

2 = (1 + a2 + a2
2) ln(x) + A2

2 + δ2A1
2 − δ22 ln(2) , (11)

where

A2
1 = ln

(ε(a2 + a2
2))

1+a1+a2
1(a1 + a2

1)
a1+a2

1

((1 + a1)(1 + a2)− 1)1+a1+a2
1

,

A2
2 = ln

(ε(a1 + a2
1))

1+a2+a2
2(a2 + a2

2)
a2+a2

2

((1 + a1)(1 + a2)− 1)1+a2+a2
2

.



We determine the cooperative strategies maximizing the Nash
product

H2c = (ln(u1) + δ1H1c
1 −H2N

1 )(ln(u2) + δ2H1c
2 −H2N

2 ) =

= (H2c
1 −H2N

1 )(H2c
2 −H2N

2

)
→ max ,

where H1c
i are the cooperative gains for one step game and are

given in (8)�(9) and H2N
i are determined in (10)�(11).



Analogously we get the equation for γ2c
1 and γ2c

2

γ2c
2

(
ln(γ2c

2 ) + (a2 + a2
2) ln(ε− γ2c

1 − γ2c
2 ) +

+δ2(ln(γ1c
2 ) + a2 ln(ε− γ1c

1 − γ1c
2 ))−A2

2 − δ2A1
2

)
=

γ2c
1

(
ln(γ2c

1 ) + (a1 + a2
1) ln(ε− γ2c

1 − γ2c
2 ) +

+δ1(ln(γ1c
1 ) + a1 ln(ε− γ1c

1 − γ1c
2 ))−A2

1 − δ1A1
1

)
(12)

with the relation

γ2c
2 =

ε− γ2c
1 (1 + a1 + a2

1)

1 + a2 + a2
2

.



The process can be repeated for the n-stage game and we have
the next form of the cooperative pro�ts

Hnc
1 (γ1

1, . . . , γn
1 , γ1

2, . . . , γn
2) =

n∑

j=0

a
j
1 ln(x) +

n−1∑

j=0

δ
n−j
1

[
ln(γ(n−j)c

1 ) +
n−j∑

i=1

ai
1 ln(ε− γ

(n−j)c
1 − γ

(n−j)c
2 )

]
− δn

1 ln(2)(13)

and

Hnc
2 (γ1

1, . . . , γn
1 , γ1

2, . . . , γn
2) =

n∑

j=0

a
j
2 ln(x) +

n−1∑

j=0

δ
n−j
2

[
ln(γ(n−j)c

2 ) +
n−j∑

i=1

ai
2 ln(ε− γ

(n−j)c
1 − γ

(n−j)c
2 )

]
− δn

2 ln(2).(14)



The cooperative strategies can be found recursively from the
equations

γnc
2

(n−1∑

j=0

δ
n−j
2

[
ln(γ(n−j)c

2 ) +
n−j∑

i=1

ai
2 ln(ε− γ

(n−j)c
1 − γ

(n−j)c
2 )

]
− δ

j
2A

n−j
2

)
=

γnc
1

(n−1∑

j=0

δ
n−j
1

[
ln(γ(n−j)c

1 ) +
n−j∑

i=1

ai
1 ln(ε− γ

(n−j)c
1 − γ

(n−j)c
2 )

]
− δ

j
1A

n−j
1

)

with the relation

γnc
2 =

ε− γnc
1

n∑
i=0

ai
1

n∑
i=0

ai
2

.



Modelling

We present the results of numerical modelling for 20-stage game
with the next parameters:

ε = 0.6 , α = 0.3 , x0 = 0.8 ,
δ1 = 0.85 , δ2 = 0.9 .

The cooperative and Nash gains are

V nc
1 (x, δ1) = −14.1039 > V N

1 (x, δ1) = −14.6439 ,

V nc
2 (x, δ2) = −20.5108 > V N

2 (x, δ2) = −23.2596 .
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Fig. 1. The population size: dark � cooperative, light � Nash



Fig. 2. The catch of player 1: dark � cooperative, light � Nash



Fig. 3. The catch of player 2: dark � cooperative, light � Nash



Next we compare players' pro�ts for di�erent discount factors.
In Fig. 4 we show V nc

1 (x, δ1) and V nc
2 (x, δ2) for δ1 = 0.1 . . .0.9

and δ2 = 0.1 . . .0.9. One can notice that player with greater dis-
count factor gets more advantage from cooperative agreement.
And both players get equal pro�ts when their discount factors
coincide.



