Resolution complexity of perfect matching principles for sparse graphs

Dmitry Itsykson ${ }^{1}$, Mikhail Slabodkin ${ }^{2}$, and Dmitry Sokolov ${ }^{1}$

September 15, 2014

${ }^{1}$ Steklov Institute of Mathematics at St.Petersburg ${ }^{2}$ St. Petersburg Academic University

Introduction

We construct a family of graphs G_{n} with the resolution complexity of the perfect matching principle $2^{\Omega(n)}$.

- First exponential lower bound for PMP in the form $2^{\Omega(n)}$, where n is the number of variables.
- Matches upper bound.
- Implies several known lower bounds $\left(\mathrm{PHP}_{n, m}\right)$ and improves some of them $\left(\mathrm{PMP}_{K_{n}}\right)$.

Resolution proof system

Definition

$\varphi=C_{1} \wedge C_{2} \wedge \ldots \wedge C_{k}$ - unsatisfiable CNF.
Resolution proof: $C_{i_{1}}, C_{i_{2}}, \ldots, C_{i_{l}}$
(1) $C_{i_{l}}=\perp$.
(2) Every $C_{i_{j}}$ is either contained in φ or is obtained using resolution rule:

$$
\frac{x \vee A \quad}{} \begin{array}{ll}
A \vee B & \neg x \vee B \\
\hline
\end{array}
$$

Definition

A family of unsatisfiable formulas F_{n} is weaker than H_{n} if for some m for all clauses $C \in H_{n}, C$ is an implication of $\bigwedge_{i=1}^{m} C_{i}$, where C_{i} is a clauses of F_{n}.

Pigeonhole principle

$\mathbf{P H P}_{n}^{m}: m$ pigeons, n holes. Variables $\left\{p_{i, j}\right\} i=1 . . m, j=1 . . n$.
PHP_{n}^{m} is a conjunction of statements:

- Every pigeon is contained in at least one hole.

$$
\bigwedge_{i}\left(p_{i, 1} \vee p_{i, 2} \vee \ldots \vee p_{i, m}\right)
$$

- Every hole contains at most one pigeon.

$$
\bigwedge_{j}\left(\neg p_{1, j} \vee \neg p_{2, j}\right) \wedge\left(\neg p_{1, j} \vee \neg p_{3, j}\right) \wedge \ldots \wedge\left(\neg p_{m-1, j} \vee \neg p_{m, j}\right)
$$

- Haken, 1985: $2^{\Omega(n)}$ for $m=n+1$.
- Razborov, 2001: $2^{\Omega\left(n^{\frac{1}{3}}\right)}$ for any $m>n$.

G-PHP n_{n}^{m} : restriction on a particular bipartite graph G.

- Ben-Sasson, Wigderson, 2001: $2^{\Omega(n)}$ for $m=O(n)$ and G is a bipartite constant degree expander.

FPHP $_{n}^{m}$ and Perfect matching

FPHP ${ }_{n}^{m}$: weakening of PHP_{n}^{m},

- Every pigeon is contained in at most one hole.
- Razborov, 2001: lower bound $2^{\Omega\left(\frac{n}{(\log m)^{2}}\right)}$, which implies $2^{\Omega\left(n^{1 / 3}\right)}$.
$\mathbf{P M P}_{G}$: for some graph $G(V, E)$ a formula PMP_{G} encodes that G has a perfect matching. We assign a binary variable x_{e} for all $e \in E . \mathrm{PMP}_{G}$ is the conjunction of the conditions:
- For all $v \in V$ at least one edge that incident to v has value 1 :

$$
\bigvee_{(v, u) \in E} x_{(v, u)} .
$$

- For any pair of edges e_{1}, e_{2} incident to v at most one of them takes value $1, \neg x_{e_{1}} \vee \neg x_{e_{2}}$.
- Razborov, 2004: resolution complexity is at least $2^{\frac{\delta(G)}{\log ^{2} n}}$, where $\delta(G)$ is the minimal degree and n is the number of vertices.

Results

Theorem 1

$\exists D$ such that $\forall C \forall n \forall m \in[n+1, C n]$ there exists such bipartite $G(X, Y, E)$ such that

- G is explicit with maximum degree $\leq D,|X|=m,|Y|=n$.
- $P M P_{G_{n, m}}$ is unsatisfiable and refutable in at least $2^{\Omega(n)}$.

The number of variables in $\mathrm{PMP}_{G_{n, m}}$ is $O(n)$, therefore the lower bound matches (up to an application of a polynomial) the trivial upper bound $2^{O(n)}$ that holds for every formula with $O(n)$ variables.

