
1. Introduction 2. State of Art 3. k-cluster 4. Algorithm S∗ 5. Optimizations 6. Experiments

Dynamic Programming Usage in Steiner Problem
in Graphs

Joseph V. Romanovsky Dmitry A. Eibozhenko

Third Russian Finnish Symposium on Discrete Mathematics,
September 2014

1. Introduction 2. State of Art 3. k-cluster 4. Algorithm S∗ 5. Optimizations 6. Experiments

Steiner tree problem statement

Steiner tree in directed graphs (arborescence). Let G (M,N)
be a connected directed graph (digraph) with cost function
d : N → R+. Begin node b and set of terminal nodes E are marked
out in M. The problem is to find tree of minimal cost rooted in
begin node b, and containing paths from b to any node of E .
Other statements:

I euclidean (geometric);
I rectilinear;
I in networks.

1. Introduction 2. State of Art 3. k-cluster 4. Algorithm S∗ 5. Optimizations 6. Experiments

Application

I VLSI-design: Very Large Scale Integration. Process of
building integrated circuits combining millions transistors.
Well-known central processing units (CPU) and graphics
processing units (GPU) are the examples of VLSI-devices.

I Telecommunications: New formats (interactive TV,
interactive video conference), new services
(Video-On-Demand, ability to choose translation quality).

I Reconstruction of phylogenies: Phylogenetic tree represents
evolutional interconnections between various species, having
common ancestor. In graph G (M,N) M is set of nucleotide
sequences, N = M ×M (complete graph), and for each edge
its length is Hamming distance between appropriate chains.

1. Introduction 2. State of Art 3. k-cluster 4. Algorithm S∗ 5. Optimizations 6. Experiments

Phylogenetic tree example

1. Introduction 2. State of Art 3. k-cluster 4. Algorithm S∗ 5. Optimizations 6. Experiments

Implementation Challenge

In December, 2014 will take place 11th DIMACS Implementation
Challenge in Collaboration with ICERM: Steiner Tree Problems.

More than 10 statements of Steiner problem: classical Steiner
problem in graphs; classical geometric Steiner problem;
prize-collecting Steiner trees; generalized Steiner trees (Steiner
forest); obstacle-avoiding Steiner trees, etc

Organizers and advisory – most famous contributors:
I Renato F. Werneck, Microsoft Research, USA
I Martin Zachariasen, University of Copenhagen, Denmark
I Alexander Zelikovsky, Georgia State University, USA and

others.

1. Introduction 2. State of Art 3. k-cluster 4. Algorithm S∗ 5. Optimizations 6. Experiments

Takahashi-Matsuyama algorithm

Presented at 1980. Greedy algorithm.

At any time of costructing process there is subgraph
TS = (M∗,N∗),

Initial state: M∗ = {b}, N∗ = ∅.

Step: Find e∗ = argmin{d(M∗, e)|e ∈ E \M∗}. Then
TS := TS ∪ P[M∗, e∗], where P[M∗, e∗] — minimal among all
possible ways from nodes M∗ to e∗.

I Computational complexity: O(tn2) (n = |N|, а t = |E |)
I Precision: 2(1− 1/t)

1. Introduction 2. State of Art 3. k-cluster 4. Algorithm S∗ 5. Optimizations 6. Experiments

General scheme of greedy contraction

Let GE be a subgraph of G , induced by E ∪ {b}.
Mst(E) is minimal spanning tree. M0(E) = c(Mst(E)).

Contraction of tree T : Lengths of arcs in Mst(E) with ends in
E (T) → 0.

Init: L = ∅ – list of trees
while M0(E) > 0

Find full Steiner tree T ∗ in some class K ,
that minimize estimating function f (T):
T ∗ ← argminT∈K f (T).
insert T ∗ in list L : L = L ∪ {T ∗}
contract T ∗

end while
Re-establish Steiner tree from trees in list L and return it.

1. Introduction 2. State of Art 3. k-cluster 4. Algorithm S∗ 5. Optimizations 6. Experiments

Methods that use this scheme

I Takahashi and Matsuyama algorithm: K consists of all
available paths, and f (T) = c(T).

I Reyward-Smith heuristic algorithm : K is composed of all
kinds of stars, and f (T) = c(T)

r−1 , where r — count of leafs of
T .

I Generalized greedy heuristic: K is composed of trees with
three terminals and f (T) = c(T)− (M0(E)−M0(E \ T)).

I Relative greedy heuristic with size constraints: K is
composed of all trees with no more than r terminals,
f (T) = c(T)

M0(S)−M0(S\T) .

1. Introduction 2. State of Art 3. k-cluster 4. Algorithm S∗ 5. Optimizations 6. Experiments

Using LP & ILP

There are various formal representations.