Fig. 4. The catch of player 2: dark � cooperative, light � Nash



One can notice that our approach gives a player the payo� that is
greater or equal (for some parameters) Nash payo�. In Fig. 5 it
is shown the second player's payo� for di�erent discount factors.
So it proves that under presented approach it is always pro�table
to cooperate versus the maximization the weighted sum where
players can get less under cooperation.



Fig. 5. The catch of player 2: dark � cooperative, light � Nash



4. Model with �xed harvesting times

Let us consider the case where the �rst player harvests the stock
for n1 time moments, and the second � for n2. Let n1 < n2.
So, we have a situation where on time interval [0, n1] players
cooperate, and we need to determine their strategies. After n1

and until n2 the second player acts individually. So, the players'
pro�ts have the forms

J1 =
n1∑

t=0

δt
1 ln(uc

1t) , J2 =
n1∑

t=0

δt
2 ln(uc

2t) +
n2∑

t=n1+1

δt
2 ln(ua

2t) , (15)

where uc
i , i = 1,2 � cooperative strategies, ua

2 � the second
player's strategy when harvesting the stock alone.



We construct cooperative strategies and the joint payo� maxi-
mizing the Nash product for the whole game:

(V c
1(x, δ1)[0, n1]− V N

1 (x, δ1)[0, n1]) ·
·(V c

2(x, δ2)[0, n1]+V ac
2 (xcn1, δ2)[n1, n2]−

−V N
2 (x, δ2)[0, n1]−V aN

2 (xNn1, δ2)[n1, n2]) =

= (
n1∑

t=0

δt
1 ln(uc

1t)− V N
1 (x, δ1)[0, n1]) ·

·(
n1∑

t=0

δt
2 ln(uc

2t) +
n2∑

t=n1+1

δt
2 ln(ua

2t)−

−V N
2 (x, δ2)[0, n1]−V aN

2 (xNn1, δ2)[n1, n2])→max , (16)
where V N

i (x, δi)[0, n1] are the non-cooperative gains determined
in (3) (where n = n1), V ac

2 (xcn1, δ2)[n1, n2] � the second player's
gain when acting individually after n1 periods of cooperation,



V aN
2 (xNn1, δ2)[n1, n2] � the second player's gain when acting in-
dividually after n1 periods of noncooperation.



Let us consider the time interval [n1, n2], here the second player
acts individually.

After n = n2 − n1 steps we get γ2n = ε
n∑

j=0
a

j
2

and the payo�

V ac
2 (xcn1, δ2)[n1, n2] = Hn

2(γc
21, . . . , γn

2) =
n∑

j=0

a
j
2 lnx +

n∑

j=1

δ
n−j
2 Bj ,

(17)
where

Bj =
j∑

l=0

al
2 ln(

ε
j∑

p=0
a

p
2

) +
j∑

l=1

al
2 ln(

j∑

p=1

a
p
2) , n = n2 − n1 .



Now we can determine V aN
2 (xNn1, δ2)[n1, n2] as the second player's

payo� starting from the noncooperative point xNn1 (see (4) when
n = n1):

V2(x, δ2)[n1, n2] =
n∑

j=0

a
j
2 ln(xNn1) +

n∑

j=1

δ
n−j
2 Bj .



So, we determine all the gains in problem (16) except for the
cooperative gains. To �nd the later we determine cooperative
payo�s for an n1-step game starting from n1. Be reminded that
after n1 we assume that the �rst player gets a portion of the
remaining stock � k and the second player starts exploiting the
portion (1− k) of the remaining stock.

We start with the one-step game. As usual we seek the players
strategies in the linear form uc

11 = γ1
1x and uc

21 = γ1
2x.

Then the �rst player's pro�t is

Hc
11(γ

c
11, γc

21;x) =

= ln(γc
11x) + δ1 ln(k(εx− γc

11x− γc
21x)α) =

= (1 + a1) ln(x) + ln(γc
11) + a1 ln(ε− γc

11 − γc
21) + δ1 ln(k)



and the second player's pro�t is

Hc
21(γ

c
11, γc

21;x) = ln(γc
21x) + δ2V ac

2 (xcn1, δ2)[n1, n2] =

= ln(γc
21x) + δ2

n∑

j=0

a
j
2 ln((1− k)(εx− γc

11x− γc
21x)α) +

n∑

j=1

δ
n+1−j
2 Bj =

= ln(γc
21) +

n+1∑

j=0

a
j
2 lnx +

n+1∑

j=1

a
j
2 ln(ε− γc

11 − γc
21) +

+
n∑

j=1

δ
n+1−j
2 Bj + δ2

n∑

j=0

a
j
2 ln(1− k) .



