On connection between permutation complexity and factor complexity of infinite words

Alexandr Valyuzhenich

Novosibirsk State University, Novosibirsk, Russia

September 16, 2014

An infinite word over the alphabet Σ is a word of the form $\omega = \omega_1 \omega_2 \omega_3 \dots$, where $\omega_i \in \Sigma$.

Subword

A word *u* is called a *subword* or *factor* of length *n* of an infinite word ω if $u = \omega_{i+1} \dots \omega_{i+n}$ for some $i \ge 0$.

Factor complexity

The factor complexity C(n) of word ω is the number of its distinct subwords of length n.

□→ ▲ □ → ▲ □ →

Infinite permutations

Definition

An ordered triple $\delta = \langle \mathbb{N}, <_{\delta}, < \rangle$, where $<_{\delta}$ is some order on the set \mathbb{N} and < is the natural order on \mathbb{N} , is called an *infinite* permutation.

Thus, an infinite permutation is a linear order on the set of positive integer numbers.

Example

• Let
$$a_n = (-1/2)^n$$
. Then a_n defines the order $<_{\delta_1}$:
 $i <_{\delta_1} j \Leftrightarrow a_i < a_j$.

2 Let $b_n = 1000 + (-1/n)^n$. Then b_n defines the order $<_{\delta_2}$: $i <_{\delta_2} j \Leftrightarrow b_i < b_j$.

We have $\delta_1 = \delta_2$.

► < E > <</p>

Subpermutations

We will use the definition of a *finite permutation* x of length n as a linear order on $\{1, 2, ..., n\}$ which can be different from the natural one. In what follows we will write $x = x_1 x_2 ... x_n$, if $\{x_1, x_2, ..., x_n\}$ is a permutation of numbers from the set $\{1, 2, ..., n\}$ such that $x_i < x_j$ if and only if $i <_x j$.

Definition

 $\delta[m, m+n-1] = x_1 x_2 \dots x_n$ is the finite permutation of length n such that $x_i < x_j$ if and only if $m+i-1 <_{\delta} m+j-1$.

Definition

A finite permutation π is a *subpermutation* of length n of an infinite permutation δ if $\pi = \delta[i, i + n - 1]$ for some i > 0.

< □ > < □ > < □ >

Factor complexity of infinite permtutations

Definition

The factor complexity $\lambda(n)$ of an infinite permutation δ is the number of its distinct subpermutations of length n.

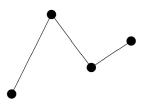
Example of subpermutation

Let $a_n = (-1/2)^n$. Then a_n defines the order $<_{\delta}$: $i <_{\delta} j \Leftrightarrow a_i < a_j$.

Permutation $\delta[1, 4]$

Since
$$a_1 = -1/2$$
, $a_2 = 1/4$, $a_3 = -1/8$ and $a_4 = 1/16$, we have $1 <_{\delta} 3 <_{\delta} 4 <_{\delta} 2$. So $\delta[1, 4] = 1423$.

Thus $\pi = 1423$ is a subpermutation of δ .



▶ < 돌 ▶ <</p>

Infinite permutations generated by words

For a word $\omega = \omega_1 \omega_2 \omega_3 \dots$ over the alphabet $\Sigma = \{0, 1\}$ we define the binary real number $R_{\omega}(i) = 0, \omega_i \omega_{i+1} \dots = \sum_{k \ge 0} \omega(i+k) 2^{-(k+1)}$. Let ω be a right infinite nonperiodic word over the alphabet Σ .

Definition

The *infinite permutation* generated by the word ω is the ordered triple $\delta_{\omega} = \langle \mathbb{N}, <_{\delta_{\omega}}, < \rangle$, where $<_{\delta_{\omega}}$ and < are linear orders on \mathbb{N} . The order $<_{\delta_{\omega}}$ is defined as follows: $i <_{\delta_{\omega}} j$ if and only if $R_{\omega}(i) < R_{\omega}(j)$.

Definition

The *permutation complexity* $\lambda(n)$ of the word ω is the number of distinct subpermutations of δ_{ω} of length *n*.

・ロト ・聞 ト ・ ヨト ・ ヨトー

Lemma (Makarov, 2006)

Let ω be a binary nonperoidic infinite word. Then $\lambda(n) \geq C(n-1)$.

Natural question: which words satisfy equality $\lambda(n) = C(n-1)$?

御 と く ヨ と く ヨ と …

Theorem (Morse and Hedlund, 1940)

Let ω be an infinite word. Then C(n) = const for any $n \ge N$ iff ω is a periodic word. If ω is a nonperiodic word, then $C(n) \ge n + 1$ for any n.

Definition

An infinite word ω is called a Sturmian word if C(n) = n + 1 for any n.

Theorem (Makarov, 2009)

Let ω be a Sturmian word. Then $\lambda(n) = n - 1$ for any n.

So, for the Sturmian words we have $\lambda(n) = C(n-1)$.

Thue-Morse word

Let $\varphi(0) = 01, \varphi(1) = 10$. We have $\varphi^2(0) = 0110, \varphi^3(0) = 01101001$. Then $\lim_{n \to \infty} \varphi^n(0) = 0110100110010110...$ is the Thue-Morse word.

Theorem (Brlek, A.de Luca and Varricchio, 1989)

Let ω be the Thue-Morse word. Then $C(n) = 2n + 2^{k+1} - 2$ for $3 \cdot 2^{k-1} + 1 \le n < 2^{k+1} + 1$ and $C(n) = 4n - 2^k - 4$ for $2^k + 1 \le n < 3 \cdot 2^{k+1} + 1$.

Theorem (Widmer, 2011)

Let ω be the Thue-Morse word. Then for any $n \ge 6$, where $n = 2^a + b$ with $0 < b \le 2^a$, we have $\lambda(n) = 2(2^{a+1} + b - 2)$.

▲圖▶ ▲ 国▶ ▲ 国▶ …

Definition

A word ω is called uniformly recurrent if for any n > 0 there exists a number $t_{\omega}(n)$ such that every $t_{\omega}(n)$ -length factor of ω contains all factors of ω of length n.

Theorem

Let ω be an infinite uniformly recurrent word. Then $\lambda(n) = C(n-1)$ if and only if ω is a Sturmian word.