1. Introduction

2. State of Art

3. *k*-cluster

4. Algorithm S*

5. Optimizations

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

6. Experiments

Dynamic Programming Usage in Steiner Problem in Graphs

Joseph V. Romanovsky Dmitry A. Eibozhenko

Third Russian Finnish Symposium on Discrete Mathematics, September 2014

1. Introduction	2. State of Art	3. k-cluster	4. Algorithm S*	5. Optimizations	6. Experiments
	000000	00000000	000	00000	00

Steiner tree problem statement

Steiner tree in directed graphs (arborescence). Let G(M, N) be a connected directed graph (*digraph*) with cost function $d: N \to \mathbb{R}_+$. Begin node *b* and set of terminal nodes *E* are marked out in *M*. The problem is to find tree of minimal cost rooted in begin node *b*, and containing paths from *b* to any node of *E*. Other statements:

ション ふゆ く 山 マ チャット しょうくしゃ

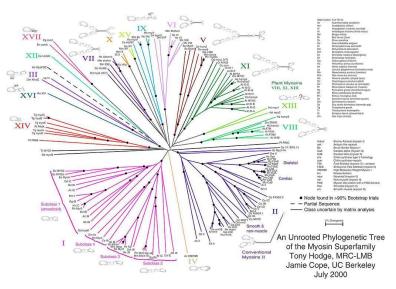
- euclidean (geometric);
- rectilinear;
- in networks.

1. Introduction	2. State of Art	k-cluster	4. Algorithm S*	5. Optimizations	Experiments
	000000	00000000	000	00000	00
A 11					
Application	on				

- VLSI-design: Very Large Scale Integration. Process of building integrated circuits combining millions transistors. Well-known central processing units (CPU) and graphics processing units (GPU) are the examples of VLSI-devices.
- Telecommunications: New formats (interactive TV, interactive video conference), new services (*Video-On-Demand*, ability to choose translation quality).
- ► Reconstruction of phylogenies: Phylogenetic tree represents evolutional interconnections between various species, having common ancestor. In graph G(M, N) M is set of nucleotide sequences, N = M × M (complete graph), and for each edge its length is Hamming distance between appropriate chains.

1. Introduction	2. State of Art	3. k-cluster	4. Algorithm S^*	5. Optimizations	6. Experiments
	000000	00000000	000	00000	00

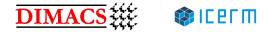
Phylogenetic tree example



1. Introduction2. State of Art
000003. k-cluster
0000004. Algorithm S^* 5. Optimizations
00000

6. Experiments

Implementation Challenge



In December, 2014 will take place 11th DIMACS Implementation Challenge in Collaboration with ICERM: Steiner Tree Problems.

More than 10 statements of Steiner problem: classical Steiner problem in graphs; classical geometric Steiner problem; prize-collecting Steiner trees; generalized Steiner trees (Steiner forest); obstacle-avoiding Steiner trees, etc

Organizers and advisory - most famous contributors:

- Renato F. Werneck, Microsoft Research, USA
- Martin Zachariasen, University of Copenhagen, Denmark
- Alexander Zelikovsky, Georgia State University, USA and others.

 1. Introduction
 2. State of Art
 3. k-cluster
 4. Algorithm S*
 5. Optimizations
 6. Experiments

 00000
 000000
 000
 00000
 000
 00

Takahashi-Matsuyama algorithm

Presented at 1980. Greedy algorithm.

At any time of costructing process there is subgraph $T_S = (M^*, N^*)$,

Initial state: $M^* = \{b\}$, $N^* = \emptyset$.

Step: Find $e^* = \operatorname{argmin} \{ d(M^*, e) | e \in E \setminus M^* \}$. Then $T_S := T_S \cup P[M^*, e^*]$, where $P[M^*, e^*]$ — minimal among all possible ways from nodes M^* to e^* .