We can now consider problem (16) for the two-step game. The
objective function of the �rst player for the two-step game is

Hc
12(γ

c
11, γc

12, γc
12, γc

22;x) =

= ln(γc
12x) + δ1H1c

1 (γc
11, γc

21; (εx− γc
12x− γc

22x)α) =

= ln(γc
12x) + δ1(1 + a1) ln(εx− γc

12x− γc
22x)α +

+δ1(ln(γc
11) + a1 ln(ε− γc

11 − γc
21) + δ1 ln(k)) =

= (1 + a1 + a2
1) ln(x) + ln(γc

12) + a1(1 + a1) ln(ε− γc
12 − γc

22) +

+δ1 ln(γc
11) + δ1a1 ln(ε− γc

11 − γc
21) + δ21 ln(k) ,



and that of the second player

Hc
22(γ

c
11, γc

21, γc
12, γc

22;x) =

= ln(γc
22x) + δ2H1c

2 (γc
11, γc

21; (εx− γc
12x− γc

22x)α) =

= ln(γc
22x) + δ2 ln(γc

21) + δ2

n+1∑

j=0

a
j
2 ln(εx− γc

12x− γc
22x)α +

+δ2

n+1∑

j=1

a
j
2 ln(ε− γc

11 − γc
21) +

n∑

j=1

δ
n+2−j
2 Bj + δ22

n∑

j=0

a
j
2 ln(1− k) =

= ln(γc
22) +

n+2∑

j=0

a
j
2 ln(x) +

n+2∑

j=1

a
j
2 ln(ε− γc

12 − γc
22) + δ2 ln(γc

21) +

+δ2

n+1∑

j=1

a
j
2 ln(ε− γc

11 − γc
21) +

n∑

j=1

δ
n+2−j
2 Bj + δ22

n∑

j=0

a
j
2 ln(1− k) .



To determine cooperative strategies for this two-step game we
solve the following problem

(Hc
12(γ

c
11, γc

21, γc
12, γc

22;x)− V N
1 (x, δ1)[n1 − 1, n1]) ·

·(Hc
22(γ

c
11, γc

21, γc
12, γc

22;x)−
−[V N

2 (x, δ2)[n1 − 1, n1] + V aN
2 (xNn1, δ2)[n1, n2]]) =

= (Hc
21 − V N

1 )(Hc
22 − Ṽ N

2 ) → max
γc
11,γc

21,γc
12,γc

22

, (18)

where Ṽ N
2 is the expression in square brackets.

From the �rst-order conditions we obtain the strategies

γc
21 =

ε− γc
11(1 + a1)
n+1∑
j=0

a
j
2

, γc
22 =

ε− γc
12(1 + a1 + a2

1)
n+2∑
j=0

a
j
2

(19)



and the next relation

γc
12 =

εγc
11

n+2∑
j=1

a
j
2

εa1
n+2∑
j=0

a
j
2 + γc

11(
n+2∑
j=1

a
j
2(1 + a1 + a2

1)− (a1 + a2
1)

n+2∑
j=0

a
j
2))

.

(20)
So, we express all the parameters using only the �rst player's
strategy on the last step γc

11, and to determine it we need to
solve one of the �rst-order conditions. Unfortunately it can't
be solved analytically, and we give some results of numerical
modelling.



The process can be repeated for the n1-stage game, and we get
the next form of the pro�ts

Hc
1n1

(γc
11, . . . , γc

1n1
, γc

21, . . . , γc
2n1

;x) =

=
n1∑

j=0

a
j
1 ln(x)+

n1∑

j=1

δ
n1−j
1 ln(γc

1j)+

+
n1∑

j=1

δ
n1−j
1

j∑

i=1

ai
1 ln(ε−γc

1j−γc
2j)+δ

n1
1 ln(k)

and
Hc

2n1
(γc

11, . . . , γc
1n1

, γc
21, . . . , γc

2n1
;x) =

=
n+n1∑

j=0

a
j
2 ln(x) +

n1∑

j=1

δ
n1−j
1 ln(γc

2j) +
n1∑

j=1

δ
n1−j
2

n+j∑

i=1

ai
2 ln(ε− γc

1j − γc
2j) +

+
n∑

j=1

δ
n+n1−j
2 Bj + δ

n1
2

n∑

j=0

a
j
2 ln(1− k) .



