Equivalence Relations Defined by Numbers of Occurrences of Factors

Aleksi Saarela

Department of Mathematics and Statistics and FUNDIM Centre, University of Turku, Finland

> RuFiDiM 2014 Petrozavodsk 17.9.2014

(日) (周) (三) (三)

1 Background

2 Equivalence relations

3 Vectors

4 Number of equivalence classes

5 Main results

3

(日) (周) (三) (三)

Notation

- |u|_x is the number of occurrences of x as a factor in u
 |u|_ε = |u| + 1
- u being a proper prefix of v is denoted by u < v
- u being a proper suffix of v is denoted by v > u
- $\operatorname{pref}_n(u)$ is the prefix of u of length n (or $\operatorname{pref}_n(u) = u$ if |u| < n)
- $\operatorname{suff}_n(u)$ is the suffix of u of length n (or $\operatorname{suff}_n(u) = u$ if |u| < n)
- $[P] = \begin{cases} 1 & \text{if } P \text{ is true} \\ 0 & \text{if } P \text{ is false} \end{cases}$
- $\mathcal{L}(V)$ is the vector space generated by a set of vectors V
- $\operatorname{rank}(V) = \dim(\mathcal{L}(V))$

(本部) (本語) (本語) (二語)

Motivating question

Let $k \ge 1$ and $S \subseteq \Sigma^{\le k}$. If we know $|u|_s$ for all $s \in S$, $\operatorname{pref}_{k-1}(u)$, and $\operatorname{suff}_{k-1}(u)$, what can we say about u?

Example

Suppose that we do not know the word $u \in \{0,1\}^*$, but we know $|u|_{\varepsilon}$ and $|u|_0$. Then we can of course deduce the number of 1's: $|u|_1 = |u|_{\varepsilon} - 1 - |u|_0$.

Example

Suppose that we do not know the word $u \in \{0,1\}^+$, but we know $\operatorname{pref}_1(u)$, $\operatorname{suff}_1(u)$, and $|u|_{01}$. Then we can deduce the number of 10's: $|u|_{10} = |u|_{01} + \operatorname{pref}_1(u) - \operatorname{suff}_1(u)$.

イロト イ団ト イヨト イヨト 三日

k-abelian equivalence

Words $u, v \in \Sigma^*$ are *k*-abelian equivalent if

•
$$|u|_s = |v|_s$$
 for all $s \in S$,

•
$$\operatorname{pref}_{k-1}(u) = \operatorname{pref}_{k-1}(v)$$
, and

•
$$\operatorname{suff}_{k-1}(u) = \operatorname{suff}_{k-1}(v)$$
,

where the set S can be any of the following:

•
$$\Sigma^{\leq k}$$
,
• Σ^{k} ,
• $\Sigma^{\leq k} \smallsetminus 0\Sigma^* \smallsetminus \Sigma^*0 \ (0 \in \Sigma).$

Can we characterize all possible sets S?

· · · · · · · · ·

Background

3 Vectors

4 Number of equivalence classes

5 Main results

э

イロト イヨト イヨト イヨト

(k, S)-equivalence

For an alphabet Σ , positive integer k, and set $S \subseteq \Sigma^{\leq k}$, words $u, v \in \Sigma^*$ are called (k, S)-equivalent if

•
$$|u|_s = |v|_s$$
 for all $s \in S$,

•
$$\operatorname{pref}_{k-1}(u) = \operatorname{pref}_{k-1}(v)$$
, and

• $\operatorname{suff}_{k-1}(u) = \operatorname{suff}_{k-1}(v)$

Example

- $S = \Sigma$: abelian equivalence
- $S = \Sigma^k$: k-abelian equivalence
- $\Sigma = \{0, 1\}$, $S = \{0\}$: equivalence classes are $1^*, 1^*01^*, 1^*01^*01^*, 1^*01^*01^*01^*, \dots$

- 4 伺 ト 4 ヨ ト 4 ヨ ト

Maximal and minimal sets

The set \overline{S} is defined to consist of all words $t \in \Sigma^{\leq k}$ such that $|u|_t$ depends only on the (k, S)-equivalence class of u.

- The set \overline{S} does not depend on k (but it depends on Σ).
- For S₁, S₂ ⊆ Σ^{≤k}, (k, S₁)-equivalence and (k, S₂)-equivalence are the same if and only if S
 ₁ = S
 ₂.
- A set R is S-minimal if $\overline{R} = \overline{S}$ and $\overline{Q} \neq \overline{S}$ for all $Q \subsetneq R$.
 - Every set S has an S-minimal subset, but an S-minimal set need not be a subset of S.
 - All S-minimal sets are of the same size (this is not trivial).

