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I. Polynomials
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1965: B. J. Birch, S. Chowla, M. Hall Jr., A. Schinzel

Let A and B be two coprime polynomials, A, B ∈ C[x]. What is the

minimum possible degree of the difference R = A3 − B2?

Example (N. Elkies, 2000)

P = (x10 − 2x9 + 33x8 − 12x7 + 378x6 + 336x5 + 2862x4

+ 2652x3 + 14397x2 + 9922x + 18553)3,

Q = (x15 − 3x14 + 51x13 − 67x12 + 969x11 + 33x10 + 10963x9

+ 9729x8 + 96507x7 + 108631x6 + 580785x5 + 700503x4

+ 2102099x3 + 1877667x2 + 3904161x + 1164691)2,

R = P − Q

= 26 315(5x6 − 6x5 + 111x4 + 64x3 + 795x2 + 1254x + 5477).

Remark. The fact that in this example the coefficients are rational

numbers is a great chance. To find them, we had to solve a huge

system of algebraic equations, most of them of degree 3. The

coefficients might be algebraic numbers.
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Two conjectures (1965): Let

degA = 2k, degB = 3k,

so that

degA3 = degB2 = 6k;

then

1. deg(A3 − B2) ≥ k + 1;

2. this bound is attained.

In the previous example k = 5.

1965: The first conjecture proved by H. Davenport.

1981: W. W. Stothers proved that the bound is attained for all k.

We see that the second conjecture turned out to be more difficult:

it remained open for 16 years. There were also several publication

in between.
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1995: The problem is generalized (and solved) by U. Zannier:

Let two partitions of an integer n be given:

α = (α1, α2, . . . , αp), β = (β1, β2, . . . , βq),

p
∑

i=1

αi =
q
∑

j=1

βj = n,

and let P and Q be two coprime polynomials of degree n with

complex coefficients, such that

P(x) =
p
∏

i=1

(x − ai)
αi, Q(x) =

q
∏

j=1

(x − bj)
βj .

Denote R = P − Q.

Question: What is the minimum possible degree of R?

In the initial problem α = (3,3, . . . ,3), β = (2,2, . . . ,2).
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Two technical assumptions:

1. The greatest common divisor of α1, . . . , αp, β1, . . . , βq is 1.

2. p + q ≤ n + 1.

(We can do without them, but the statements would become more

cumbersome.)

Theorem (U. Zannier, 1995)

1. degR ≥ (n + 1) − (p + q).

2. This bound is attained for any pair of partitions α, β ⊢ n

satisfying the above assumptions.

In the above example, n = 6k, p = 2k, q = 3k.
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2010: F. Beukers, C. Stewart: Search for polynomials A and B

such that

1. The degree of the difference Ak − Bl attains its minimum;

2. A and B have rational coefficients.

Several infinite series and several sporadic examples.
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II. Maps
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All our maps will be plane and bicolored.

A face degree is defined as a half of the number of surrounding

edges.

Thus, the sum of degrees of black vertices, of white vertices, and

of the faces, is equal to the number of edges.

The number of edges is the degree of the map.
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Convention. When all white vertices are of degree 2 we do

not draw them explicitly.
We may even “forget” about them and think of “ordinary” maps,

with only black vertices.

Remark. Two notions of the face degree are coherent. The degree

of the map is computed according the bicolored model.
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In this talk we are specially interested in the

maps with all their faces

(except the outer one)

being of degree 1:
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It is much easier to handle the corresponding weighted trees:

5

3

2

2

The weight of an edge is a positive integer.

The degree of a vertex is the sum of the weights of the edges

incident to this vertex.

The total weight of a tree is equal to the degree of the underlying

map.
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III. Belyi functions
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Let C denote the complex Riemann sphere, C = C ∪ {∞}, and let

f : C → C be a rational function with complex coefficients.

A critical value of f is a point y ∈ C such that the equation

f(x) = y

has multiple roots.