The cooperative strategies are related as follows

γc
1t=

εγc
11

n+t∑
j=t−1

a
j
2

εat−1
1

n+t∑
j=0

a
j
2+γc

11(
n+t∑

j=t−1
a

j
2

t∑
j=0

a
j
1−(at−1

1 +at
1)

n+t∑
j=0

a
j
2)

,

γc
2t=

ε− γc
1t

t∑
j=0

a
j
1

n+t∑
j=0

a
j
2

.

γc
11 can be determined from one of the �rst-order conditions, for
example, the last one

an−1
1 (ε− γ1

1(1 + a1))(H
n
1 − V1)− an−1

2 (1 + a2)γ
1
1(H

n
2 − V2) = 0 .



Modelling
ε = 0.6 , α = 0.3 , n2 = 20 , n1 = 10 ,

δ1 = 0.85 , δ2 = 0.9 , x0 = 0.8 , k = 1
3 .

We get γc
11 = 0.2723. For the �rst player we compare the co-

operative and the noncooperative gains on time interval [0, n1]:

V c
1(x, δ1)[0, n1] = −10.3870 > V N

1 (x, δ1)[0, n1] = −11.9010 .

For the second player we compare the cooperative gain on time
interval [0, n1] plus acting individually on time interval [n1, n2]

after cooperation, and the noncooperative gain on time interval
[0, n1] plus individual gain on time interval [n1, n2] after nonco-
operation:



V c
2(x, δ2)[0, n1] + V ac

2 (xcn1, δ2)[n1, n2] = −19.6375 >

> V N
2 (x, δ2)[0, n1] + V aN

2 (xNn1, δ2)[n1, n2] = −23.2596 .

One can notice that cooperative pro�ts are larger that nonco-
operative ones for both players.
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Fig. 6. The population size: dark � cooperative, light � Nash



Fig. 7. The catch of player 1: dark � cooperative, light � Nash



Fig. 8. The catch of player 2: dark � cooperative+individual, light �
Nash+individual



Next we compare players' pro�ts for di�erent planning horizons.
We show V c

1(x, δ1)[0, n1] and V c
2(x, δ2)[0, n1]+V ac

2 (xcn1, δ2)[n1, n2]

for n2 = 2 . . .10 and n1 = 1 . . . n2 − 1. One can notice that as
n1 becomes closer to n2 the di�erence between players' pro�ts
becomes less.



Fig. 9. Players' pro�ts



Also we show that our approach gives a player the payo� that is
greater or equal (for some parameters) Nash payo�. So, it again
proves that under presented approach it is always pro�table to
cooperate.



Fig. 10. The second player's pro�t: Nash and cooperative



5. The model with random harvesting times

The �rst player harvests the stock for n1 time moments, and the
second � for n2. n1 is a random variable with a range {1, . . . , n}
and corresponding probabilities {θ1, . . . , θn}. n2 is a random vari-
able with the same range and probabilities {ω1, . . . , ωn}.

First, we construct the players' payo�s as mathematical expec-
tations:



H1 = E

{ n1∑

t=1

δt
1 ln(u1t)I{n1≤n2} +

+
( n2∑

t=1

δt
1 ln(u1t) +

n1∑

t=n2+1

δt
1 ln(ua

1t)
)
I{n1>n2}

}
=

=
n∑

n1=1

θn1

[ n∑
n2=n1

ωn2

n1∑

t=1

δt
1 ln(u1t) +

+
n1−1∑

n2=1

ωn2

( n2∑

t=1

δt
1 ln(u1t) +

n1∑

t=n2+1

δt
1 ln(ua

1t)
)]

,



H2 = E

{ n2∑

t=1

δt
2 ln(u2t)I{n2≤n1} +

+
( n1∑

t=1

δt
2 ln(u2t) +

n2∑

t=n1+1

δt
2 ln(ua

2t)
)
I{n2>n1}

}
=

=
n∑

n2=1

ωn2

[ n∑
n1=n2

θn1

n2∑

t=1

δt
2 ln(u2t) +

+
n2−1∑

n1=1

θn1

( n1∑

t=1

δt
2 ln(u2t) +

n2∑

t=n1+1

δt
2 ln(ua

2t)
)]

,

where ua
it is a player i's strategy when the opponent quits the

game, i = 1,2.



