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What is “the multiplicative complexity”?

We study the multiplicative complexity of Boolean functions.
What is this?

The multiplicative complexity µ(f ) of a Boolean function
f (x1, . . . , xn) is the minimal number of &-gates in circuits over the
basis {x&y , x ⊕ y , 1} which compute the function f .
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Explanations

Consider the major function f (x1, x2, x3) = x1x2 ⊕ x1x3 ⊕ x2x3.
We can construct the following circuit by this expression:
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We can conclude that µ(f ) ≤ 3.
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Explanations

We can rewrite the major function f (x1, x2, x3) by the expression
x1(x2 ⊕ x3)⊕ x2x3 and construct the circuit:
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Therefore, µ(f ) ≤ 2.
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Explanations

At last, we can represent the major function f (x1, x2, x3) in the
form (x1 ⊕ x2)(x1 ⊕ x3)⊕ x1 and construct the circuit:
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Thus, µ(f ) ≤ 1, and it can be proved that µ(f ) = 1.
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Motivations

Studying complexity of circuits over bases with gates of zero
weights

A.A. Markov (1957 y.) studied the basis {x&y , x ∨ y , x̄}
where &-gates and ∨-gates have the zero weights.

E.I. Nechiporuk (1962 y.) studied different bases with gates
of zero weights, in particular, the basis {x&y , x ⊕ y , 1} where
⊕-gates have the zero weights.



The multiplicative complexity Basis concepts Results

Motivations

Finding relations between different types of circuit complexity
for Boolean functions

A. Kojevnikov, A.S. Kulikov (2012 y.) obtained a relation
between the multiplicative complexity of some Boolean
functions and lower bounds of circuits over the basis of all
Boolean functions of two variables which compute these
functions.

I.S. Sergeev (2013 y., by results of E.I. Nechiporuk) found the
relation between the multiplicative complexity and the additive
complexity, namely:
If there exists a circuit over the basis {&,⊕, 1} with M,
M = Ω(n), &-gates which computes a Boolean function f ;
then there exists a circuit over the same basis with
(1/2 + o(1))M(M + 2n)/ log2 M gates which computes the
function f .
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Motivations

More wide problems: studying number of multiplications to
compute a function or a set of functions over arithmetic bases

For example, the problem of mumber of arithmetic operations
for matrix multiplication:
V. Strassen (1970 y.) showed how to compute the product of
two matrixes of the size 2× 2 by 7 multiplications.
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Boolean functions and polynomials

A Boolean function f of n variables is a mapping Bn → B where
B = {0, 1}, n = 0, 1, . . . .

Each Boolean function can be uniquely represented by its
Zhegalkin polynomial, namely:

f (x1, . . . , xn) =
⊕

α∈Bn:cf (α)=1

Kα

where cf (α) =
⊕
β≤α

f (β) ∈ B , Kα =
∏
ai=1

xi , α = (a1, . . . , an) ∈ Bn,

and K(0,...,0) = 1.

The degree deg(f ) of a Boolean function f :
deg(f ) = max

α∈Bn:cf (α)=1
|α|.
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Boolean functions and circuits

A circuit over the basis {x&y , x ⊕ y , 1} is a directed acyclic graph
with nodes of in-degree 0 or 2.

Nodes of in-degree 0 are marked by a variable of the set
{x1, . . . , xn} or by the constant 1; they are called inputs.

Nodes of in-degree 2 are marked by & or by ⊕; they are called
gates.

Denote the number of &-gates in a circuit S by µ(S).

For each node, a certain Boolean function is naturally computed in
this node.

We say that a circuit S computes a Boolean function f , iff there
exists a node in the circuit S such that f is computed in this node.



The multiplicative complexity Basis concepts Results

Quadratic and multi-affine functions

A Boolean function f is quadratic, iff deg(f ) = 2.

A Boolean function f is affine, iff deg(f ) ≤ 1.

A Boolean function f is multi-affine, iff there exist affine functions
g1, . . . , gl such that

f =
l∏

i=1

gi .
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Some known results

C.P. Schnorr (1989 y.) showed that µ(f ) ≥ deg(f )− 1 for an
arbitrary Boolean function f (x1, . . . , xn).

J. Boyar, R. Peralta, D. Pochuev (2000 y.) proved that
µ(f ) ≤ n + O(

√
n) for an arbitrary symmetric Boolean

function f (x1, . . . , xn).

T.I. Krasnova (2012 y.) obtained the value of µ(f ) where
f (x1, . . . , xn) is the Boolean function with the threshold 2.
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Quadratic functions

C.P. Schnorr (1989 y.), R. Mirwald (1992 y.) proved that if
q(x1, . . . , xn) is a quadratic Boolean function; then µ(q) ≤ bn/2c.

We obtain further results and prove

Theorem. If a Boolean function f (x1, . . . , xn) can be represented
in the form x1 . . . xn ⊕ q(x1, . . . , xn) where q is a quadratic
function; then µ(f ) = n − 1 (n ≥ 3).
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Multi-affine functions

C.P. Schnorr (1989 y.) showed that if f (x1, . . . , xn) is a multi-affine
Boolean function; then µ(f ) = deg(f )− 1.

We obtain further results and prove

Theorem. If a Boolean function f (x1, . . . , xn) can be represented
in the form f1(x1 . . . xn)⊕ f2(x1, . . . , xn) where f1, f2 are multi-affine
Boolean functions; then
1) µ(f ) = n − 2 in the case of deg(f1) = deg(f2) = n;
2) µ(f ) = n − 1 in the case of deg(f1) = n, deg(f2) < n;
3) µ(f ) ≤ n − 1 in the case of deg(f1) < n, deg(f2) < n.
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Technique of proofs

We use an algebraic technique and the following result

Theorem. There exists a circuit over the basis {x&y , x ⊕ y , 1}
which computes both functions x1 . . . xn and x̄1 . . . x̄n, and has
(n − 1) &-gates (n ≥ 1).
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Methods (algorithms) to construct circuits

Let f (x1, . . . , xn) be an arbitrary Boolean function:

J. Boyar, R. Peralta, D. Pochuev (2000 y.) showed how to
construct a circuit S ′f such that S ′f computes f , and
µ(S ′f ) ≤ 2 · 2n/2 − O(n) holds, if n is even, and
µ(S ′f ) ≤ (3/

√
2) · 2n/2 − O(n) holds, if n is odd.

E.I. Nechiporuk (1962 y.) showed how to construct a circuit S ′′f
such that S ′′f computes f , and µ(S ′′f ) ≤ 2n/2 + o(2n/2). But his
method is very complicated that he said himself in his paper.

We propose a quite simple method to construct a circuit Sf such
that Sf computes f , and
µ(Sf ) ≤ (3/2) · 2n/2 + o(2n/2) holds, if n is even, and
µ(Sf ) ≤

√
2 · 2n/2 + o(2n/2) holds, if n is odd.
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Thank you for attention!
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