On connection between permutation complexity and factor complexity of infinite words

Alexandr Valyuzhenich
Novosibirsk State University, Novosibirsk, Russia

September 16, 2014

Basic definitions

An infinite word over the alphabet Σ is a word of the form $\omega=\omega_{1} \omega_{2} \omega_{3} \ldots$, where $\omega_{i} \in \Sigma$.

Subword

A word u is called a subword or factor of length n of an infinite word ω if $u=\omega_{i+1} \ldots \omega_{i+n}$ for some $i \geq 0$.

Factor complexity

The factor complexity $C(n)$ of word ω is the number of its distinct subwords of length n.

Infinite permutations

Definition

An ordered triple $\delta=\left\langle\mathbb{N},<_{\delta},<\right\rangle$, where $<_{\delta}$ is some order on the set \mathbb{N} and $<$ is the natural order on \mathbb{N}, is called an infinite permutation.

Thus, an infinite permutation is a linear order on the set of positive integer numbers.

Example

(1) Let $a_{n}=(-1 / 2)^{n}$. Then a_{n} defines the order $<_{\delta_{1}}$: $i<_{\delta_{1}} j \Leftrightarrow a_{i}<a_{j}$.
(2) Let $b_{n}=1000+(-1 / n)^{n}$. Then b_{n} defines the order $<_{\delta_{2}}$: $i<_{\delta_{2}} j \Leftrightarrow b_{i}<b_{j}$.

We have $\delta_{1}=\delta_{2}$.

Subpermutations

We will use the definition of a finite permutation x of length n as a linear order on $\{1,2, \ldots, n\}$ which can be different from the natural one. In what follows we will write $x=x_{1} x_{2} \ldots x_{n}$, if $\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ is a permutation of numbers from the set $\{1,2, \ldots, n\}$ such that $x_{i}<x_{j}$ if and only if $i<_{x} j$.

Definition

$\delta[m, m+n-1]=x_{1} x_{2} \ldots x_{n}$ is the finite permutation of length n such that $x_{i}<x_{j}$ if and only if $m+i-1<\delta m+j-1$.

Definition

A finite permutation π is a subpermutation of length n of an infinite permutation δ if $\pi=\delta[i, i+n-1]$ for some $i>0$.

Factor complexity of infinite permtutations

Definition

The factor complexity $\lambda(n)$ of an infinite permutation δ is the number of its distinct subpermutations of length n.

Example of subpermutation

Let $a_{n}=(-1 / 2)^{n}$. Then a_{n} defines the order $<_{\delta}$:
$i<_{\delta} j \Leftrightarrow a_{i}<a_{j}$.

Permutation $\delta[1,4]$

Since $a_{1}=-1 / 2, a_{2}=1 / 4, a_{3}=-1 / 8$ and $a_{4}=1 / 16$, we have $1<_{\delta} 3<_{\delta} 4<_{\delta} 2$. So $\delta[1,4]=1423$.

Thus $\pi=1423$ is a subpermutation of δ.

Infinite permutations generated by words

For a word $\omega=\omega_{1} \omega_{2} \omega_{3} \ldots$ over the alphabet $\Sigma=\{0,1\}$ we define the binary real number
$R_{\omega}(i)=0, \omega_{i} \omega_{i+1} \ldots=\sum_{k \geq 0} \omega(i+k) 2^{-(k+1)}$. Let ω be a right infinite nonperiodic word over the alphabet Σ.

Definition

The infinite permutation generated by the word ω is the ordered triple $\delta_{\omega}=\left\langle\mathbb{N},<_{\delta_{\omega}},<\right\rangle$, where $<_{\delta_{\omega}}$ and $<$ are linear orders on \mathbb{N}. The order $<_{\delta_{\omega}}$ is defined as follows: $i<_{\delta_{\omega}} j$ if and only if $R_{\omega}(i)<R_{\omega}(j)$.

Definition

The permutation complexity $\lambda(n)$ of the word ω is the number of distinct subpermutations of δ_{ω} of length n.

Lemma (Makarov, 2006)

Let ω be a binary nonperoidic infinite word. Then $\lambda(n) \geq C(n-1)$.

Natural question: which words satisfy equality $\lambda(n)=C(n-1) ?$

Sturmian words

Theorem (Morse and Hedlund, 1940)

Let ω be an infinite word. Then $C(n)=$ const for any $n \geq N$ iff ω is a periodic word. If ω is a nonperiodic word, then $C(n) \geq n+1$ for any n.

Definition

An infinite word ω is called a Sturmian word if $C(n)=n+1$ for any n.

Theorem (Makarov, 2009)

Let ω be a Sturmian word. Then $\lambda(n)=n-1$ for any n.
So, for the Sturmian words we have $\lambda(n)=C(n-1)$.

Thue-Morse word

Let $\varphi(0)=01, \varphi(1)=10$. We have $\varphi^{2}(0)=0110$, $\varphi^{3}(0)=01101001$. Then $\lim _{n \rightarrow \infty} \varphi^{n}(0)=0110100110010110 \ldots$ is the Thue-Morse word.

Theorem (Brlek, A.de Luca and Varricchio, 1989)

Let ω be the Thue-Morse word. Then $C(n)=2 n+2^{k+1}-2$ for $3 \cdot 2^{k-1}+1 \leq n<2^{k+1}+1$ and $C(n)=4 n-2^{k}-4$ for $2^{k}+1 \leq n<3 \cdot 2^{k+1}+1$.

Theorem (Widmer, 2011)

Let ω be the Thue-Morse word. Then for any $n \geq 6$, where $n=2^{a}+b$ with $0<b \leq 2^{a}$, we have $\lambda(n)=2\left(2^{a+1}+b-2\right)$.

The main theorem

Definition

A word ω is called uniformly recurrent if for any $n>0$ there exists a number $t_{\omega}(n)$ such that every $t_{\omega}(n)$-length factor of ω contains all factors of ω of length n.

Theorem

Let ω be an infinite uniformly recurrent word. Then $\lambda(n)=C(n-1)$ if and only if ω is a Sturmian word.