ρ = {W ⊆ M \ {b},W
⋂

E 6= 0} is directed cut
δ−(W) = {[b, e]|e ∈W , b 6∈W }

min
∑
n∈N

cnxn, (1)∑
n∈δ−(W)

xn ≥ 1, ∀W ∈ ρ, (2)

xn ∈ {0, 1}, ∀n ∈ N, (3)

(3) →: xn ≥ 0, ∀n ∈ N.
Proven integrality gap for relaxation is 2.

1. Introduction 2. State of Art 3. k-cluster 4. Algorithm S∗ 5. Optimizations 6. Experiments

Dynamic programming algorithm

Based on Bellman equation.
Solving simultaneously ∀i ∈ M, ∀Ep ⊂ E .
v(i ,Ep) — solution of corresponding subtask.

v(i ,EP) = min{vcont(i ,EP), vpart(i ,EP)} (4)

I vcont — minimal cost of going by some arc

vcont(i ,EP) = min{cj + v(end j ,EP)|beg j = i}, (5)

I vpart — minimal cost of splitting terminal set EP into two
disjunctive subsets A и EP \ A

vpart(i ,EP) = min{v(i ,A) + v(i ,EP \ A)|A ⊂ EP}. (6)

1. Introduction 2. State of Art 3. k-cluster 4. Algorithm S∗ 5. Optimizations 6. Experiments

DP algorithm. Implementation.

Table of size |M| × 2|E | – L.
L[i,j] – v(j ,Ei) at calculation time.
(any subset numeration, that satisfy: Si ⊂ Sk ⇒ i < k)

At i-th iteration:
1. Dijkstrification: finding by modified Dijkstra method tree

lengths for Si .
2. Correction: ∀i0 < i , such that Ei0 ∩ Ei = ∅ examine

Ei1 = Ei ∪ Ei0 :

L[i1, j] = min(L[i1, j], L[i , j] + L[i0, j])

1. Introduction 2. State of Art 3. k-cluster 4. Algorithm S∗ 5. Optimizations 6. Experiments

k-Cluster Algorithm

Core idea
Solve Steiner trees for restricted number of terminals.

k is upper bound for number of terminals in tree, that can be
solved by DP algorithm.

If number of terminals in graph is more than k , divide it for no
more than k subgraphs with induced Steiner tree.

1. Introduction 2. State of Art 3. k-cluster 4. Algorithm S∗ 5. Optimizations 6. Experiments

Dividing to clusters

Build auxiliary Steiner tree called supporting.
1. Find most remote from b branching node (call it b∗) and get

subtree, that is rooted by it.
2. If terminals count in subtree is > |E |/k , pick subgraph as

single cluster and cut corresponding subtree form supporting
tree.

3. Otherwise, find on path P[b, b∗] next most far from b
branching node and examine it.

Add all nodes not included into any cluster to nearest clusters with
pathes to them.

1. Introduction 2. State of Art 3. k-cluster 4. Algorithm S∗ 5. Optimizations 6. Experiments

Dividing to clusters. Example

1. Introduction 2. State of Art 3. k-cluster 4. Algorithm S∗ 5. Optimizations 6. Experiments

Constructing Steiner trees on clusters

For clusters C ∈ C problem is posed:
I E (C) = E

⋂
M(C),

I b(C) — branching node, that is root of the cluster.
If |E (C)| ≤ k find exact solution using DP, else divide to clusters
recursively.

Improvement: Drop off path from root of the tree to nearest
branching node or terminal.

1. Introduction 2. State of Art 3. k-cluster 4. Algorithm S∗ 5. Optimizations 6. Experiments

Constructing Steiner trees on clusters. Example

1. Introduction 2. State of Art 3. k-cluster 4. Algorithm S∗ 5. Optimizations 6. Experiments

Finding Steiner tree on original graph

Modify original problem:
I Remove all arcs from M \M(C) to M(C) \ {b(C)} for all

C ∈ C
I Assign zero length to all arcs, that are included in constructed

partial Steiner trees.
I Terminal set consists of root nodes of partial Steiner trees(less

than k nodes).
Local improvements:

I Consider set Y , consists of terminals and branching nodes of
Steiner tree.

I For each node y ∈ Y find nearest node y∗ ∈ Y at the path to
b and remove from the tree P[y∗, y]

I Connect y and tree (connected component, that contains b)
with shortest path.

1. Introduction 2. State of Art 3. k-cluster 4. Algorithm S∗ 5. Optimizations 6. Experiments

Solution Steiner tree. Example

1. Introduction 2. State of Art 3. k-cluster 4. Algorithm S∗ 5. Optimizations 6. Experiments

Algorithm complexity

Theorema 1
Computational complexity of k-cluster algorithm is equal
O(2ktn logm).