Belyi function is a rational function which has only three critical

values, namely,

y = 0, y = 1, and y = ∞.

The choice of 0,1,∞ is a mere tradition. Indeed, any three points

can be placed to any three given positions by making a linear

fractional transformation.
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Let us take a Belyi function f and consider the preimage

M = f−1([0,1]).

0 1 *8
Then we get the following object:

• M is a bicolored map with n edges, where n = deg f .

• Black vertices are the points x ∈ f−1(0), and their degrees are

equal to the multiplicities of the roots of f(x) = 0.

• White vertices are the points x ∈ f−1(1), and their degrees are

equal to the multiplicities of the roots of f(x) = 1.

• Inside each face there is exactly one pole x ∈ f−1(∞), and the

degree of the face is equal to the multiplicity of this pole.
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• For any bicolored plane map M there exists a Belyi

function f such that M is isomorphic to f−1([0,1]).

This function is unique up to a linear fractional transformation

of the variable x.

• This statement is a particular case of Riemann’s Existence

Theorem.

• The coefficients of f can be made algebraic numbers.

• A striking consequence: the Galois group Γ = Aut(Q|Q) acts

on maps.

• The theory of dessins d’enfants (“children’s drawings” in

French) studies combinatorial invariants of this action, but not

only. . .
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Example

f(x) =
50000

27
· x6 (x − 1)3 (x + 1)

(x2 + 4x − 1)5
,

f(x) − 1 =
1

27
· (11x3 + x2 − 3x + 3)2 (7 x − 1) (59 x3 − 121 x2 + 33x − 3)

(x2 + 4x − 1)5
.

No other critical values except 0, 1 and ∞.
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The dessin d’enfant obtained as f−1([0,1]) for

f(x) =
50000

27
· x6 (x − 1)3 (x + 1)

(x2 + 4 x − 1)5
.
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IV. Back to polynomials
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Recall that

P(x) =
p
∏

i=1

(x − ai)
αi, Q(x) =

q
∏

j=1

(x − bj)
βj , P − Q = R.

Instead of P − Q = R let us write P − R = Q and divide by R:

f =
P

R
, f − 1 =

Q

R
.

• f = 0 ⇔ P = 0, hence 0 is a critical value of f ;

• f = 1 ⇔ Q = 0, hence 1 is a critical value of f ;

• f = ∞ has a multiple root at infinity (if degR < degP − 1);

hence ∞ is a critical value.

What if f is a Belyi function? What is the corresponding

map?
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The map M corresponding to f has the following characteristics:

• it has p + q vertices (p black ones and q white ones);

• the number of edges is n = deg f ;

• Euler’s formula:

(p + q) − n + #(faces) = 2,

hence

#(faces) = (n + 2) − (p + q);

• faces correspond to poles;

the pole at ∞ corresponds to the outer face;

other poles are roots of R (which is the denominator of f);

• Conclusion: the polynomial R has (n + 1) − (p + q) distinct

roots.
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Suite:

• the polynomial R has (n + 1) − (p + q) distinct roots;

• hence, degR ≥ (n + 1) − (p + q);

• this lower bound is attained if and only if the roots of R are

simple (that is, not multiple),

• which means that all the faces of the map M except the outer

one are of degree 1.

Remark. The Riemann-Hurwitz formula implies that if f is not

a Belyi function, that is, if it has more than three critical values,

than the above bound cannot be attained.
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First result (A. Z.) A great simplification of Zannier’s proof.

For a given (α, β), the existence of a tree implies the

attainablity of the lower bound for degR.

It is much easier to draw trees than to work directly with

polynomials.

For number theorists it took 30 years: 1965 . . . 1995.
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Let us look how it works in the particular case A3
− B2.

We should draw a map with the following characteristics:

• all its black vertices are of degree 3;

• all its white vertices are of degree 2 (so forget them and think

of “ordianry” maps with only black vertices);

• all its faces except the outer one are of degree 1.