- Computational complexity: $O(tn^2)$ (n = |N|, a t = |E|)
- ▶ Precision: 2(1 − 1/t)

▲□▶ ▲圖▶ ★ 圖▶ ★ 圖▶ → 圖 → のへで

1. Introduction2. State of Art
 $0 \bullet 0000$ 3. k-cluster
 $0 \circ 00000$ 4. Algorithm S^* 5. Optimizations
 $0 \circ 0 \circ 0$ 6. Experiments
 $0 \circ 0 \circ 0$

General scheme of greedy contraction

Let G_E be a subgraph of G, induced by $E \cup \{b\}$. Mst(E) is minimal spanning tree. $M_0(E) = c(Mst(E))$.

Contraction of tree T: Lengths of arcs in Mst(E) with ends in $E(T) \rightarrow 0$.

Init: $L = \emptyset$ – list of trees while $M_0(E) > 0$ Find full Steiner tree T^* in some class K, that minimize estimating function f(T): $T^* \leftarrow \operatorname{argmin}_{T \in K} f(T)$. insert T^* in list $L : L = L \cup \{T^*\}$ contract T^* end while Re-establish Steiner tree from trees in list L and return it.

1. Introduction	State of Art	3. k-cluster	4. Algorithm S^*	5. Optimizations	6. Experiments
	00000	00000000	000	00000	00

Methods that use this scheme

- ▶ Takahashi and Matsuyama algorithm: K consists of all available paths, and f(T) = c(T).
- Reyward-Smith heuristic algorithm : K is composed of all kinds of stars, and $f(T) = \frac{c(T)}{r-1}$, where r count of leafs of T.
- Generalized greedy heuristic: K is composed of trees with three terminals and $f(T) = c(T) (M_0(E) M_0(E \setminus T))$.

► Relative greedy heuristic with size constraints: K is composed of all trees with no more than r terminals, f(T) = c(T)/M₀(S)-M₀(S\T).

1. Introduction	State of Art	k-cluster	4. Algorithm S*	5. Optimizations	Experiments
	000000	00000000	000	00000	00
Using LP	& ILP				

There are various formal representations.

 $\rho = \{W \subseteq M \setminus \{b\}, W \bigcap E \neq 0\} \text{ is directed cut} \\ \delta^{-}(W) = \{[b, e] | e \in W, b \notin W\}$

min
$$\sum_{n\in N} c_n x_n,$$
 (1)

$$\sum_{n\in\delta^{-}(W)}x_{n}\geq1,\quad\forall W\in\rho,$$
(2)

$$x_n \in \{0,1\}, \quad \forall n \in N,$$
 (3)

ション ふゆ アメリア メリア しょうくしゃ

(3) \rightarrow : $x_n \ge 0, \forall n \in N$. Proven integrality gap for relaxation is 2.
 1. Introduction
 2. State of Art 00000
 3. k-cluster
 4. Algorithm S*
 5. Optimizations
 6. Experiments

Dynamic programming algorithm

Based on Bellman equation. Solving simultaneously $\forall i \in M, \forall E_p \subset E.$ $v(i, E_p)$ — solution of corresponding subtask.

$$v(i, E_P) = \min\{v_{\text{cont}}(i, E_P), v_{\text{part}}(i, E_P)\}$$
(4)

• $v_{\rm cont}$ — minimal cost of going by some arc

$$v_{\text{cont}}(i, E_P) = \min\{c_j + v(\operatorname{end} j, E_P) | \operatorname{beg} j = i\}, \quad (5)$$

v_{part} — minimal cost of splitting terminal set E_P into two disjunctive subsets A μ E_P \ A

$$v_{\text{part}}(i, E_P) = \min\{v(i, A) + v(i, E_P \setminus A) | A \subset E_P\}.$$
 (6)

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

 1. Introduction
 2. State of Art 00000
 3. k-cluster
 4. Algorithm S*
 5. Optimizations
 6. Experiments

DP algorithm. Implementation.

Table of size $|M| \times 2^{|E|} - L$. **L**[i,j] - $v(j, E_i)$ at calculation time. (any subset numeration, that satisfy: $S_i \subset S_k \Rightarrow i < k$)

At *i*-th iteration:

1. **Dijkstrification:** finding by modified Dijkstra method tree lengths for S_i .

