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Palindromes and Squares

A palindrome is a word which is equal to its reversal, like

a ai ib bo oh hp
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Palindromes are one of the most simple and common
repetitions in words, along with squares, which are words
consisting of two equal parts, like

c co ou us s
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Palindromes and Squares

A palindrome is a word which is equal to its reversal, like

a ai ib bo oh hp

Palindromes are one of the most simple and common
repetitions in words, along with squares, which are words
consisting of two equal parts, like

c co ou us s

Palindromes are in some sense counterparts of squares:
in a sequence of states of some finite-state machine, a
square indicates repeated behaviour, while a palindrome
shows that the machine reversed back to front;
among the basic data structures, palindromes correspond
to stacks, while squares correspond to queues; as a
consequence, the language of all palindromes is
context-free, while the language of all squares is not.
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Counting Factors

We consider finite words over finite (k-letter) alphabets; we
write w = w [1..n] for a word of length n; words of the form
w [i ..j] are factors of w .

A lot of results on the possible number of distinct palindromic
factors and square factors in a word:

max number of palindromes is n (Droubay, Pirillo, 2001);

max number of squares is between n − O(
√

n) and
2n − O(log n) (Ilie, 2007);

min number of palindromes is k for k ≥ 3 and 8 for k = 2;

min number of squares is 0 for k ≥ 3 (Thue, 1912) and 3
for k = 2 (Fraenkel, Simpson, 1995).
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Counting Factors

We consider finite words over finite (k-letter) alphabets; we
write w = w [1..n] for a word of length n; words of the form
w [i ..j] are factors of w .

A lot of results on the possible number of distinct palindromic
factors and square factors in a word:

max number of palindromes is n (Droubay, Pirillo, 2001);

max number of squares is between n − O(
√

n) and
2n − O(log n) (Ilie, 2007);

min number of palindromes is k for k ≥ 3 and 8 for k = 2;

min number of squares is 0 for k ≥ 3 (Thue, 1912) and 3
for k = 2 (Fraenkel, Simpson, 1995).

Problem

Find the expected number of distinct palindromic factors in a
random k-ary word.
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Simple Answer

Theorem

The expected number of distinct palindromic factors in a
random word of length n over a fixed nontrivial alphabet is
Θ(

√
n).
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Simple Answer

Theorem

The expected number of distinct palindromic factors in a
random word of length n over a fixed nontrivial alphabet is
Θ(

√
n).

As a by-product of the technique used, we also get

Theorem (seems to be known before)

The expected number of distinct square factors in a random
word of length n over a fixed nontrivial alphabet is Θ(

√
n).
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Some Explanations

Let k (alphabetic size) be fixed; E(n) is the expectation studied.
The expected number Em(n) of distinct palindromic factors
of length m in a random word of length n is not greater than

⋆ the total number of k-ary palindromes of length m;

⋆ the expected number of occurrences of palindromic factors
of length m in a random word of length n.
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Some Explanations

Let k (alphabetic size) be fixed; E(n) is the expectation studied.
The expected number Em(n) of distinct palindromic factors
of length m in a random word of length n is not greater than

⋆ the total number of k-ary palindromes of length m; blue

⋆ the expected number of occurrences of palindromic factors
of length m in a random word of length n. red

Length 2m

mpe

km

n−2m+1
km

Length 2m+1

mpo

km+1

n−2m
km
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Some Explanations (Ctd)

Length 2m

mpe

km

n−2m+1
km

Length 2m+1

mpo

km+1

n−2m
km

E(n) =
∑

Em(n) is bounded by the total area under the
graphs;
since all graphs are those of exponents, the area under
each pair of graphs equals to the height of the highest
point up to a constant multiple; thus, E(n) = O(

√
n);

some additional considerations show that the upper bound
is sharp up to a constant multiple, implying E(n) = Θ(

√
n).
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Dependence on k

Refinement of the obtained result: consider E(n, k) instead of
E(n) and find the dependence of the constant in the Θ(

√
n)

expression on k .
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Dependence on k

Refinement of the obtained result: consider E(n, k) instead of
E(n) and find the dependence of the constant in the Θ(

√
n)

expression on k .

intuition: more letters – more luck to get a palindrome;
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Dependence on k

Refinement of the obtained result: consider E(n, k) instead of
E(n) and find the dependence of the constant in the Θ(

√
n)

expression on k .

intuition: more letters – more luck to get a palindrome;
broken by the picture: the peak on the right graph is
≈

√
kn;

Length 2m

mpe

km

n−2m+1
km

Length 2m+1

mpo

km+1

n−2m
km
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Dependence on k

Refinement of the obtained result: consider E(n, k) instead of
E(n) and find the dependence of the constant in the Θ(

√
n)

expression on k .

intuition: more letters – more luck to get a palindrome;
broken by the picture: the peak on the right graph is
≈

√
kn;

is E(n, k) = Θ(
√

kn)? Not so easy.