Lemma 1. Computational complexity of constructing support tree is
O(tn logm).
Lemma 2. Support tree TS of graph G, constrained for each constructed with
it cluster G ′, equals to support tree T ′S , constrcuted on G ′.
Lemma 3. Let support tree TS of graph G contains two branching nodes b1 &
b2, besides b1 & b2 both lay on path from b to some leaf of TS , and b1 is
closer to root than b2 (there is path P(b1, b2)), then cluster induced by b2 is
subgraph of cluster induced by b1.
Lemma 4. Let G ′ ∈ C be a cluster on G. Then C(G ′) ⊂ C.
Lemma 5. Computational complexity of finding Steiner tree in k-cluster
algorithm is O(2ktn logm).
Lemma 6. Computational complexity of local improvements is O(tn logm).

1. Introduction 2. State of Art 3. k-cluster 4. Algorithm S∗ 5. Optimizations 6. Experiments

Steiner tree problem in concentric circles

Modification: we can consider only sub-
sets that consists of termnals sequen-
tially placed on circle (not counting non-
terminal nodes).

It is proven that the mod-
ified algorithm returns an
exact solution of the prob-
lem.

1. Introduction 2. State of Art 3. k-cluster 4. Algorithm S∗ 5. Optimizations 6. Experiments

Algorithm S∗ for euclidean graphs

Essence of algorithm: constrain set of terminal subsets R in such
way that |R| = P(|E |). Then solve it with DP.

R 6= 2E , than on the correctional step check Ei ∪ Ei0 ∈ R, and
perform correcting only if true.
Graph is euclidean, if there are points on the plane correspond to
nodes, and arc length equals to euclidean distance between
corresponding points.
Naive method of constraint:

Let’s call J ⊆ E b-acceptable, if @m′ ∈ E \ J : ∃m1,m2 ∈ J :

∠(m1bm2) = ∠(m1bm′) + ∠(m2bm′). (7)

R — set of all b-acceptable sets.

1. Introduction 2. State of Art 3. k-cluster 4. Algorithm S∗ 5. Optimizations 6. Experiments

Another methods of constructing R

«Concentric circles» method: k iterations.
Ti ⊂ E on i-th iteration (T0 = E). All b-acceptable subset of Ti
are added to R. Average distance from b to terminals r∗ is founded
and Ti is splitted into two subsets — T(i+1)1 & T(i+1)2 (≥ r∗ и
< r∗), and iteration repeats for both.

Generalized method: For each m ∈ M subset fo terminals
Tm ⊂ E is founded that is reachable from m, and all m-acceptable
subsets from Tm are added to R.

1. Introduction 2. State of Art 3. k-cluster 4. Algorithm S∗ 5. Optimizations 6. Experiments

Priority Queues

Has considerable impact on Dijkstra method and DP algorithm
effectiveness.
Known implementations:

I Binary heap
I n-ary heap
I Binomial heap
I Fibonacci heap
I Buckets
I Leftist heap
I Skew heap
I Soft heap
I Brodal heap
I etc

1. Introduction 2. State of Art 3. k-cluster 4. Algorithm S∗ 5. Optimizations 6. Experiments

Priority Queues. Computational complexity

Insert Extract DecreaseKey Dijkstra method
Binary heap O(logm) O(logm) O(logm) O(n logm)
n-ary heap O(logm) O(logm) O(logm) O(n logm)

Binomial heap O(logm) O(logm) O(logm) O(n logm)
Fibonacci heap∗ O(1) O(logm) O(1) O(m logm + n)

Buckets O(1) O(C) O(1) O(mC + n)
Leftist heap O(logm) O(logm) O(logm) O(n logm)
Skew heap O(logm) O(logm) O(logm) O(n logm)
Soft heap∗ O(log 1/ε) O(1) O(logm) O(n logm)

In rows with * amortized run times are presented, worst-case in all
other.

1. Introduction 2. State of Art 3. k-cluster 4. Algorithm S∗ 5. Optimizations 6. Experiments

Comparison of priority queue implementations

Set of 400 problems с |M| ∈ [80, 640], |N| ∈ [120, 204480],
|T | ∈ [10, 160] from SteinLib.k-cluster algorithm.

0

0,5

1

1,5

2

2,5

3

3,5

4

Binomial Fibonacci Buckets Binary Ternary Leftist Skew Soft Pairing

1. Introduction 2. State of Art 3. k-cluster 4. Algorithm S∗ 5. Optimizations 6. Experiments

Parallelization

Every step of iteration algorithm is separate problem.
Time of scheduling problem Si : after correcting row for all
disjunctive splittings of Si .
Array of length 2|E |. i-th cell contains count of all possible
disjunctive splittings of subset Ei . (For S is 2|S |−1 + 1).
At every row correction array cell is reduced by 1. If becomes 0,
problem for corresponding subset scheduled for solving.