Example

Let $\Sigma = \{0, 1\}.$

•
$$\overline{\Sigma} = \{\varepsilon, 0, 1\}$$
 and $\overline{\{01\}} = \{01, 10\}.$

• The Σ -minimal sets are $\{\varepsilon, 0\}, \{\varepsilon, 1\}, \Sigma$.

Questions

- Given S, how big are S-minimal sets?
- Which sets S are S-minimal?
- Given k and S, for which $t \in \Sigma^{\leq k}$ can we deduce $|u|_t$ based on the (k, S)-equivalence class of u? In other words, what is the set \overline{S} ?
- For which S_1, S_2 is (k, S_1) -equivalence the same as (k, S_2) -equivalence, or in other words, $\overline{S}_1 = \overline{S}_2$.
- For which S is (k, S)-equivalence the same as k-abelian equivalence, or in other words, S = Σ^{≤k}.

通 ト イヨ ト イヨト

1 Background

2 Equivalence relations

3 Vectors

4 Number of equivalence classes

5 Main results

3

<ロ> (日) (日) (日) (日) (日)

Vectors

Vectors

Let t_1, \ldots, t_M be the words in $\Sigma^{\leq k}$ in radix order. The *extended Parikh vector* of a word $u \in \Sigma^*$ is $P_u = (|u|_{t_1}, \ldots, |u|_{t_M})$. We define families of vectors:

$$\begin{array}{ll} U_t = (a_1, \ldots, a_M), & \text{where } a_i = [t_i > t] - [t < t_i] & \text{and } t \in \Sigma^{k-1}, \\ U'_t = (a_1, \ldots, a_M), & \text{where } a_i = [t_i = t] - [t < t_i \in \Sigma^k] & \text{and } t \in \Sigma^{\leq k-1}, \\ V_t = (a_1, \ldots, a_M), & \text{where } a_i = [t_i = t] & \text{and } t \in \Sigma^{\leq k}. \end{array}$$

Lemma

Let $u \in \Sigma^*$. Then

$$U_t \cdot P_u = [u > t] - [t < u]$$
$$U'_t \cdot P_u = |\operatorname{suff}_{k-1}(u)|_t$$
$$V_t \cdot P_u = |u|_t$$

for
$$t \in \Sigma^{k-1}$$
,
for $t \in \Sigma^{\leq k-1}$,
for $t \in \Sigma^{\leq k}$.

ヘロン ヘロン ヘルン

Vectors

Vectors

Let
$$\mathcal{U} = \left\{ U_t \mid t \in \Sigma^{k-1}, t \neq 0^{k-1} \right\} \cup \left\{ U'_t \mid t \in \Sigma^{\leq k-1} \right\}$$
 and $\mathcal{V}_S = \{ V_s \mid s \in S \}$ for $S \subseteq \Sigma^{\leq k}$.

Lemma

The set \mathcal{U} is linearly independent.

Lemma

Let
$$S \subseteq \Sigma^{\leq k}$$
 and $t \in \Sigma^{\leq k}$. If $V_t \in \mathcal{L}(\mathcal{U} \cup \mathcal{V}_S)$, then $t \in \overline{S}$.

Example

Let $\Sigma = \{0, 1\}$ and $S = \{01\}$. Then

$$\begin{split} \mathcal{U} &= \{U_1, U_{\varepsilon}', U_0', U_1'\} = \{(0, 0, 0, 0, 1, -1, 0), (1, 0, 0, -1, -1, -1, -1), \\ &\quad (0, 1, 0, -1, -1, 0, 0), (0, 0, 1, 0, 0, -1, -1)\}, \\ \mathcal{V}_S &= \{V_{01}\} = \{(0, 0, 0, 0, 1, 0, 0)\}, \\ V_{10} &= (0, 0, 0, 0, 0, 1, 0) \in \mathcal{L}(\mathcal{U} \cup \mathcal{V}_S). \end{split}$$

Vectors

Lemma

If $S \subseteq \Sigma^{\leq k}$ is S-minimal, then $\mathcal{U} \cup \mathcal{V}_S$ is linearly independent.

Proof.

Let $\mathcal{U} \cup \mathcal{V}_S$ be linearly dependent. The set \mathcal{U} is linearly independent, so there exists $s \in S$ such that $V_s \in \mathcal{L}(\mathcal{U} \cup \mathcal{V}_R)$, where $R = S \setminus \{s\}$. Then $s \in \overline{R}$, so $\overline{R} = \overline{S}$ and S is not S-minimal.