M. V. Rubinchik, A. M. Shur Number of Distinct Subpalindromes, RuFiDiM 2014



Dependence on k (Ctd)
Length 2m

mpe

km

n−2m+1
km

Length 2m+1

mpo

km+1

n−2m
km

If po is an integer , we get
√

kn ;
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Dependence on k (Ctd)
Length 2m

mpe

km

n−2m+1
km

Length 2m+1

mpo

km+1

n−2m
km

If po is an integer [half-integer], we get
√

kn [2
√

n];
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√
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Dependence on k (Ctd)
Length 2m

mpe

km

n−2m+1
km

Length 2m+1

mpo

km+1

n−2m
km
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√
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If po is an integer [half-integer], we get
√

kn [2
√

n];

similar for pe, but the values are
√

k times less;
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◮ our bound oscillates between the orders of
√

n and
√

kn;
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Dependence on k (Ctd)
Length 2m

mpe

km

n−2m+1
km

Length 2m+1

mpo

km+1

n−2m
km

If po is an integer [half-integer], we get
√

kn [2
√

n];

similar for pe, but the values are
√

k times less;

note that pe ≈ po + 1/2;

◮ our bound oscillates between the orders of
√

n and
√

kn;

◮ more precisely, between (3 + 4
k−1)

√
n for n ≈ k2l and

(1 + 4
k−1)

√
kn for n ≈ k2l+1. What next?

M. V. Rubinchik, A. M. Shur Number of Distinct Subpalindromes, RuFiDiM 2014



Balls and Bins

Suppose (even if this is not true) that for a random k-ary word
of length n all events of type “to contain a given palindrome of
length m” are independent and equiprobable.
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Balls and Bins

Suppose (even if this is not true) that for a random k-ary word
of length n all events of type “to contain a given palindrome of
length m” are independent and equiprobable.

Balls: palindromic factors of length m of our random word

w [i1..j1] w [i2..j2] w [i3..j3] w [i4..j4] w [i5..j5] · · · w [is..js]

Bins: distinct palindromes of length m

aaaaa aabaa ababa · · · bbbbb
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Balls and Bins

Suppose (even if this is not true) that for a random k-ary word
of length n all events of type “to contain a given palindrome of
length m” are independent and equiprobable.

Balls: palindromic factors of length m of our random word

w [i1..j1] w [i2..j2] w [i3..j3] w [i4..j4] w [i5..j5] · · · w [is..js]

Bins: distinct palindromes of length m

aaaaa aabaa ababa · · · bbbbb

Folklore Proposition

For N bins and CN balls, the expected number of empty bins is
Ne−C.
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Testing The Model

Theorem (or not?)

The function E(n, k) oscillates between its maximums

E(n, k) =
(

1 − 1
e + 4

k−1 − k+1
2(k3

−1)
− O

(

1
kek

))√
kn + O(

√

k log n
√

n
)

for po nearly integer and minimums

E(n, k) =
(

3 − 1
e + 4

k−1 − k2+1
2(k3

−1)
− O

(

1
ek

))√
n + O(

√

k log n
√

n
)

for pe nearly integer.
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E(n, k) =
(

3 − 1
e + 4

k−1 − k2+1
2(k3

−1)
− O

(

1
ek

))√
n + O(

√

k log n
√

n
)

for pe nearly integer.

Experimental data for C(k) = E(n, k)/
√

n:

k C(k) for pe ≈ integer C(k) for po ≈ integer
by Thm experimental by Thm experimental

2 6.140 6.129 for N = 216 6.152 6.164 for N = 217

3 4.390 4.393 for N = 312 4.397 4.408 for N = 313

10 3.026 3.023 for N = 106 3.387 3.388 for N = 107

50 2.704 2.702 for N = 504 5.046 5.038 for N = 503
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Analysis

Bad news: our assumption was totally wrong, because the
events “to contain a given palindrome of length m” are
dependent and have different probabilities.

aaa · · · aaa is less probable than baa · · · aab,

and each of them “suppresses” the other.
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Why the predictions with balls and bins were so good?
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Analysis

Bad news: our assumption was totally wrong, because the
events “to contain a given palindrome of length m” are
dependent and have different probabilities.

aaa · · · aaa is less probable than baa · · · aab,

and each of them “suppresses” the other.

Why the predictions with balls and bins were so good?

Good news: the probabilities for all palindromes of length m are
quite close; moreover, for a (k−2

k )th share of them the
probability is exactly the same; the dependencies are also quite
weak.

Still, this does not allow us to prove the theorem by the
balls-and-bins method.
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Further Analysis

A correct proof:
find the probability that a random word contains a “typical”
palindrome and estimate the probabilities for “rare”
palindromes
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Further Analysis

A correct proof:
find the probability that a random word contains a “typical”
palindrome and estimate the probabilities for “rare”
palindromes

possible, thanks to the method of Guibas, Odlyzko (1981);
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Further Analysis

A correct proof:
find the probability that a random word contains a “typical”
palindrome and estimate the probabilities for “rare”
palindromes

possible, thanks to the method of Guibas, Odlyzko (1981);

P(n, k , m) ≈ 1 −
(

k− 1
km−1 −

m−k−1
k2m−1

)n

(

1−m−1
km + (m−1)(m−2k)

k2m

)

·kn
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Further Analysis

A correct proof:
find the probability that a random word contains a “typical”
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possible, thanks to the method of Guibas, Odlyzko (1981);

P(n, k , m) ≈ 1 −
(

k− 1
km−1 −

m−k−1
k2m−1

)n

(

1−m−1
km + (m−1)(m−2k)

k2m

)

·kn

use the linearity of expectation to compute the expected
number of palindromes for m close to pe and po.
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Thank you for your
attention!

M. V. Rubinchik, A. M. Shur Number of Distinct Subpalindromes, RuFiDiM 2014