Theorem 1 corollaries

- $\mathrm{PMP}_{G_{n, m}}$ is weaker than $G_{m, n}-\mathrm{PHP}_{n}^{m}, \mathrm{PHP}_{n}^{m}$ and FPHP_{n}^{m}, therefore Theorem 1 implies the same lower bound for $G_{m, n}-\mathrm{PHP}_{n}^{m}, \mathrm{PHP}_{n}^{m}$ and FPHP_{n}^{m}.
- The resolution complexity of $\mathrm{PMP}_{K_{m, n}}$ is $2^{\Omega(n)}$ where $m=O(n)$, which improves $2^{\Omega\left(n / \log ^{2} n\right)}$ (Razborov, 2004) and matches the upper bound $n 2^{n}$ that follows from the upper bound for PHP_{n}^{n+1}.
- The lower bound for the resolution complexity of $\mathrm{PMP}_{K_{n}}$ is $2^{\Omega(n)}$, which improves the lower bound $2^{\Omega\left(n / \log ^{2} n\right)}$ (Razborov, 2004).

Boundary expanders, refutation width

Definition

A bipartite graph G with parts X and Y is a (r, c)-boundary expander if $\forall A \subseteq X$, if $|A| \leq r$ then $|\delta(A)| \geq c|A|$, where $\delta(A)$ is the set of all vertices in Y that are connected with exactly one vertex in A;

Definition

Ben-Sasson, Wigderson, 2001:

- Width of the clause $w(C)$ is a number of literals in C.
- Width of the formula $w(\varphi)$ is a maximum width of the clause in it.
- $w(\varphi)$ is refutable in width w if there exists refutation with maximum width of the clauses w.

Theorem (Ben-Sasson, Wigderson)

For any k-CNF unsatisfiable formula φ with n variables the size of resolution proof is at least $2^{\Omega\left(\frac{(w-k)^{2}}{n}\right)}$, where w is a minimal width of a resolutional proof.

Width-size connection

Theorem 2

Let G be a (r, c)-boundary expander with parts X and Y such that there is a matching in G that covers all vertices from Y. Then the width of all resolution proofs of $P M P_{G}$ is at least $c r / 2$.

If degrees of all vertices are at most D, then the size of any resolution proof of $P H P_{G}$ is at least $2^{\Omega\left(\frac{(c r / 2-D)^{2}}{n}\right)}$, where n is the number of edges in G.

Lemma (Itsykson, Sokolov, 2011)

$\forall d \forall C$ and $\forall n$ and $m \in[n+1, C n]$ there is an explicit construction of $(r, 0.4 d)$-boundary expander $G(X, Y, E)$ with $|X|=m,|Y|=n$ and $r=\Omega(n)$ such that all degrees are bounded by d^{2}.

Now Theorem 2 and Lemma imply Theorem 1.

Generalization

- $G(V, E)$ is an undirected graph.
- h is a function $V \rightarrow \mathbb{N}$.
- variables $\left\{x_{e}\right\}$ correspond to E.
- $\Psi_{G}^{(h)}: \forall v \in V$ exactly $h(v)$ edges $e_{v, u}$ have value 1 .
- PMP_{G} is a particular case of $\Psi_{G}^{(h)}$ for $h \equiv 1$.

Theorem 3

$\forall d \in \mathbb{N} \forall n$ large enough and $\forall h: V \rightarrow\{1,2, \ldots, d\}$, where $|V|=n$, there exists such explicit $G(V, E)$, that $\Psi_{G}^{(h)}$ is unsatisfiable and the refutation size for $\Psi_{G}^{(h)}$ is at least $2^{\Omega(n)}$.

Theorem 2 corollaries

- Tseitin formulas. Let $G(V, E)$ be an arbitrary and $f: V \rightarrow\{0,1\}$; variables x_{e} of $T_{G}^{(f)}$ correspond to E.

$$
T_{G}^{(f)}=\bigwedge_{v \in V}\left(\bigoplus_{(v, u) \in E} x_{(v, u)}=f(v)\right)
$$

Let $h(v)=2-f(v)$. By Theorem 3 there exists G with n vertices of degree at most D such that the size of any resolution proof of the formula Ψ_{G}^{h} is at least $2^{\Omega(n)}$. Every condition of $T_{G}^{(h)}$ may be derived from a condition of Ψ_{G}^{h} in 2^{D} steps. Thus resolution complexity of $T_{G}^{(f)}$ is at least $2^{\Omega(n)}$ (—Urquhart, 1987).

- Complete graph. Let $h: V \rightarrow\{0,1, \ldots, d\}$ be defined on the graph K_{n} and let formula $\Psi_{K_{n}}^{(h)}$ be unsatisfiable. By Theorem 3 there exists G with n vertices of bounded degree that the size of any resolution proof of Ψ_{G}^{h} is at least $2^{\Omega(n)}$. Formula $\Psi_{G}^{(h)}$ can be obtained from $\Psi_{K_{n}}^{(h)}$ by substituting zeroes to some edges, therefore the size of the resolution proof of $\Psi_{K_{n}}^{(h)}$ is at least $2^{\Omega(n)}$.