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

2. Correction: $\forall i_0 < i$, such that $E_{i_0} \cap E_i = \emptyset$ examine $E_{i_1} = E_i \cup E_{i_0}$:

 $L[i_1, j] = \min(L[i_1, j], L[i, j] + L[i_0, j])$

1. Introduction2. State of Art
000003. k-cluster
 $\bullet 000000$ 4. Algorithm S^* 5. Optimizations
000006. Experiments
000000

k-Cluster Algorithm

Core idea

Solve Steiner trees for restricted number of terminals.

k is upper bound for number of terminals in tree, that can be solved by DP algorithm.

If number of terminals in graph is more than k, divide it for no more than k subgraphs with induced Steiner tree.

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

1. Introduction	2. State of Art	k-cluster	4. Algorithm S*	5. Optimizations	Experiments
	000000	0000000	000	00000	00

Dividing to clusters

Build auxiliary Steiner tree called *supporting*.

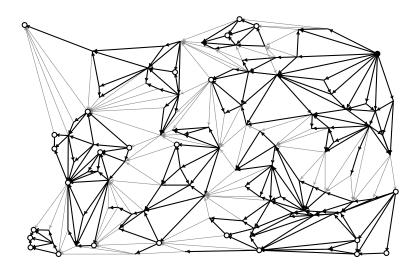
- 1. Find most remote from b branching node (call it b^*) and get subtree, that is rooted by it.
- 2. If terminals count in subtree is > |E|/k, pick subgraph as single cluster and cut corresponding subtree form supporting tree.
- 3. Otherwise, find on path $P[b, b^*]$ next most far from b branching node and examine it.

Add all nodes not included into any cluster to nearest clusters with pathes to them.

ション ふゆ アメリア メリア しょうくしゃ

1. Introduction	State of Art	k-cluster	 Algorithm S[*] 	5. Optimizations	Experiments
	000000	0000000	000	00000	00

Dividing to clusters. Example



|▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ | ≣ | のへ⊙

1. Introduction	State of Art	k-cluster	 Algorithm S[*] 	5. Optimizations	Experiments
	000000	00000000	000	00000	00

Constructing Steiner trees on clusters

For clusters $C \in C$ problem is posed:

- $E(C) = E \bigcap M(C)$,
- b(C) branching node, that is root of the cluster.

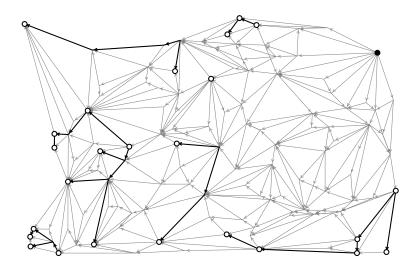
If $|E(C)| \leq k$ find exact solution using DP, else divide to clusters recursively.

Improvement: Drop off path from root of the tree to nearest branching node or terminal.

ション ふゆ く 山 マ チャット しょうくしゃ

1. Introduction2. State of Art
000003. k-cluster
0004. Algorithm S^* 5. Optimizations
00006. Experiments
000

Constructing Steiner trees on clusters. Example



▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 … のへで

1. Introduction

2. State of Art

3. *k*-cluster 00000●00 4. Algorithm S*

5. Optimizations

6. Experiments

Finding Steiner tree on original graph

Modify original problem:

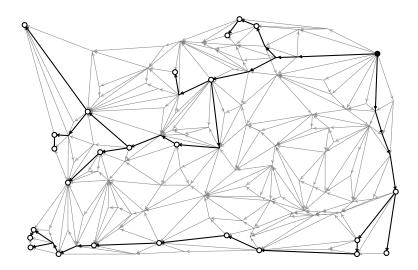
- ▶ Remove all arcs from M \ M(C) to M(C) \ {b(C)} for all C ∈ C
- Assign zero length to all arcs, that are included in constructed partial Steiner trees.
- Terminal set consists of root nodes of partial Steiner trees(less than k nodes).

Local improvements:

- Consider set Y, consists of terminals and branching nodes of Steiner tree.
- For each node y ∈ Y find nearest node y* ∈ Y at the path to b and remove from the tree P[y*, y]
- Connect y and tree (connected component, that contains b) with shortest path.