In k-cluster algorithm furthermore every problem is posed
separately and can be solved simulataneously.

In algorithm S∗ count of disjunctive splittings is founded by
exhaustive search.

Other parallelization possibilities:
I Parallelization of Dijkstra algorithm
I Use of parallel priority queues

1. Introduction 2. State of Art 3. k-cluster 4. Algorithm S∗ 5. Optimizations 6. Experiments

Experiments on parallel and sequential implementations

All tests performed on CPU with 4 physical cores and
hyperthreading.

Exact: Set of 150 problems where |M| ∈ [80, 640],
|N| ∈ [120, 204480], |T | ∈ [9, 17]. Parallel algorithm is up to 3.5
times faster than sequential.

k-cluster: Set of 400 problems where |M| ∈ [80, 640],
|N| ∈ [120, 204480]. Parallel algorithm is up to 2 times faster than
sequential. On simple problems sequential mehtod is faster.

S∗ algorithm Set of 150 problems where |M| ∈ [160, 640],
|N| ∈ [2371, 204156], |T | ∈ [20, 120]. Parallel algorithm is up to 6
times faster than sequential.

1. Introduction 2. State of Art 3. k-cluster 4. Algorithm S∗ 5. Optimizations 6. Experiments

Vienna Steiner Tree problem set

Issued in 2014. From real-world telecommunication networks.
Between 42481 and 235686 nodes, 52552 and 366093 edges, and
between 88 and 6313 terminals. Have subset of geo-problems, with
node coordinates.

1. Introduction 2. State of Art 3. k-cluster 4. Algorithm S∗ 5. Optimizations 6. Experiments

Some Vienna set problem solutions

Lower bound Precise Time (sec) k-Cluster Time (sec) Precise gap k-Cluster gap DA gap
G101 3 439 226 3 604 599 86400 3 653 673 290 1,36% 6,24% 4,81%
G102 15 132 879 15 305 206 86400 15 770 592 7869 3,04% 4,21% 4,65%
G107 7 309 295 7 360 406 86400 7 793 398 1768 5,88% 6,62% 4,75%
G201 3 481 975 3 490 260 86400 3 656 831 265 4,77% 5,02% 3,86%
G202 6 849 281 6 852 245 86400 7 167 864 1509 4,61% 4,65% 4,25%
G204 5 313 548 5 313 548 34256 5 611 053 342 5,60% 5,60% 4,16%
G206 9 166 968 9 197 029 86400 9 478 401 1043 3,06% 3,40% 4,29%
G207 2 265 834 2 265 834 50754 2 307 000 225 1,82% 1,82% 3,09%
G304 6 629 770 6 896 969 86400 6 972 482 1278 1,09% 5,17% 4,03%

1. Introduction 2. State of Art 3. k-cluster 4. Algorithm S∗ 5. Optimizations 6. Experiments

Thank you!

1. Introduction 2. State of Art 3. k-cluster 4. Algorithm S∗ 5. Optimizations 6. Experiments

Comparison of k-cluster algorithm with other good-known

Set of 400 problems where |M| ∈ [80, 640], |N| ∈ [120, 204480],
|T | ∈ [6, 160] from SteinLib library. kapprox for k-cluster algorithm
equals in average 1.05.

1. k-cluster

2. Takahashi-
Matsuyama

3. Zelikovsky’s
greedy

1. Introduction 2. State of Art 3. k-cluster 4. Algorithm S∗ 5. Optimizations 6. Experiments

Comparison of S∗ algorithm with some well-known ones

Set of 150 problems where |M| ∈ [160, 640], |N| ∈ [2371, 204156],
|T | ∈ [20, 120]. Precision of solutions, getting with S∗, is the best.

1. Introduction 2. State of Art 3. k-cluster 4. Algorithm S∗ 5. Optimizations 6. Experiments

Comparison of sequential and parallel DP implementations

Set of 150 problems where |M| ∈ [80, 640], |N| ∈ [120, 204480],
|T | ∈ [9, 17].

1. Introduction 2. State of Art 3. k-cluster 4. Algorithm S∗ 5. Optimizations 6. Experiments

Comparison of sequential and parallel implementations of
k-cluster

Set of 400 problems where |M| ∈ [80, 640], |N| ∈ [120, 204480],

1. Introduction 2. State of Art 3. k-cluster 4. Algorithm S∗ 5. Optimizations 6. Experiments

Comparison of sequential and parallel implementations of S∗

algorithm

Set of 150 problems where |M| ∈ [160, 640], |N| ∈ [2371, 204156],
|T | ∈ [20, 120].

	1. Introduction
	2. State of Art
	3. k-cluster algorithm
	4. Algorithm S* for euclidean graphs
	5. Computational optimizations
	6. Computational experiments