The Nash equilibrium

First we determine the Nash equilibrium as we use it as a status-
quo point for the Nash bargaining solution. The value functions
for the whole game take the forms

V N
1 (1, x) = max

uN
11,...,uN

1n

{ n∑

n1=1

θn1

[ n∑
n2=n1

ωn2

n1∑

t=1

δt
1 ln(uN

1t) +

+
n1−1∑

n2=1

ωn2

( n2∑

t=1

δt
1 ln(uN

1t) +
n1∑

t=n2+1

δt
1 ln(ua

1t)
)]}

,

V N
2 (1, x) = max

uN
21,...,uN

2n

{ n∑

n2=1

ωn2

[ n∑
n1=n2

θn1

n2∑

t=1

δt
2 ln(uN

2t) +

+
n2−1∑

n1=1

θn1

( n1∑

t=1

δt
2 ln(uN

2t) +
n2∑

t=n1+1

δt
2 ln(ua

2t)
)]}

.



To construct the Bellman equation we de�ne the value functions
V N

i (τ, x) when the stage τ has arrived:

V N
1 (τ, x) = max

uN
1τ ,...,uN

1n

{ n∑
n1=τ

θn1
n∑

l=τ
θl

[ n∑
n2=n1

ωn2
n∑

l=τ
ωl

n1∑

t=τ

δt
1 ln(uN

1t) +

+
n1−1∑
n2=τ

ωn2
n∑

l=τ
ωl

n2∑

t=τ

δt
1 ln(uN

1t) + V a
1 (τ, n1)

]}
,(21)

V N
2 (τ, x) = max

uN
2τ ,...,uN

1n

{ n∑
n2=τ

ωn2
n∑

l=τ
ωl

[ n∑
n1=n2

θn1
n∑

l=τ
θl

n2∑

t=τ

δt
2 ln(uN

2t) +

+
n2−1∑
n1=τ

θn1
n∑

l=τ
ωl

n1∑

t=τ

δt
2 ln(uN

2t) + V a
2 (τ, n2)

]}
,(22)



where

V a
1 (τ, n1) =

n1−1∑
n2=τ

ωn2
n∑

l=τ
ωl

n1∑

t=n2+1

δt
1 ln(ua

1t) ,

V a
2 (τ, n2) =

n2−1∑
n1=τ

θn1
n∑

l=τ
θl

n2∑

t=n1+1

δt
2 ln(ua

2t)

are the pro�ts when player i exploits the stock alone, and they
can be estimated easily, as we will show later.

Now we �nd the relation between V N
i (τ, x) and V N

i (τ + 1, x).
From (21) we get

V N
1 (τ, x) = δτ

1 ln(uN
1τ)+P τ+1

τ V N
1 (τ+1, x)+C1τ

n∑

n1=τ+1

θn1

n1∑

t=τ

δt
1 ln(ua

1t) ,

(23)



V N
2 (τ, x) = δτ

2 ln(uN
2τ)+P τ+1

τ V N
2 (τ+1, x)+C2τ

n∑

n2=τ+1

ωn2

n2∑

t=τ

δt
2 ln(ua

2t) ,

(24)
where

P τ+1
τ =

n∑
l=τ+1

ωl

n∑
l=τ

ωl

n∑
l=τ+1

θl

n∑
l=τ

θl

, C1τ =
ωτ
n∑

l=τ
ωl

1
n∑

l=τ
θl

, C2τ =
θτ
n∑

l=τ
θl

1
n∑

l=τ
ωl

.

From the previous case with �xed harvesting times (see (17)),
where we maximized the second player's pro�t when acting in-
dividually on time interval [n1, n2]) we can get

ua
it =

ε(1− ai)

1− at
i

x ,



ni∑

t=τ

δt
i ln(ua

it) =
ni−τ∑

j=0

a
j
i lnx +

ni−τ∑

j=1

δ
ni−τ−j
i D

j
i , (25)

where

D
j
i =

j∑

l=0

al
i ln

(
ε

j∑
p=0

a
p
i

)
+

j∑

l=1

al
i ln(

j∑

p=1

a
p
i ) .