1. Introduction	State of Art	k-cluster	 Algorithm S[*] 	5. Optimizations	Experiments
	000000	00000000	000	00000	00

Solution Steiner tree. Example



▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 三臣 - のへで

1. Introduction	2. State of Art	3. <i>k</i> -cluster 0000000●	4 . Algorithm <i>S</i> *	5. Optimizations	 6. Experiments 00

Algorithm complexity

Theorema 1

Computational complexity of k-cluster algorithm is equal $O(2^k tn \log m)$.

Lemma 1. Computational complexity of constructing support tree is $O(tn \log m)$.

Lemma 2. Support tree T_S of graph G, constrained for each constructed with it cluster G', equals to support tree T'_S , constructed on G'.

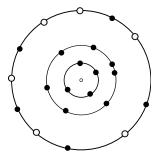
Lemma 3. Let support tree T_S of graph G contains two branching nodes $b_1 \& b_2$, besides $b_1 \& b_2$ both lay on path from b to some leaf of T_S , and b_1 is closer to root than b_2 (there is path $P(b_1, b_2)$), then cluster induced by b_2 is subgraph of cluster induced by b_1 .

Lemma 4. Let $G' \in \mathfrak{C}$ be a cluster on G. Then $\mathfrak{C}(G') \subset \mathfrak{C}$.

Lemma 5. Computational complexity of finding Steiner tree in k-cluster algorithm is $O(2^k \operatorname{tn} \log m)$.

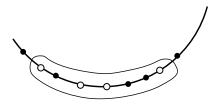
Lemma 6. Computational complexity of local improvements is $O(tn \log m)$.

Steiner tree problem in concentric circles



Modification: we can consider only subsets that consists of termnals sequentially placed on circle (not counting nonterminal nodes).

It is proven that the modified algorithm returns an exact solution of the problem.



 1. Introduction
 2. State of Art
 3. k-cluster
 4. Algorithm S*
 5. Optimizations
 6. Experiments

 000000
 0●0
 00000
 00
 00

Algorithm S^* for euclidean graphs

Essence of algorithm: constrain set of terminal subsets \mathcal{R} in such way that $|\mathcal{R}| = P(|\mathcal{E}|)$. Then solve it with DP.

 $\mathcal{R} \neq 2^{E}$, than on the correctional step check $E_{i} \cup E_{i_{0}} \in \mathcal{R}$, and perform correcting only if true.

Graph is *euclidean*, if there are points on the plane correspond to nodes, and arc length equals to euclidean distance between corresponding points.

Naive method of constraint:

Let's call
$$J \subseteq E$$
 b-acceptable, if $\nexists m' \in E \setminus J : \exists m_1, m_2 \in J :$
 $\angle (m_1 b m_2) = \angle (m_1 b m') + \angle (m_2 b m').$ (7)

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

 \mathcal{R} — set of all *b*-acceptable sets.

 1. Introduction
 2. State of Art
 3. k-cluster
 4. Algorithm S*
 5. Optimizations
 6. Experiments

 00000
 0000
 000
 0000
 000
 000

Another methods of constructing $\mathcal R$

«Concentric circles» method: k iterations.

 $T_i \subset E$ on *i*-th iteration ($T_0 = E$). All *b*-acceptable subset of T_i are added to \mathcal{R} . Average distance from *b* to terminals r^* is founded and T_i is splitted into two subsets $-T_{(i+1)_1} \& T_{(i+1)_2} (\geq r^* \mathsf{n} < r^*)$, and iteration repeats for both.

Generalized method: For each $m \in M$ subset fo terminals $T_m \subset E$ is founded that is reachable from m, and all m-acceptable subsets from T_m are added to \mathcal{R} .

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへで

1. Introduction

2. State of Art

3. *k*-cluster

4. Algorithm *S**

5. Optimizations •0000 6. Experiments

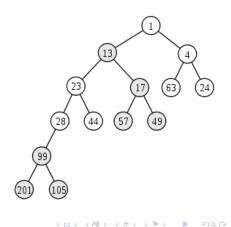
Priority Queues

Has considerable impact on Dijkstra method and DP algorithm effectiveness.