Recall that it is a problem which was studied by (at least)

five famous mathematicians and a number of less famous but

also very good mathematicians, and which remained open for

16 years (from 1965 to 1981).
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Solution:

First stage Second stage

(1) Draw a tree with inner nodes of degree 3. (2) Attach a loop

to each leaf. Theorem id proved. �

The general case of arbitrary partitions α, β ⊢ n is slightly more

involved but not much more difficult.
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V. Galois theory (and combinatorics)

Let us admit certain facts from the theory of

dessins d’enfants.
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Usually, the coefficients of our polynomials are algebraic numbers.

Example: a Galois orbit of degree 4

2

2 2

2

P = x4(x + 1)2(x2 + ax + b)

Q = (x2 + cx + d)3(x2 + ex + f)

R = gx + h

a, b, c, d, e, f, g, h ∈ Q

(√

−455 + 952
√
−14

)

.

There are six more trees with the same set of black and white

degrees. They form a Galois orbit of degree 6.
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Proposition. If, for a given pair of partitions (α, β), the corre-

sponding tree is unique, then the polynomials P, Q, R are defined

over Q.

We call such trees unitrees.

“Defined over Q” means that there exist polynomials with rational

coefficients.

Second result (F. Pakovich, A. Z.): A complete classification of

unitrees. There are:

• 10 infinite series, and

• 10 sporadic trees.

A very long and cumbersome proof. Pictures follow. . .
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Third result (F. Pakovich, A. Z.): Belyi functions for all unitrees

are computed.

Example

22

3

33 11

P = (x3 + 9x + 9)5

Q = (x5 + 15x3 + 15x2 + 45x + 90)3

R = −27 (15x8 + 395x6 + 423x5 + 3330x4 + 7290x3

+11880x2 + 29565x + 24813)

Difficult to find but trivial to verify. . .
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For infinite series the situation is much more complicated.

• One has to compute a lot of examples;

• to guess a general pattern;

• and to prove that the suggested solution is indeed true,

and every stage is non-trivial.

An example follows. . .
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k l

s+t

s t s t s t s+t
s+t

s+t

s+t

−1

s+t s+t

1

m1 = l(s + t) + t
m2 = k(s + t) + s
p = number of black vertices of degree s + t
q = number of white vertices (all of them are of degree s + t)
a = l + t/(s + t)
b = k + s/(s + t)

P =

(

x − 1

2

)m1

·
(

x + 1

2

)m2

· Jp(a, b, x)s+t

Q = Jq(−a,−b, x)s+t

Here Jp and Jq are Jacobi polynomials of degrees p and q.

Notice the negative parameters −a and −b in Jq.
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Among the polynomials for infinite series there are quite a few

“cut-off” hypergeometric series.

But we did not uncover any general structure.
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The uniqueness of the tree is a sufficient but not necessary

condition for being defined over Q.

Example: A composition of two unitrees.

0 1

D

D

f

A

F(t) = f(A(t))

DF where

f = − 64x3(x − 1)

8 x + 1
, A =

1

55
· (t2 + 4)3(3 t + 8)2 .
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VI. Groups
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A rational function f : C → C may be considered as a ramified

covering of the Riemann sphere by itself.

The monodromy group is an invariant of the Galois action.

It is well-known that a covering is a composition of two or more

coverings of smaller degrees if and only if its monodromy

group is imprimitive (Ritt’s Theorem).

40



The monodromy group can be found using the picture:

1

10

2

9

13

12

8
14

7

6

4

5

11

3
15

16

18

17

a = (2,9,12,13,3)(4, 6)(5,18,17,16,15)(8,14)(10, 11)

b = (1,10,11,9)(3,13,12,8,14,7,6)(4,5,15,16,17,18)

Monodromy group: G = 〈a, b〉

41



Definition. A permutation group acting on n points is imprimitive

if the set of points can be subdivided into m blocks of equal size,

1 < m < n, such that an image of a block under the action of any

element of the group is once again a block.