As usual for ��sh war� models we seek the value functions in the
form V N

i (τ, x) = Aτ
i lnx + Bτ

i and the Nash strategies in linear
form uN

iτ = γN
iτ x, i = 1,2.

From the �rst-order conditions we get the Nash strategies

γN
1τ =

εδτ
1Aτ

2

δτ
1Aτ

2 + δτ
2Aτ

1 + αAτ
1Aτ

2P τ+1
τ

, γN
2τ =

εδτ
2Aτ

1

δτ
1Aτ

2 + δτ
2Aτ

1 + αAτ
1Aτ

2P τ+1
τ

.



Coe�cients Aτ
i and Bτ

i are derived from (21) and (22)

Aτ
1 =

δτ
1 + C1τ

n∑
n1=τ+1

θn1

n1−τ∑
j=0

a
j
1

1− αP τ+1
τ

, Aτ
2 =

δτ
2 + C2τ

n∑
n2=τ+1

ωn2

n2−τ∑
j=0

a
j
2

1− αP τ+1
τ

,

(26)

Bτ
1=

δτ
1 ln(γN

1τ)+αAτ
1P τ+1

τ ln(ε−γN
1τ−γN

2τ)+C1τ

n∑
n1=τ+1

θn1

n1−τ∑
j=1

δ
n1−τ−j
1 D

j
1

1− P τ+1
τ

,

Bτ
2=

δτ
2 ln(γN

2τ)+αAτ
2P τ+1

τ ln(ε−γN
1τ−γN

2τ)+C2τ

n∑
n2=τ+1

ωn2

n2−τ∑
j=1

δ
n2−τ−j
2 D

j
2

1− P τ+1
τ

.

So, we determined the Nash strategies and the Nash payo�s
V N

i (τ, x) = Aτ
i lnx + Bτ

i , i = 1,2.



The cooperative behavior

We construct cooperative strategies and the payo� maximizing
the Nash product for the whole game, so we need to solve the
following problem

(V c
1(1, x)− V N

1 (1, x))(V c
2(1, x)− V N

2 (1, x)) =

= (
n∑

n1=1

θn1

[ n∑
n2=n1

ωn2

n1∑

t=1

δt
1 ln(uc

1t) +

+
n1−1∑

n2=1

ωn2(
n2∑

t=1

δt
1 ln(uc

1t) +
n1∑

t=n2+1

δt
1 ln(ua

1t))
]
− V N

1 (1, x)) ·

·(
n∑

n2=1

ωn2

[ n∑
n1=n2

θn1

n2∑

t=1

δt
2 ln(uc

2t) +

+
n2−1∑

n1=1

θn1(
n1∑

t=1

δt
2 ln(uc

2t) +
n2∑

t=n1+1

δt
2 ln(ua

2t))
]
− V N

2 (1, x)) → max ,(27)



where V N
i (1, x) = AN

i lnx+BN
i , i = 1,2 are the non-cooperative

gains determined in (26).



When step τ has arrived we determine the cooperative value
functions V c

i (τ, x) as

V c
1(τ, x) = max

uc
1τ ,...,uc

1n

{ n∑
n1=τ

θn1
n∑

l=τ
θl

[ n∑
n2=n1

ωn2
n∑

l=τ
ωl

n1∑

t=τ

δt
1 ln(uc

1t) +

+
n1−1∑
n2=τ

ωn2
n∑

l=τ
ωl

n2∑

t=τ

δt
1 ln(uc

1t) + V a
1 (τ, n1)

]}
, (28)

V c
2(τ, x) = max

uc
2τ ,...,uc

2n

{ n∑
n2=τ

ωn2
n∑

l=τ
ωl

[ n∑
n1=n2

θn1
n∑

l=τ
θl

n2∑

t=τ

δt
2 ln(uc

2t) +

+
n2−1∑
n1=τ

θn1
n∑

l=τ
ωl

n1∑

t=τ

δt
2 ln(uc

2t) + V a
2 (τ, n2)

]}
. (29)



Similarly to the Nash payo�s we get the relation between the
cooperative payo�s at time moments τ and τ + 1:

V c
1(τ, x) = δτ

1 ln(uc
1τ) + P τ+1

τ V c
1(τ + 1, x) + C1τ

n∑

n1=τ+1

θn1

n1∑

t=τ

δt
1 ln(ua

1t) ,

V c
2(τ, x) = δτ

2 ln(uc
2τ) + P τ+1

τ V c
2(τ + 1, x) + C2τ

n∑

n2=τ+1

ωn2

n2∑

t=τ

δt
2 ln(ua

2t) .