Known implementations:

- Binary heap
- ▶ *n*-ary heap
- Binomial heap
- Fibonacci heap
- Buckets
- Leftist heap
- Skew heap
- Soft heap
- Brodal heap

etc



Priority Queues. Computational complexity

	Insert	Extract	DecreaseKey	Dijkstra method
Binary heap	$O(\log m)$	$O(\log m)$	$O(\log m)$	$O(n \log m)$
n-ary heap	$O(\log m)$	$O(\log m)$	$O(\log m)$	$O(n \log m)$
Binomial heap	$O(\log m)$	$O(\log m)$	$O(\log m)$	$O(n \log m)$
Fibonacci heap*	O(1)	$O(\log m)$	O(1)	$O(m \log m + n)$
Buckets	O(1)	O(C)	O(1)	O(mC + n)
Leftist heap	$O(\log m)$	$O(\log m)$	$O(\log m)$	$O(n \log m)$
Skew heap	$O(\log m)$	$O(\log m)$	$O(\log m)$	$O(n \log m)$
Soft heap*	$O(\log 1/\epsilon)$	O(1)	$O(\log m)$	$O(n \log m)$

In rows with * amortized run times are presented, worst-case in all other.

▲ロト ▲冊ト ▲ヨト ▲ヨト ヨー わえぐ

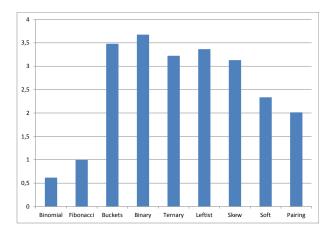
1. Introduction2. State of Art3. k-cluster4. Algorithm S^* 00000000000000000

5. Optimizations

6. Experiments

Comparison of priority queue implementations

Set of 400 problems c $|M| \in [80, 640]$, $|N| \in [120, 204480]$, $|T| \in [10, 160]$ from SteinLib.*k*-cluster algorithm.



▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ ▲圖 - のへで

1.	Introduction	

2. State of Art

3. *k*-cluster

4. Algorithm *S**

5. Optimizations

6. Experiments

Parallelization

Every step of iteration algorithm is separate problem. Time of scheduling problem S_i : after correcting row for all disjunctive splittings of S_i . Array of length $2^{|E|}$. *i*-th cell contains count of all possible disjunctive splittings of subset E_i . (For S is $2^{|S|-1} + 1$). At every row correction array cell is reduced by 1. If becomes 0, problem for corresponding subset scheduled for solving.

In k-cluster algorithm furthermore every problem is posed separately and can be solved simulataneously.

In algorithm S^* count of disjunctive splittings is founded by exhaustive search.

Other parallelization possibilities:

- Parallelization of Dijkstra algorithm
- Use of parallel priority queues

1. Introduction2. State of Art
000003. k-cluster
0000004. Algorithm S^* 5. Optimizations
 $0000 \bullet$ 6. Experiments
000

Experiments on parallel and sequential implementations

All tests performed on CPU with 4 physical cores and *hyperthreading*.

Exact: Set of 150 problems where $|M| \in [80, 640]$, $|N| \in [120, 204480]$, $|T| \in [9, 17]$. Parallel algorithm is up to 3.5 times faster than sequential.

k-cluster: Set of 400 problems where $|M| \in [80, 640]$, $|N| \in [120, 204480]$. Parallel algorithm is up to 2 times faster than sequential. On simple problems sequential mehtod is faster.

 S^* algorithm Set of 150 problems where $|M| \in [160, 640]$, $|N| \in [2371, 204156]$, $|T| \in [20, 120]$. Parallel algorithm is up to 6 times faster than sequential. 1. Introduction

2. State of Art

3. *k*-cluster

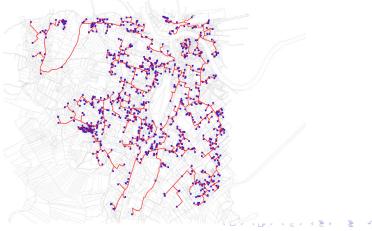
4. Algorithm S*

5. Optimizations

6. Experiments ●○

Vienna Steiner Tree problem set

Issued in 2014. From real-world telecommunication networks. Between 42481 and 235686 nodes, 52552 and 366093 edges, and between 88 and 6313 terminals. Have subset of geo-problems, with node coordinates.