Otherwise the group is called primitive.

The groups Sn and An are primitive. For p prime all groups of

degree p are primitive.
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Primitive groups are few. . .

Degree 2 3 4 5 6 7 8 9 10 11 12 13 14

Primitive 1 2 2 5 4 7 7 11 9 8 6 9 4

Transitive 1 2 5 5 16 7 50 34 45 8 301 9 63

Degree 15 16 17 18 19 20 21 22 23

Primitive 6 22 10 4 8 4 9 4 7

Transitive 104 1954 10 983 8 1117 164 59 7

Degree 24 25 26 27 28 29 30 31

Primitive 5 28 7 15 14 8 4 12

Transitive 25000 211 96 2392 1854 8 5712 12

Degree 32

Primitive 5

Transitive 2 801 324
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Fourth result: (N. Adrianov, A. Z.) Complete classification of

primitive monodromy groups of weighted trees:

Proposition. Beside the symmetric and alternating groups Sn and

An for all n, and the cyclic and dihedral groups Cp and D2p for

p prime, there are finitely many primitive monodromy groups of

weighted trees. Namely, there are:

• 184 trees (up to a color exchange);

• 85 Galois orbits;

• 34 groups;

• the highest degree of a group from this list is 32.
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Weight Group Order Orbits Trees

5 AGL1(5) 20 1 2

6 PSL2(5) 60 2 2
PGL2(5) 120 7 7

7 AGL1(7) 42 1 2
PSL3(2) 168 2 4

8 AΓL1(8) 168 1 4
PSL2(7) 168 2 2
PGL2(7) 336 6 7
ASL3(2) 1 344 6 14

9 AΓL1(9) 144 1 2
AGL2(3) 432 2 4
PSL2(8) 504 3 3
PΓL2(8) 1 512 4 10

10 PGL2(9) 720 3 3
PΓL2(9) 1 440 2 2

11 PSL2(11) 660 1 2
M11 7 920 1 2

12 PGL2(11) 1 320 2 4
M11 7 920 3 10
M12 95 040 9 20
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Weight Group Order Orbits Trees

13 PSL3(3) 5 616 3 12

14 PSL2(13) 1 092 1 1
PGL2(13) 2 184 2 4

15 PSL4(2) 20 160 3 6

16 AΓL2(4) 5 760 1 2
AGL4(2) 322 560 4 12

17 PSL2(16) 4 080 1 1
PSL2(16) ⋊ C2 8 160 1 1

20 PGL2(19) 6 840 1 3

21 PΓL3(4) 120 960 1 2

23 M23 10 200 960 1 4

24 M24 244 823 040 5 18

31 PSL5(2) 9 999 360 1 6

32 ASL5(2) 319 979 520 1 6

Total 34 — 85∗ 184

∗For certain orbits we are not entirely sure that the “orbit” in question is indeed

a single orbit and not a union of several orbits.
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VII. A sample of beautiful examples
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d

b c

a

Computation of Belyi functions:
(a) B. Birch, 1965 defined over Q

(d) N. Elkies, 2000 defined over Q

(b, c) T. Shioda, 2004 defined over Q(
√
−3)
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The theory of dessins d’enfants does not make computations any

easier. It just predicts that in the above case there exist exactly

four non equivalent solutions. Moreover:

• one of them is defined over Q, and its Belyi function is a func-

tion in x3;

• another one is defined over Q;

• the two remaining solutions constitute a Galois orbit defined

over an imaginary quadratic field, and their Belyi functions are

functions in x2.

All that can be said without any computation, only by looking at the

pictures.

