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Background

Notation

|u|x is the number of occurrences of x as a factor in u

|u|ε = |u|+ 1

u being a proper prefix of v is denoted by u < v

u being a proper suffix of v is denoted by v > u

prefn(u) is the prefix of u of length n (or prefn(u) = u if |u| < n)

suffn(u) is the suffix of u of length n (or suffn(u) = u if |u| < n)

[P] =

{
1 if P is true

0 if P is false

L(V ) is the vector space generated by a set of vectors V

rank(V ) = dim(L(V ))
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Background

Motivating question

Let k ≥ 1 and S ⊆ Σ≤k .
If we know |u|s for all s ∈ S , prefk−1(u), and suffk−1(u),
what can we say about u?

Example

Suppose that we do not know the word u ∈ {0, 1}∗, but we know |u|ε and
|u|0. Then we can of course deduce the number of 1’s:
|u|1 = |u|ε − 1− |u|0.

Example

Suppose that we do not know the word u ∈ {0, 1}+, but we know
pref1(u), suff1(u), and |u|01. Then we can deduce the number of 10’s:
|u|10 = |u|01 + pref1(u)− suff1(u).
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Background

k-abelian equivalence

Words u, v ∈ Σ∗ are k-abelian equivalent if

|u|s = |v |s for all s ∈ S ,

prefk−1(u) = prefk−1(v), and

suffk−1(u) = suffk−1(v),

where the set S can be any of the following:

Σ≤k ,

Σk ,

Σ≤k r 0Σ∗ r Σ∗0 (0 ∈ Σ).

Can we characterize all possible sets S?
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Equivalence relations

(k , S)-equivalence

For an alphabet Σ, positive integer k , and set S ⊆ Σ≤k ,
words u, v ∈ Σ∗ are called (k ,S)-equivalent if

|u|s = |v |s for all s ∈ S ,

prefk−1(u) = prefk−1(v), and

suffk−1(u) = suffk−1(v)

Example

S = Σ: abelian equivalence

S = Σk : k-abelian equivalence

Σ = {0, 1}, S = {0}: equivalence classes are
1∗, 1∗01∗, 1∗01∗01∗, 1∗01∗01∗01∗, . . .
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Equivalence relations

Maximal and minimal sets

The set S is defined to consist of all words t ∈ Σ≤k such that |u|t depends
only on the (k ,S)-equivalence class of u.

The set S does not depend on k (but it depends on Σ).

For S1,S2 ⊆ Σ≤k , (k ,S1)-equivalence and (k ,S2)-equivalence are the
same if and only if S1 = S2.

A set R is S-minimal if R = S and Q 6= S for all Q ( R.

Every set S has an S-minimal subset, but an S-minimal set need not
be a subset of S .

All S-minimal sets are of the same size (this is not trivial).

Example

Let Σ = {0, 1}.
Σ = {ε, 0, 1} and {01} = {01, 10}.
The Σ-minimal sets are {ε, 0}, {ε, 1},Σ.
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Equivalence relations

Questions

Given S , how big are S-minimal sets?

Which sets S are S-minimal?

Given k and S , for which t ∈ Σ≤k can we deduce |u|t based on the
(k, S)-equivalence class of u? In other words, what is the set S?

For which S1,S2 is (k ,S1)-equivalence the same as
(k, S2)-equivalence, or in other words, S1 = S2.

For which S is (k, S)-equivalence the same as k-abelian equivalence,
or in other words, S = Σ≤k .
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Vectors

Vectors

Let t1, . . . , tM be the words in Σ≤k in radix order.
The extended Parikh vector of a word u ∈ Σ∗ is Pu = (|u|t1 , . . . , |u|tM ).
We define families of vectors:

Ut = (a1, . . . , aM), where ai = [ti > t]− [t < ti ] and t ∈ Σk−1,

U ′t = (a1, . . . , aM), where ai = [ti = t]− [t < ti ∈ Σk ] and t ∈ Σ≤k−1,

Vt = (a1, . . . , aM), where ai = [ti = t] and t ∈ Σ≤k .