1. Introduction 2. Sta

2. State of Art

3. *k*-cluster

4. Algorithm S*

5. Optimizations

6. Experiments ○●

Some Vienna set problem solutions

	Lower bound	Precise	Time (sec)	k-Cluster	Time (sec)	Precise gap	k-Cluster gap	DA gap
G101	3 439 226	3 604 599	86400	3 653 673	290	1,36%	6,24%	4,81%
G102	15 132 879	15 305 206	86400	15 770 592	7869	3,04%	4,21%	4,65%
G107	7 309 295	7 360 406	86400	7 793 398	1768	5,88%	6,62%	4,75%
G201	3 481 975	3 490 260	86400	3 656 831	265	4,77%	5,02%	3,86%
G202	6 849 281	6 852 245	86400	7 167 864	1509	4,61%	4,65%	4,25%
G204	5 313 548	5 313 548	34256	5 611 053	342	5,60%	5,60%	4,16%
G206	9 166 968	9 197 029	86400	9 478 401	1043	3,06%	3,40%	4,29%
G207	2 265 834	2 265 834	50754	2 307 000	225	1,82%	1,82%	3,09%
G304	6 629 770	6 896 969	86400	6 972 482	1278	1,09%	5,17%	4,03%

▲□▶ ▲□▶ ▲□▶ ▲□▶ □□ - のへで

1. Introduction

2. State of Art

3. *k*-cluster

4. Algorithm S*

5. Optimizations

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

6. Experiments

Thank you!

1. Introduction

2. State of Art

3. *k*-cluster

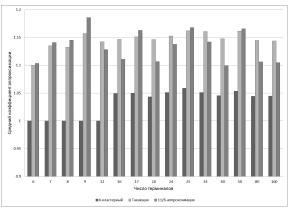
Algorithm S*
 000

5. Optimizations

Comparison of k-cluster algorithm with other good-known

Set of 400 problems where $|M| \in [80, 640]$, $|N| \in [120, 204480]$, $|T| \in [6, 160]$ from **SteinLib** library. k_{approx} for k-cluster algorithm equals in average 1.05.

- 1. *k*-cluster
- 2. Takahashi-Matsuyama
- Zelikovsky's greedy



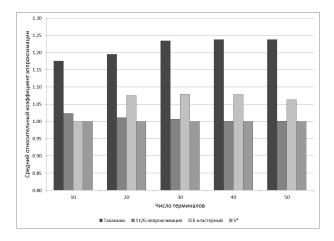
◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─ のへで

 1. Introduction
 2. State of Art
 3. k-cluster
 4. Algorithm S*
 5. Optimizations
 6. Experiments

 000000
 000
 000
 000
 000
 000
 00

Comparison of S^* algorithm with some well-known ones

Set of 150 problems where $|M| \in [160, 640]$, $|N| \in [2371, 204156]$, $|T| \in [20, 120]$. Precision of solutions, getting with *S*^{*}, is the best.



◆□▶ ◆□▶ ◆□▶ ◆□▶ ● □ ● ●

Comparison of sequential and parallel DP implementations

4. Algorithm S*

5. Optimizations

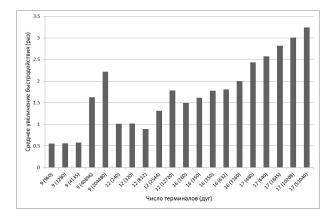
6. Experiments

Set of 150 problems where $|M| \in [80, 640]$, $|N| \in [120, 204480]$, $|T| \in [9, 17]$.

3. k-cluster

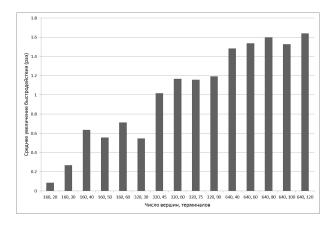
1. Introduction

2. State of Art



▲ロト ▲圖 ▶ ▲ 画 ▶ ▲ 画 ■ の Q @

Set of 400 problems where $|M| \in [80, 640]$, $|N| \in [120, 204480]$,



▲ロト ▲課 ト ▲注 ト ▲注 ト → 注 → のなび

Set of 150 problems where $|M| \in [160, 640]$, $|N| \in [2371, 204156]$, $|T| \in [20, 120]$.