Maybe the time gap of 35 years between the statement of the

problem for A3 − B2 (1965) and the example of Elkies (2000) is

explained by the fact that nobody knew that such an example

exists. The search was blind.
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Here all three dessins are defined over Q:
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2 2 1
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3

33
3
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3
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1
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3

3

3
3

3
3 3

3
1

1

Note that all black degrees are equal to 10 and all white degrees are

equal to 3. Therefore, this example corresponds to the minimum

degree problem for A10 − B3.
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2

PGL (9)
2

2 2

Weight n = 10, vertex degrees (8112,2412).

16 trees, 4 Galois orbits.

The sizes of orbits: 1 (group PGL2(9)), 2 (symmetry), 5, 8. The

monodromy group of the 5 + 8 = 13 maps is S10. Five of them

are self-dual, the other eight are not.
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m

m

m

3
m

m

m 2

2

Weight 3m, vertex degrees (m3,5113m−5).

• either one orbit over a real quadratic field;

• or two orbits over Q.

Computation gives the field Q(
√

∆) where

∆ = 3(2m − 1) (3m − 2).
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Question: can ∆ = 3(2m − 1) (3m − 2) be a perfect square?

1. 2m − 1 and 3m − 2 are coprime:

3m − 2 = 1 · (2m − 1) + (m − 1),
2m − 1 = 2 · (m − 1) + 1.

2. Only 2m − 1 can be divisible by 3 (3m − 2 cannot).

3. Hence, 3 (2m − 1) and 3m − 2 must both be squares.

4. Denoting

6m − 3 = a2, 3m − 2 = b2

we get

a2 − 2b2 = 1.

Pell equation ! (Plus the condition of a being a multiple of 3.)
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Pell’s name was attributed to this equation by error. . .

• Pythagoras (VI before J. C.): a2 − 2b2 = 0

• Brahmagupta (VII)

• Bhaskara II (XII)

• Narayana Pandit (XIV)

• Brouncker (XVII)

• Fermat, Euler, Lagrange, Abel, . . . (XVII–XIX)

• Dirichlet (XIX)
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Infinitely many solutions. For every other solution of the Pell

equation the parameter a is divisible by 3.

First values of the parameter m =
a2 + 3

6
(vertex degree):

1 634, 1 884 962, 2 175 243 842, . . .

Growth exponent: (17 + 12
√

2)2 ≈ 1154.
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VIII. Enumeration
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Proposition (A. Z.) Let an be the number of rooted trees of

weight n, and let f(t) =
∑

n≥0 antn. Then

f(t) =
1 − t −

√

1 − 6 t + 5 t2

2 t

= 1 + t + 3 t2 + 10 t3 + 36 t4 + 137 t5 + 543 t6 + 2219 t7 + . . .

Recurrence:

a0 = 1, a1 = 1, an+1 = an +
n
∑

k=0

akan−k for n ≥ 1.

Asymptotic: an ∼ 1

2

√

5

π
· 5n n−3/2.

Sequence A002212 of the “On-Line Encyclopedia of Integer

Sequences”. It has many different interpretations.
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Let bm,n be the number of rooted trees of weight n with m edges,

and let h(s, t) =
∑

m,n≥0 bm,nsmtn. Then

h(s, t) =
1 − t −

√

1 − (2 + 4s) t + (1 + 4s) t2

2st

= 1 + st + (s + 2s2) t2 + (s + 4s2 + 5s3) t3

+ (s + 6s2 + 15s3 + 14s4) t4 + . . .

Explicit formula for bm,n:

bm,n =

(

n − 1
m − 1

)

· 1

m + 1

(

2m
m

)

.
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We would like to have an

explicit formula for the number of rooted weighted

trees corresponding to a given pair of partitions (α, β)

and which would

avoid inclusion-exclusion.

Difficulty: the same pair of partitions can be realized by a tree

and by a forest:

2

3

2 2

For ordinary trees this difficulty does not exist, and the needed

formula does exist (Tutte, 1964).
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Thank you !
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