- 4 同 6 4 日 6 4 日 6

1 Background

- 2 Equivalence relations
- 3 Vectors
- 4 Number of equivalence classes

5 Main results

э

<ロ> (日) (日) (日) (日) (日)

Number of equivalence classes

For a finite set $A \subset \Sigma^*$, the number of (k, S)-equivalence classes of words in A is denoted by $\operatorname{nec}_{k,S}(A)$.

Lemma

Let
$$S \subseteq \Sigma^{\leq k}$$
 and $\overline{S} = \Sigma^{\leq k}$.
Then $\operatorname{nec}_{k,S}(\Sigma^{\leq n}) = \Theta(n^m)$, where $m = \#\Sigma^k - \#\Sigma^{k-1} + 1$

Lemma

Let
$$S \subseteq \Sigma^{\leq k}$$
 and let R be S -minimal.
Then $\operatorname{nec}_{k,S}(\Sigma^{\leq n}) = O(n^{\#R})$.

Lemma

Let
$$S \subseteq \Sigma^{\leq k}$$
 and $m = \operatorname{rank}(\mathcal{U} \cup \mathcal{V}_{\overline{S}}) - \operatorname{rank}(\mathcal{U})$.
Then $\operatorname{nec}_{k,S}(\Sigma^{\leq n}) = \Omega(n^m)$.

3

イロト 不得下 イヨト イヨト

Number of equivalence classes

Theorem

Let $S \subseteq \Sigma^{\leq k}$ and let R be S-minimal. Then

$$\#R = \operatorname{rank}(\mathcal{U} \cup \mathcal{V}_S) - \operatorname{rank}(\mathcal{U})$$
 and $\operatorname{nec}_{k,S}(\Sigma^{\leq n}) = \Theta(n^{\#R}).$

Corollary

Let
$$S_1, S_2 \subseteq \Sigma^{\leq k}$$
. If $\overline{S}_1 = \overline{S}_2$, then $\operatorname{rank}(\mathcal{U} \cup \mathcal{V}_{S_1}) = \operatorname{rank}(\mathcal{U} \cup \mathcal{V}_{S_2})$.

3

・ロト ・聞ト ・ヨト ・ヨト

1 Background

- 2 Equivalence relations
- 3 Vectors
- 4 Number of equivalence classes

3

<ロ> (日) (日) (日) (日) (日)

Which sets S are S-minimal?

Theorem

A set $S \subseteq \Sigma^{\leq k}$ is S-minimal if and only if $\mathcal{U} \cup \mathcal{V}_S$ is linearly independent.

Proof.

If S is S-minimal, then the claim follows from an earlier lemma. If S is not S-minimal, then it has a proper subset R such that $\overline{R} = \overline{S}$. Then $\operatorname{rank}(\mathcal{U} \cup \mathcal{V}_S) = \operatorname{rank}(\mathcal{U} \cup \mathcal{V}_R) \le \#(\mathcal{U} \cup \mathcal{V}_R) < \#(\mathcal{U} \cup \mathcal{V}_S)$, so $\mathcal{U} \cup \mathcal{V}_S$ cannot be linearly independent.

イロト イヨト イヨト

What is the set \overline{S} ?

Theorem

Let $S \subseteq \Sigma^{\leq k}$ and $t \in \Sigma^{\leq k}$. Then $t \in \overline{S}$ if and only if $V_t \in \mathcal{L}(\mathcal{U} \cup \mathcal{V}_S)$.

Proof.

If $V_t \in \mathcal{L}(\mathcal{U} \cup \mathcal{V}_S)$, then the claim follows from an earlier lemma. If $V_t \notin \mathcal{L}(\mathcal{U} \cup \mathcal{V}_S)$, then $\operatorname{rank}(\mathcal{U} \cup \mathcal{V}_{S \cup \{t\}}) > \operatorname{rank}(\mathcal{U} \cup \mathcal{V}_S)$. Then $\overline{S \cup \{t\}} \neq \overline{S}$, so $t \notin \overline{S}$.

イロン イ団と イヨン ト

When is $\overline{S}_1 = \overline{S}_2$?

Corollary

Let $S_1, S_2 \subseteq \Sigma^{\leq k}$. Then $\overline{S}_1 = \overline{S}_2$ if and only if $\mathcal{L}(\mathcal{U} \cup \mathcal{V}_{S_1}) = \mathcal{L}(\mathcal{U} \cup \mathcal{V}_{S_2})$.

Corollary

Let $S \subseteq \Sigma^{\leq k}$. Then $\overline{S} = \Sigma^{\leq k}$ if and only if $\operatorname{rank}(\mathcal{U} \cup \mathcal{V}_S) = \#\Sigma^{\leq k}$.

イロト 不得下 イヨト イヨト 二日

Thank You!

. Saarela (Univ. Turku)

21 / 21

æ

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト