Equivalence Relations Defined by Numbers of Occurrences of Factors

Aleksi Saarela
Department of Mathematics and Statistics and FUNDIM Centre,
University of Turku, Finland

RuFiDiM 2014
Petrozavodsk 17.9.2014

Outline

(1) Background
(2) Equivalence relations
(3) Vectors

4 Number of equivalence classes
(5) Main results

Notation

- $|u|_{x}$ is the number of occurrences of x as a factor in u
- $|u|_{\varepsilon}=|u|+1$
- u being a proper prefix of v is denoted by $u<v$
- u being a proper suffix of v is denoted by $v>u$
- $\operatorname{pref}_{n}(u)$ is the prefix of u of length $n\left(\operatorname{or~}_{\operatorname{pref}_{n}}(u)=u\right.$ if $\left.|u|<n\right)$
- $\operatorname{suff}_{n}(u)$ is the suffix of u of length $n\left(\right.$ or suff $_{n}(u)=u$ if $\left.|u|<n\right)$
- $[P]= \begin{cases}1 & \text { if } P \text { is true } \\ 0 & \text { if } P \text { is false }\end{cases}$
- $\mathcal{L}(V)$ is the vector space generated by a set of vectors V
- $\operatorname{rank}(V)=\operatorname{dim}(\mathcal{L}(V))$

Motivating question

Let $k \geq 1$ and $S \subseteq \Sigma \leq k$.
If we know $|u|_{s}$ for all $s \in S$, $\operatorname{pref}_{k-1}(u)$, and $\operatorname{suff}_{k-1}(u)$, what can we say about u ?

Example

Suppose that we do not know the word $u \in\{0,1\}^{*}$, but we know $|u|_{\varepsilon}$ and $|u|_{0}$. Then we can of course deduce the number of 1 's:
$|u|_{1}=|u|_{\varepsilon}-1-|u|_{0}$.

Example

Suppose that we do not know the word $u \in\{0,1\}^{+}$, but we know $\operatorname{pref}_{1}(u)$, suff $1(u)$, and $|u|_{01}$. Then we can deduce the number of 10 's:
$|u|_{10}=|u|_{01}+\operatorname{pref}_{1}(u)-\operatorname{suff}_{1}(u)$.

k-abelian equivalence

Words $u, v \in \Sigma^{*}$ are k-abelian equivalent if

- $|u|_{s}=|v|_{s}$ for all $s \in S$,
- $\operatorname{pref}_{k-1}(u)=\operatorname{pref}_{k-1}(v)$, and
- $\operatorname{suff}_{k-1}(u)=\operatorname{suff}_{k-1}(v)$,
where the set S can be any of the following:
- $\Sigma \leq k$,
- Σ^{k},
- $\Sigma \leq k \backslash 0 \Sigma^{*} \backslash \Sigma^{*} 0(0 \in \Sigma)$.

Can we characterize all possible sets S ?

Outline

(1) Background

(2) Equivalence relations

4 Number of equivalence classes

(5) Main results

(k, S)-equivalence

For an alphabet Σ, positive integer k, and set $S \subseteq \Sigma \leq k$, words $u, v \in \Sigma^{*}$ are called (k, S)-equivalent if

- $|u|_{s}=|v|_{s}$ for all $s \in S$,
- $\operatorname{pref}_{k-1}(u)=\operatorname{pref}_{k-1}(v)$, and
- $\operatorname{suff}_{k-1}(u)=\operatorname{suff}_{k-1}(v)$

Example

- $S=\Sigma$: abelian equivalence
- $S=\Sigma^{k}$: k-abelian equivalence
- $\Sigma=\{0,1\}, S=\{0\}$: equivalence classes are $1^{*}, 1^{*} 01^{*}, 1^{*} 01^{*} 01^{*}, 1^{*} 01^{*} 01^{*} 01^{*}, \ldots$

Maximal and minimal sets

The set \bar{S} is defined to consist of all words $t \in \Sigma^{\leq k}$ such that $|u|_{t}$ depends only on the (k, S)-equivalence class of u.

- The set \bar{S} does not depend on k (but it depends on Σ).
- For $S_{1}, S_{2} \subseteq \Sigma \leq k,\left(k, S_{1}\right)$-equivalence and (k, S_{2})-equivalence are the same if and only if $\bar{S}_{1}=\bar{S}_{2}$.
A set R is S-minimal if $\bar{R}=\bar{S}$ and $\bar{Q} \neq \bar{S}$ for all $Q \subsetneq R$.
- Every set S has an S-minimal subset, but an S-minimal set need not be a subset of S.
- All S-minimal sets are of the same size (this is not trivial).

Example

Let $\Sigma=\{0,1\}$.

- $\bar{\Sigma}=\{\varepsilon, 0,1\}$ and $\overline{\{01\}}=\{01,10\}$.
- The Σ-minimal sets are $\{\varepsilon, 0\},\{\varepsilon, 1\}, \Sigma$.

Questions

- Given S, how big are S-minimal sets?
- Which sets S are S-minimal?
- Given k and S, for which $t \in \Sigma^{\leq k}$ can we deduce $|u|_{t}$ based on the (k, S)-equivalence class of u ? In other words, what is the set \bar{S} ?
- For which S_{1}, S_{2} is (k, S_{1})-equivalence the same as (k, S_{2})-equivalence, or in other words, $\bar{S}_{1}=\bar{S}_{2}$.
- For which S is (k, S)-equivalence the same as k-abelian equivalence, or in other words, $\bar{S}=\Sigma \leq k$.

Outline

(1) Background

(2) Equivalence relations
(3) Vectors

4 Number of equivalence classes
(5) Main results

Vectors

Let t_{1}, \ldots, t_{M} be the words in $\Sigma \leq k$ in radix order.
The extended Parikh vector of a word $u \in \Sigma^{*}$ is $P_{u}=\left(|u|_{t_{1}}, \ldots,|u|_{t_{M}}\right)$. We define families of vectors:

$$
\begin{array}{lll}
U_{t}=\left(a_{1}, \ldots, a_{M}\right), & \text { where } a_{i}=\left[t_{i}>t\right]-\left[t<t_{i}\right] & \text { and } t \in \Sigma^{k-1}, \\
U_{t}^{\prime}=\left(a_{1}, \ldots, a_{M}\right), & \text { where } a_{i}=\left[t_{i}=t\right]-\left[t<t_{i} \in \Sigma^{k}\right] & \text { and } t \in \Sigma^{\leq k-1}, \\
V_{t}=\left(a_{1}, \ldots, a_{M}\right), & \text { where } a_{i}=\left[t_{i}=t\right] & \text { and } t \in \Sigma^{\leq k}
\end{array}
$$

Lemma

Let $u \in \Sigma^{*}$. Then

$$
\begin{array}{ll}
U_{t} \cdot P_{u}=[u>t]-[t<u] & \text { for } t \in \Sigma^{k-1} \\
U_{t}^{\prime} \cdot P_{u}=\left|\operatorname{suff}_{k-1}(u)\right|_{t} & \text { for } t \in \Sigma \leq k-1 \\
V_{t} \cdot P_{u}=|u|_{t} & \text { for } t \in \Sigma \leq k
\end{array}
$$

Vectors

Let $\mathcal{U}=\left\{U_{t} \mid t \in \Sigma^{k-1}, t \neq 0^{k-1}\right\} \cup\left\{U_{t}^{\prime} \mid t \in \Sigma^{\leq k-1}\right\}$ and $\mathcal{V}_{S}=\left\{V_{s} \mid s \in S\right\}$ for $S \subseteq \Sigma \leq k$.

Lemma

The set \mathcal{U} is linearly independent.

Lemma

Let $S \subseteq \Sigma^{\leq k}$ and $t \in \Sigma \leq k$. If $V_{t} \in \mathcal{L}\left(\mathcal{U} \cup \mathcal{V}_{S}\right)$, then $t \in \bar{S}$.

Example

Let $\Sigma=\{0,1\}$ and $S=\{01\}$. Then

$$
\begin{aligned}
& \mathcal{U}=\left\{U_{1}, U_{\varepsilon}^{\prime}, U_{0}^{\prime}, U_{1}^{\prime}\right\}=\{(0,0,0,0,1,-1,0),(1,0,0,-1,-1,-1,-1), \\
&\quad(0,1,0,-1,-1,0,0),(0,0,1,0,0,-1,-1)\}, \\
& \mathcal{V}_{S}=\left\{V_{01}\right\}=\{(0,0,0,0,1,0,0)\}, \\
& V_{10}=(0,0,0,0,0,1,0) \in \mathcal{L}\left(\mathcal{U} \cup \mathcal{V}_{S}\right) .
\end{aligned}
$$

Vectors

Lemma

If $S \subseteq \Sigma^{\leq k}$ is S-minimal, then $\mathcal{U} \cup \mathcal{V}_{S}$ is linearly independent.

Proof.

Let $\mathcal{U} \cup \mathcal{V}_{S}$ be linearly dependent. The set \mathcal{U} is linearly independent, so there exists $s \in S$ such that $V_{s} \in \mathcal{L}\left(\mathcal{U} \cup \mathcal{V}_{R}\right)$, where $R=S \backslash\{s\}$. Then $s \in \bar{R}$, so $\bar{R}=\bar{S}$ and S is not S-minimal.