Lemma

Let u ∈ Σ∗. Then

Ut · Pu = [u > t]− [t < u] for t ∈ Σk−1,

U ′t · Pu = |suffk−1(u)|t for t ∈ Σ≤k−1,

Vt · Pu = |u|t for t ∈ Σ≤k .
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Vectors

Vectors

Let U =
{
Ut | t ∈ Σk−1, t 6= 0k−1

}
∪
{
U ′t | t ∈ Σ≤k−1

}
and

VS = {Vs | s ∈ S} for S ⊆ Σ≤k .

Lemma

The set U is linearly independent.

Lemma

Let S ⊆ Σ≤k and t ∈ Σ≤k . If Vt ∈ L(U ∪ VS), then t ∈ S.

Example

Let Σ = {0, 1} and S = {01}. Then

U = {U1,U
′
ε,U

′
0,U

′
1} = {(0, 0, 0, 0, 1,−1, 0), (1, 0, 0,−1,−1,−1,−1),

(0, 1, 0,−1,−1, 0, 0), (0, 0, 1, 0, 0,−1,−1)},
VS = {V01} = {(0, 0, 0, 0, 1, 0, 0)},
V10 = (0, 0, 0, 0, 0, 1, 0) ∈ L(U ∪ VS).
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Vectors

Vectors

Lemma

If S ⊆ Σ≤k is S-minimal, then U ∪ VS is linearly independent.

Proof.

Let U ∪ VS be linearly dependent. The set U is linearly independent,
so there exists s ∈ S such that Vs ∈ L(U ∪ VR), where R = S r {s}.
Then s ∈ R, so R = S and S is not S-minimal.
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Number of equivalence classes

Number of equivalence classes

For a finite set A ⊂ Σ∗, the number of (k, S)-equivalence classes of words
in A is denoted by neck,S(A).

Lemma

Let S ⊆ Σ≤k and S = Σ≤k .
Then neck,S(Σ≤n) = Θ(nm), where m = #Σk −#Σk−1 + 1.

Lemma

Let S ⊆ Σ≤k and let R be S-minimal.
Then neck,S(Σ≤n) = O(n#R).

Lemma

Let S ⊆ Σ≤k and m = rank(U ∪ VS)− rank(U).
Then neck,S(Σ≤n) = Ω(nm).
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Number of equivalence classes

Number of equivalence classes

Theorem

Let S ⊆ Σ≤k and let R be S-minimal. Then

#R = rank(U ∪ VS)− rank(U) and neck,S(Σ≤n) = Θ(n#R).

Corollary

Let S1, S2 ⊆ Σ≤k . If S1 = S2, then rank(U ∪ VS1) = rank(U ∪ VS2).
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Main results

Which sets S are S-minimal?

Theorem

A set S ⊆ Σ≤k is S-minimal if and only if U ∪ VS is linearly independent.

Proof.

If S is S-minimal, then the claim follows from an earlier lemma.
If S is not S-minimal, then it has a proper subset R such that R = S .
Then rank(U ∪ VS) = rank(U ∪ VR) ≤ #(U ∪ VR) < #(U ∪ VS),
so U ∪ VS cannot be linearly independent.
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Main results

What is the set S?

Theorem

Let S ⊆ Σ≤k and t ∈ Σ≤k . Then t ∈ S if and only if Vt ∈ L(U ∪ VS).

Proof.

If Vt ∈ L(U ∪ VS), then the claim follows from an earlier lemma.
If Vt /∈ L(U ∪ VS), then rank(U ∪ VS∪{t}) > rank(U ∪ VS).

Then S ∪ {t} 6= S , so t /∈ S .
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Main results

When is S1 = S2?

Corollary

Let S1, S2 ⊆ Σ≤k . Then S1 = S2 if and only if L(U ∪ VS1) = L(U ∪ VS2).

Corollary

Let S ⊆ Σ≤k . Then S = Σ≤k if and only if rank(U ∪ VS) = #Σ≤k .
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Main results

Thank You!

A. Saarela (Univ. Turku) 21 / 21


	Background
	Equivalence relations
	Vectors
	Number of equivalence classes
	Main results