We start when step n has arrived. Since on the next step n+1 the
payo�s of both players are equal to zero, the optimal strategies
are Nash equilibrium strategies and
V c

i (n, x) = δn
i ln(uc

in) = V N
i (n, x) = δn

i ln(γN
inx) = Ai lnx+Bi , i = 1,2 ,

(30)
where

Ai = δn
i , Bi = δn

i ln(γN
1n) = δn

i ln(
ε

2
) , i = 1,2 .



Now we suppose that step n − 1 has arrived. We have problem
(27) in the form

(V c
1(n− 1, x)− V N

1 (n− 1, x))(V c
2(n− 1, x)− V N

2 (n− 1, x)) → max ,

(31)
where

V c
1(n− 1, x) = δn−1

1 ln(uc
1n−1) + Pn

n−1V c
1(n, (εx− uc

1n−1 − uc
2n−1)

α) +

+C1n−1θn

n∑

t=n−1

δt
1 ln(ua

1t) ,

V c
2(n− 1, x) = δn−1

2 ln(uc
2n−1) + Pn

n−1V c
2(n, (εx− uc

1n−1 − uc
2n−1)

α) +

+C2n−1ωn

n∑

t=n−1

δt
2 ln(ua

2t) .



As usual we seek the strategies in the linear form uc
in−1 = γc

in−1x.
From �rst-order conditions we get

γc
2n−1 =

δn−1
1 δn−1

2 ε− δn−1
2 γc

1n−1(δ
n−1
1 + Pn

n−1αA1)

δn−1
1 (δn−1

2 + Pn
n−1αA2)

. (32)

Now we pass to the situation when step n − 2 has arrived. We
have problem (27) in the form

(V c
1(n− 2, x)− V N

1 (n− 2, x))(V c
2(n− 2, x)− V N

2 (n− 2, x)) → max ,

(33)



where

V c
1(n− 2, x) = δn−2

1 ln(uc
1n−2) +

+Pn−1
n−2 V c

1(n−1, (εx−uc
1n−2−uc

2n−2)
α)+C1n−2

n∑

n1=n−1

θn1

n1∑

t=n−2

δt
1 ln(ua

1t) ,

V c
2(n− 2, x) = δn−2

2 ln(uc
2n−2) +

+Pn−1
n−2 V c

2(n−1, (εx−uc
1n−2−uc

2n−2)
α)+C2n−2

n∑

n2=n−1

ωn2

n2∑

t=n−2

δt
2 ln(ua

2t) .

We seek the strategies in the linear form uc
in−2 = γc

in−2x. From
the �rst-order conditions we get

γc
2n−2 =

δn−2
1 δn−2

2 ε− δn−2
2 γc

1n−2(δ
n−2
1 + αδn−1

1 Pn−1
n−2 + α2A1Pn−1

n−2 Pn
n−1)

δn−2
1 (δn−2

2 + αδn−1
2 Pn−1

n−2 + α2A2Pn−1
n−2 Pn

n−1)
.

(34)



Let's denote

G1
1 = δn−1

1 + Pn
n−1αA1 , G2

1 = δn−1
2 + Pn

n−1αA1 ,

G1
2 = δn−2

1 + αδn−1
1 Pn−1

n−2 + α2A1Pn−1
n−2 Pn

n−1 ,

G2
2 = δn−2

2 + αδn−1
2 Pn−1

n−2 + α2A2Pn−1
n−2 Pn

n−1 .

Then (32) and (34) take the forms

γc
2n−1 =

δn−1
1 δn−1

2 ε− δn−1
2 γc

1n−1G1
1

δn−1
1 G2

1

, γc
2n−2 =

δn−2
1 δn−2

2 ε− δn−2
2 γc

1n−2G1
2

δn−2
1 G2

2

.

And we can express γc
1n−2 with γc

1n−1:

γc
1n−2 = δn−2

1 ε
γc
1n−1G2

1

δn−1
1 εG2

2 + γc
1n−1(G

1
2G2

1 −G1
1G2

2)
.