Outline

(1) Background

(2) Equivalence relations
(3) Vectors

4 Number of equivalence classes

(5) Main results

Number of equivalence classes

For a finite set $A \subset \Sigma^{*}$, the number of (k, S)-equivalence classes of words in A is denoted by $\operatorname{nec}_{k, S}(A)$.

Lemma
Let $S \subseteq \Sigma^{\leq k}$ and $\bar{S}=\Sigma \leq k$.
Then $\operatorname{nec}_{k, S}\left(\Sigma^{\leq n}\right)=\Theta\left(n^{m}\right)$, where $m=\# \Sigma^{k}-\# \Sigma^{k-1}+1$.

Lemma

Let $S \subseteq \Sigma^{\leq k}$ and let R be S-minimal.
Then $\operatorname{nec}_{k, S}\left(\Sigma^{\leq n}\right)=O\left(n^{\# R}\right)$.
Lemma
Let $S \subseteq \Sigma^{\leq k}$ and $m=\operatorname{rank}\left(\mathcal{U} \cup \mathcal{V}_{\bar{S}}\right)-\operatorname{rank}(\mathcal{U})$.
Then $\operatorname{nec}_{k, S}\left(\Sigma^{\leq n}\right)=\Omega\left(n^{m}\right)$.

Number of equivalence classes

Theorem
Let $S \subseteq \Sigma \leq k$ and let R be S-minimal. Then

$$
\# R=\operatorname{rank}\left(\mathcal{U} \cup \mathcal{V}_{S}\right)-\operatorname{rank}(\mathcal{U}) \quad \text { and } \quad \operatorname{nec}_{k, S}\left(\Sigma^{\leq n}\right)=\Theta\left(n^{\# R}\right) .
$$

Corollary

Let $S_{1}, S_{2} \subseteq \Sigma^{\leq k}$. If $\bar{S}_{1}=\bar{S}_{2}$, then $\operatorname{rank}\left(\mathcal{U} \cup \mathcal{V}_{S_{1}}\right)=\operatorname{rank}\left(\mathcal{U} \cup \mathcal{V}_{S_{2}}\right)$.

Outline

(1) Background

(2) Equivalence relations
(3) Vectors

4 Number of equivalence classes

(5) Main results

Which sets S are S-minimal?

Theorem
A set $S \subseteq \Sigma \leq k$ is S-minimal if and only if $\mathcal{U} \cup \mathcal{V}_{S}$ is linearly independent.

Proof.

If S is S-minimal, then the claim follows from an earlier lemma. If S is not S-minimal, then it has a proper subset R such that $\bar{R}=\bar{S}$. Then $\operatorname{rank}\left(\mathcal{U} \cup \mathcal{V}_{S}\right)=\operatorname{rank}\left(\mathcal{U} \cup \mathcal{V}_{R}\right) \leq \#\left(\mathcal{U} \cup \mathcal{V}_{R}\right)<\#\left(\mathcal{U} \cup \mathcal{V}_{S}\right)$, so $\mathcal{U} \cup \mathcal{V}_{S}$ cannot be linearly independent.

What is the set \bar{S} ?

Theorem
Let $S \subseteq \Sigma^{\leq k}$ and $t \in \Sigma^{\leq k}$. Then $t \in \bar{S}$ if and only if $V_{t} \in \mathcal{L}\left(\mathcal{U} \cup \mathcal{V}_{S}\right)$.

Proof.

If $V_{t} \in \mathcal{L}\left(\mathcal{U} \cup \mathcal{V}_{S}\right)$, then the claim follows from an earlier lemma.
If $V_{t} \notin \mathcal{L}\left(\mathcal{U} \cup \mathcal{V}_{S}\right)$, then $\operatorname{rank}\left(\mathcal{U} \cup \mathcal{V}_{S \cup\{t\}}\right)>\operatorname{rank}\left(\mathcal{U} \cup \mathcal{V}_{S}\right)$.
Then $\overline{S \cup\{t\}} \neq \bar{S}$, so $t \notin \bar{S}$.

When is $\bar{S}_{1}=\bar{S}_{2}$?
Corollary
Let $S_{1}, S_{2} \subseteq \Sigma^{\leq k}$. Then $\bar{S}_{1}=\bar{S}_{2}$ if and only if $\mathcal{L}\left(\mathcal{U} \cup \mathcal{V}_{S_{1}}\right)=\mathcal{L}\left(\mathcal{U} \cup \mathcal{V}_{S_{2}}\right)$.
Corollary
Let $S \subseteq \Sigma \leq k$. Then $\bar{S}=\Sigma \leq k$ if and only if $\operatorname{rank}\left(\mathcal{U} \cup \mathcal{V}_{S}\right)=\# \Sigma \leq k$.

Thank You!