The value functions take the forms

V c
1(n− 2, x) = δn−2

1 ln(uc
1n−2) + αPn−1

n−2 G1
1 ln(εx− uc

1n−2 − uc
2n−2) +

+Pn−1
n−2 [δn−1

1 ln(γc
1n−1) + Pn

n−1αA1 ln(ε− γc
1n−1 − γc

2n−1) + Pn
n−1B1] +

+Pn−1
n−2 C1n−1θn

n∑

t=n−1

δt
1 ln(ua

1t) + C1n−2

n∑

n1=n−1

θn1

n1∑

t=n−2

δt
1 ln(ua

1t) ,

V c
2(n− 2, x) = δn−2

2 ln(uc
2n−2) + αPn−1

n−2 G2
1 ln(εx− uc

1n−2 − uc
2n−2) +

+Pn−1
n−2 [δn−1

2 ln(γc
2n−1) + Pn

n−1αA2 ln(ε− γc
1n−1 − γc

2n−1) + Pn
n−1B2] +

+Pn−1
n−2 C2n−1ωn

n∑

t=n−1

δt
2 ln(ua

2t) + C2n−2

n∑

n2=n−1

ωn2

n2∑

t=n−2

δt
2 ln(ua

2t) .



Continuing the process for k steps we get the payo�s in the form

V c
i (n− k, x) =

= δn−k
i ln(uc

in−k) + αPn−k+1
n−k Gi

n−k+1 ln(εx− uc
1n−k − uc

2n−k) +

+
k−1∑

l=2

Pn−l
n−k[δ

n−l
i ln(γc

in−l) + αPn−l+1
n−l ln(ε− γc

1n−l − γc
2n−l)] +

+Pn−1
n−k [δn−1

i ln(γc
in−1) + Pn

n−1αAi ln(ε− γc
1n−1 − γc

2n−1) + Pn
n−1Bi] +

+
k∑

l=1

Pn−l
n−kCin−lV

l
i (ni) ,(35)



where

V l
1(n1) =

n∑

n1=n−l+1

θn1

n1∑

t=n−l

δt
1 ln(ua

1t) ,

V l
2(n2) =

n∑

n2=n−l+1

ωn2

n2∑

t=n−l

δt
2 ln(ua

2t) ,

G1
k =

k∑

l=1

δn−l
1 αk−lPn−l

n−k + αkA1Pn
n−k ,

G2
k =

k∑

l=1

δn−l
2 αk−lPn−l

n−k + αkA2Pn
n−k .



The cooperative strategies are related as follows

γc
2n−k =

δn−k
1 δn−k

2 ε− δn−k
2 γc

1n−kG1
k

δn−k
1 G2

k

, (36)

γc
1n−k =

δn−k
1 εγc

1n−1G2
1

δn−1
1 εG2

k + γc
1n−1(G

1
kG2

1 −G1
1G2

k)
. (37)

And γc
1n−1 can be determined from one of the �rst-order condi-

tions.



Modelling

We use Monte-Carlo method for n = 10.

For the same parameters and the next probabilities
θi = 0.1 , ωi = 0.005i + 0.0725

we get the expected cooperative and Nash payo�s
V c
1(1, x) = −6.2151 > V N

1 (1, x) = −10.1958 ,

V c
2(1, x) = −7.3256 > V N

2 (1, x) = −12.8829 .

Fig. 6 presents the results of the modelling with 50 simulations
for the Nash equilibrium, Fig. 7 � for the cooperative equilib-
rium. Points are the results of simulations and circles denote the
expected payo�s determined in (26) and (35).
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Fig. 11. Nash equilibrium
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Fig. 12. Cooperative equilibrium



We considered a discrete time bioresource management problem
with two players which di�er not only in discount factors, but
in harvesting times. How to determine the cooperative gains in
both cases has not been studied yet.

In the �rst model, participation planning horizons are known.
Here one player leaves the game at a �xed time moment and
receives a portion of the remaining stock as compensation. The
second player continues exploitation until the end of the game
individually. To construct the cooperative strategies we used the
Nash bargaining scheme for the whole planning horizon.

In the second model, the harvesting times are random variables
and the distribution functions for the players' planning horizons
di�er. First, we constructed the Nash equilibrium and used it
as a status-quo point. Second, we determined the cooperative
strategies using the Nash bargaining procedure.
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